Long-term impact on the breeding birds of a semi-offshore island-based wind farm in Åland, Northern Baltic Sea

Authors

  • Antti Tanskanen Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden https://orcid.org/0000-0002-3795-3126
  • Rauno Yrjölä Environmental Research Yrjölä Ltd, Nuijamiestentie 5C 00400 Helsinki, Finland https://orcid.org/0000-0003-2150-1798
  • Johanna Oja
  • Risto Aalto
  • Sakari Tanskanen

DOI:

https://doi.org/10.34080/os.v32.22331

Keywords:

wind energy, Baltic Sea, archipelago, wind farm, population trends, breeding, Laridae, Anatidae

Abstract

Breeding bird populations were monitored at a wind farm in the Båtskär area of the southern Åland archipelago in 2006–2017. The area is situated in the outer archipelago and comprises four islands with six wind turbines in total. The wind turbines began operating in autumn 2007. An environmental impact assessment for the area was conducted in 2002. A control area called Stenarna, located 22 km NW of Båtskär, was used for comparison. The Båtskär area annually recorded 850–1,050 pairs of breeding birds. Four species showed significantly decreasing trends in Båtskär, namely the Common Eider Somateria mollissima, Lesser Black-backed Gull Larus fuscus, Herring Gull L. argentatus , and Black Guillemot Cepphus grylle. In Stenarna, only the Common Eider significantly decreased over the same period. The Arctic Tern Sterna paradisaea  increased in both areas, while the Velvet Scoter Melanitta fusca, Red-breasted Merganser Mergus serrator, Common Gull Larus canus, Rock Pipit Anthus petrosus, and White Wagtail Motacilla alba increased in Stenarna, the control area. The Herring Gull population decline is unlikely to be related to the wind farm. However, the proximity of a wind turbine to a breeding colony of the Lesser Black-backed Gull has most likely contributed to its decline. The reason for the Black Guillemot decline in Båtskär is unknown. The decline of Common Eider in both areas may be connected to increasing predation from White-tailed Eagles Haliaeetus albicilla. Some species, such as the House Martin Delichon urbicum and auks, have benefitted from the wind farm construction. They can utilize new microhabitats created by the construction, while other species, such as the Common Eider, gain protection against predation because of human activities.

Downloads

Download data is not yet available.

References

Anon. 2002. Nyhamns vindkraftspark. Slutlig miljökonsekvensbedömning. Electrowatt-Ekono, Espoo, Finland.

Carrete M, Sánchez-Zapata J, Benítez J, Lobón M & Donázar J. 2009. Large scale risk-assessment of windfarms on population viability of a globally endangered long-lived raptor. Biological Conservation 142: 2954–2961. https://doi.org/10.1016/j.biocon.2009.07.027 DOI: https://doi.org/10.1016/j.biocon.2009.07.027

Carwin J, Jennelle C, Drake D & Grodsky S. 2011. Response of raptors to a windfarm. Journal of Applied Ecology 48:199–209. https://doi.org/10.1111/j.1365-2664.2010.01912.x DOI: https://doi.org/10.1111/j.1365-2664.2010.01912.x

Desholm M & Kahlert J. 2005. Avian Collision Risk at an Offshore Wind Farm. Biology Letters 1: 296–298. https://doi.org/10.1098/rsbl.2005.0336 DOI: https://doi.org/10.1098/rsbl.2005.0336

Desholm M. 2006. Wind farm related mortality among avian migrants – a remote sensing study and model analysis. PhD thesis, Dept of Wildlife Ecology and Biodiversity, National Environmental Research Institute, and Center for Macroecology, Institute of Biology, University of Copenhagen. 128 pp.

Desholm M, Fox A, Beasley P & Kahlert J. 2006. Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: a review. Ibis 148: 76–89. https://doi.org/10.1111/j.1474-919X.2006.00509.x DOI: https://doi.org/10.1111/j.1474-919X.2006.00509.x

Drewitt AL & Langston RH. 2006. Assessing the impacts of wind farms on birds. Ibis 148: 29–42. https://doi.org/10.1111/j.1474-919X.2006.00516.x DOI: https://doi.org/10.1111/j.1474-919X.2006.00516.x

Drewitt A & Langston R. 2008. Collision Effects of Wind-power Generators and Other Obstacles on Birds. Annals of the New York Academy of Sciences 1134: 233–266. https://doi.org/10.1196/annals.1439.015 DOI: https://doi.org/10.1196/annals.1439.015

Everaert J & Stienen E. 2007. Impact of wind turbines on bird in Zeebrugge (Belgium), Significant effect on breeding tern colony due to collisions. Biodiversity and Conservation 16: 3345–3359. https://doi.org/10.1007/s10531-006-9082-1 DOI: https://doi.org/10.1007/s10531-006-9082-1

Furness RW, Wade HM & Masden EA. 2013. Assessing vulnerability of marine bird populations to offshore wind farms. Journal of Environmental Management 119: 56–66. https://doi.org/10.1016/j.jenvman.2013.01.025 DOI: https://doi.org/10.1016/j.jenvman.2013.01.025

Haaren R & Fthenakis V. 2011. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews 15: 3332–3340. https://doi.org/10.1016/j.rser.2011.04.010 DOI: https://doi.org/10.1016/j.rser.2011.04.010

Hario M, Rintala J & Tanner J. 2009. Keskisen Suomenlahden harmaalokkiprojekti. Kannanrajoitustoimet 2004–2007. Riista- ja kalatalous tutkimuksia 4/2009. (In Finnish.)

Hario M & Rintala J. 2014. Saaristolinnuston kehitys Suomen rannikolla 1986–2013. Linnut vuosikirja 2013: 46–53. (In Finnish with English summary.)

Harwood AJP, Perrow MR, Berridge RJ, Skeate ER & Tomlinson ML. 2017. Unforeseen Responses of a Breeding Seabird to the Construction of an Offshore Wind Farm. Pp 19–41 in Wind Energy and Wildlife Interactions (Köppel J, ed). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-51272-3_2 DOI: https://doi.org/10.1007/978-3-319-51272-3_2

Hentati-Sundberg J, Berglund PA, Hejdström A & Olsson O. 2021. COVID-19 lockdown reveals tourists as seabird guardians. Biological Conservation 254: 108950. https://doi.org/10.1016/j.biocon.2021.108950 DOI: https://doi.org/10.1016/j.biocon.2021.108950

Heuck C, Herrmann C, Levers C, Leitão PJ, Krone O, Brandl R & Albrecht J. 2019. Wind turbines in high quality habitat cause disproportionate increases in collision mortality of the white-tailed eagle. Biological Conservation 236: 44–51. https://doi.org/10.1016/j.biocon.2019.05.018 DOI: https://doi.org/10.1016/j.biocon.2019.05.018

Hildén O, Koskimies P, Puntti H & Väisänen RA. 1991. Archipelago Bird counts. Pp 55–62 in Monitoring Bird Population (Koskimies P, Väisänen RA, eds). Zoological Museum, Finnish Museum of Natural History, Finland.

Hüppop O, Dierschke J, Exo K-L, Fredrich E & Hill R. 2006. Bird migration studies and potential collision risk with offshore wind turbines. Ibis 148: 90–109. https://doi.org/10.1111/j.1474-919X.2006.00536.x DOI: https://doi.org/10.1111/j.1474-919X.2006.00536.x

Hötker H. 2017. Birds: displacement. In Wildlife and Wind Farms, Conflicts and Solutions. Volume 1: Onshore: Potential Effects (Perrow MR, ed). Pelagic Publishing, Exeter, UK.

Krijgsveld KL, Akershoek K, Schenk F, Dijk F & Dirksen S. 2009. Collision risk of birds with modern large wind turbines. Ardea 97: 357–366. https://doi.org/10.5253/078.097.0311 DOI: https://doi.org/10.5253/078.097.0311

Larsen J & Guillemette M. 2007. Effects of wind turbines on flight behavior of wintering common eiders: implications for habitat use and collision risk. Journal of Applied Ecology 44: 516–522. https://doi.org/10.1111/j.1365-2664.2007.01303.x DOI: https://doi.org/10.1111/j.1365-2664.2007.01303.x

Lehikoinen A, Jukarainen A, Mikkola-Roos M, Below A, Lehtiniemi T, Pessa J, Rajasärkkä A, Rintala J, Rusanen P, Sirkiä P, Tiainen J & Valkama J. 2019. Birds. Pp 560–570 in The 2019 Red List of Finnish Species (Hyvärinen E, Juslén A, Kemppainen E, Uddström A & Liukko U-M, eds). Ministry of the Environment & Finnish Environment Institute, Helsinki, Finland.

Loss SR, Will T & Marra PP. 2013. Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation 168: 201–209. https://doi.org/10.1016/j.biocon.2013.10.007 DOI: https://doi.org/10.1016/j.biocon.2013.10.007

de Lucas M, Janss GFE & Ferrer M (eds). 2007. Birds and wind farms. Risk assessment and mitigation. Quercus/Librería Linneo, Madrid, Spain.

de Lucas M, Janss GFE, Whitfield DP & Ferrer M. 2008. Collision fatality of raptors in wind farms does not depend on raptor abundance. Journal of Applied Ecology 45: 1695–1703. https://doi.org/10.1111/j.1365-2664.2008.01549.x DOI: https://doi.org/10.1111/j.1365-2664.2008.01549.x

Masden E, Fox A, Furness R, Bullman R & Haydon D. 2010. Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework. Environmental Impact Assessment Review 30: 1–7. https://doi.org/10.1016/j.eiar.2009.05.002 DOI: https://doi.org/10.1016/j.eiar.2009.05.002

Niemuth ND, Walker JA, Gleason JS, Loesch CR, Reynolds RE, Stephens SE & Erickson MA. 2013. Influence of Wind Turbines on Presence of Willet, Marbled Godwit, Wilson’s Phalarope and Black Tern on Wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Waterbirds 36: 263–276. https://doi.org/10.1675/063.036.0304 DOI: https://doi.org/10.1675/063.036.0304

Pearce-Higgins J, Stephen L, Langston R, Bainbridge I & Bullman R. 2009. The distribution of breeding birds around upland wind farms. Journal of Applied Ecology 46: 1323–1331. https://doi.org/10.1111/j.1365-2664.2009.01715.x DOI: https://doi.org/10.1111/j.1365-2664.2009.01715.x

Pearce-Higgins J, Stephen, Douse A & Langston R. 2012. Greater impacts of wind farms on bird populations during construction than subsequent operation: results of a multi-site and multi-species analysis. Journal of Applied Ecology. 49: 386–394 https://doi.org/10.1111/j.1365-2664.2012.02110.x DOI: https://doi.org/10.1111/j.1365-2664.2012.02110.x

Perrow MR, Skeate ER, Lines P, Brown D & Tomlinson ML. 2006. Radio telemetry as a tool for impact assessment of wind farms: the case of Little Terns Sterna albifrons at Scroby Sands, Norfolk, UK. Ibis 148: 57–75. https://doi.org/10.1111/j.1474-919X.2006.00508.x DOI: https://doi.org/10.1111/j.1474-919X.2006.00508.x

Petersen J, Christensen T, Kahlert J, Desholm M & Fox A. 2006. Final results of bird studies at the offshore wind farms at Nysted and Horns Rev, Denmark. National Environmental Research Institute, Ministry of Environment, Copenhagen, Denmark.

Petterson J. 2005. The impact of Offshore Wind Farms on Bird Life in Southern Kalmar Sound, Sweden. Dept of Ecology, Lund University, Lund, Sweden, and Swedish Energy Agency, Stockholm, Sweden. https://tethys.pnnl.gov/sites/default/files/publications/The_Impact_of_Offshore_Wind_Farms_on_Bird_Life.pdf

R Core Team. 2021. R: A Language and Environment for Statistical Computing. https://www.R-project.org/

Robert A, Paiva VH, Bolton M, Jiguet F & Bried J. 2014. Nest fidelity is driven by multi-scale information in a long-lived seabird. Proceedings of the Royal Society B: 281: 20141692. https://doi.org/10.1098/rspb.2014.1692 DOI: https://doi.org/10.1098/rspb.2014.1692

Rydell J, Ottval R, Petterson S & Green M. 2017. The effects of wind power on birds and bats – an updated synthesis report 2017. Report 6791. Swedish Environmental Protection Agency, Stockholm, Sweden. https://tethys.pnnl.gov/sites/default/files/publications/Rydell-et-al-2017.pdf

Salas R, Müller W, Vercruijsse H, Lens L & Stienen E. 2020. Forced nest site relocations negatively affect reproductive investment in a colonial seabird species. Biological Conservation 246:108550. https://doi.org/10.1016/j.biocon.2020.108550 DOI: https://doi.org/10.1016/j.biocon.2020.108550

Stewart GB, Pullin AS & Coles CF. 2007. Poor evidence-base for assessment of impacts of windfarms on birds. Environmental Conservation 34: 1–11. https://doi.org/10.1017/S0376892907003554 DOI: https://doi.org/10.1017/S0376892907003554

Šidák ZK. 1967. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. Journal of the American Statistical Association 62: 626–633. https://doi.org/10.1080/01621459.1967.10482935 DOI: https://doi.org/10.1080/01621459.1967.10482935

Tanskanen A. 2012. Impact on breeding birds of a semi-offshore island-based windmill park in Åland, Northern Baltic Sea. Ornis Svecica 22: 9–15. https://doi.org/10.34080/os.v22.22593 DOI: https://doi.org/10.34080/os.v22.22593

Working Group of German State Bird Conservancies. 2014. Abstandsempfehlungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten. Berichte zum Vogelschutz 51: 15–42.

Downloads

Published

2022-11-21

How to Cite

Tanskanen, A., Yrjölä, R., Oja, J., Aalto, R., & Tanskanen, S. (2022). Long-term impact on the breeding birds of a semi-offshore island-based wind farm in Åland, Northern Baltic Sea. Ornis Svecica, 32, 47–65. https://doi.org/10.34080/os.v32.22331

Issue

Section

Research Papers