Flyways of Common Cranes Grus grus breeding in Fennoscandia

Authors

  • Per Hansson Vox Natura
  • Lovisa Nilsson Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences https://orcid.org/0000-0003-4822-7864
  • Sigvard Lundgren
  • Ulf Skyllberg Department of Forest Ecology and Management, Swedish University of Agricultural Sciences https://orcid.org/0000-0001-6939-8799
  • Jostein Sandvik
  • Johan Månsson Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences https://orcid.org/0000-0002-5189-2091

DOI:

https://doi.org/10.34080/os.v34.23602

Keywords:

migration pattern, migratory flyway, ringing, banding, ringing recovery

Abstract

Knowledge of migration patterns plays an essential role for understanding spatiotemporal distribution of birds. Here we used >15,000 sightings of 1,473 colour-ringed Common Cranes Grus grus to study migration patterns of birds breeding in five regions along a longitudinal gradient of Fennoscandia. Our results confirm that Fennoscandian cranes mainly use either a Western European flyway (W-flyway), to winter mainly in France or Spain, or a Central European flyway (C-flyway), to winter in Hungary or Israel. Finnish cranes showed the greatest variation in migration patterns in terms of distance and direction and only Finnish cranes were recovered in Africa. Many of the Finnish cranes, starting along C-flyway change to the W-flyway and winter in SW Europe or NW Africa. On the other hand, the Scandinavian cranes are rarely observed along the C-flyway. However, substantial numbers of cranes from NE Sweden cross the Baltic Sea and migrate via Finland but then follow the W-flyway from Germany and southwards, especially during autumn. These results can be used for conservation and management, e.g. to coordinate monitoring. They are also relevant for land use planning, e.g. to avoid windfarms at sites important for migrating soaring birds while crossing seas, so-called ‘thermal bottleneck sites’.

Downloads

Download data is not yet available.

References

Alerstam T & Hedenström A. 1998. The development of bird migration theory. Journal of Avian Biology 29: 343–369. https://doi. org/10.2307/3677155 DOI: https://doi.org/10.2307/3677155

Alonso JA & Alonso JC. 1993. Age-realted differences in time budgets and parental care in wintering Common Cranes. Auk 110: 78–88. https://doi.org/10.1093/auk/110.1.78

Alonso JC, Veiga JP & Alonso JA. 1984. Family breakup and spring departure from winter quarters in the Common Cranes. Journal für Ornithologie 125: 69–74. https://doi.org/10.1007/BF01652939 DOI: https://doi.org/10.1007/BF01652939

Alonso J, Alonso J & Nowald G. 2008. Migration and wintering patterns of a central European population of Common Cranes Grus grus. Bird Study 55: 1–7. https://doi. org/10.1080/00063650809461499 DOI: https://doi.org/10.1080/00063650809461499

Alonso JC, Bautista LM & Alonso JA. 2018. Thirty years of crane colour-banding in Europe: overview and perspectives. Proceedings of the 9th European Crane Conference.

Arjuzanx, France. Bacon L, Madsen J, Jensen GH, de Vries L, Follestad A, Koffijberg K, Kruckenberg H, Loonen M, Månsson J, Nilsson L, Voslamber B & Guillemain M. 2019. Spatio–temporal distribution of greylag goose Anser anser resightings on the north-west/south-west European flyway: guidance for the delineation of transboundary management units. Wildlife Biology 2019: 1–10. https://doi. org/10.2981/wlb.00533 DOI: https://doi.org/10.2981/wlb.00533

Boere G, Galbraith CA & Stroud DA. 2006. Waterbirds around the world: a global overview of the conservation, management and research of the world’s waterbird flyways. Stationery Office Books, Edinburgh, UK.

Crane Conservation Germany. 2020. iCora: internetbased Crane Observation Ring Archive. https://www.icora.de/index.php EC. 2009. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds.

Fiedler W. 2009. New technologies for monitoring bird migration and behaviour. Ringing & Migration 24: 175–179. https://doi.org/10.1080 /03078698.2009.9674389 DOI: https://doi.org/10.1080/03078698.2009.9674389

Fraixedas S, Lindén A, Husby M & Lehikoinen A. 2020. Declining peatland bird numbers are not consistent with the increasing Common Crane population. Journal of Ornithology 161: 691–700. https://doi.org/10.1007/s10336-020-01777-6 DOI: https://doi.org/10.1007/s10336-020-01777-6

Fransson T, Österblom H & Hall-Karlsson S. 2008. Svensk ringmärkningsatlas. Naturhistoriska riksmuseet, Stockholm. Hansson P. 2019. Fennoscandian bottleneck sites for threatened thermal migrating birds. (In Swedish with English summary and figures.) https://tinyurl.com/yeyvuwd8

Harris J & Mirande C. 2013. A global overview of cranes: status, threats and conservation priorities. Chinese Birds 4: 189–209. https://doi.org/10.5122/cbirds.2013.0025 DOI: https://doi.org/10.5122/cbirds.2013.0025

Hemminger K, König H, Månsson J, Bellingrath-Kimura S & Nilsson L. 2022. Winners and losers of land use change: A systematic review of interactions between the world’s crane species (Gruidae) and the agricultural sector. Ecology and Evolution 12: e8719. https:// doi.org/10.1002/ECE3.8719 IUCN. 2022. DOI: https://doi.org/10.1002/ece3.8719

The IUCN Red List of Threatened Species. https://www. iucnredlist.org/ Johnsgard PA. 1983. Eurasian Crane Grus grus. Pp 227–237 in Cranes of the World. Indiana University Press, Bloomington, USA. https:// digitalcommons.unl.edu/bioscicranes/17/

Johnson, FA, Jensen GH, Madsen J & Williams BK. 2014. Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population. Ecological Modelling 273: 186–199. https://doi.org/10.1016/j.ecolmodel.2013.10.031 DOI: https://doi.org/10.1016/j.ecolmodel.2013.10.031

Kirby JS, Stattersfield AJ, Butchart SHM, Evans MI, Grimmett RFA, Jones VR, O’Sullivan J, Tucker GM & Newton I. 2008. Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conservation International 18: S49– S73. https://doi.org/10.1017/s0959270908000439 DOI: https://doi.org/10.1017/S0959270908000439

Klaassen M, Bauer S, Madsen J & Tombre I. 2006. Modelling behavioural and fitness consequences of disturbance for geese along their spring flyway. Journal of Applied Ecology 43: 92–100. https://doi.org/10.1111/j.1365-2664.2005.01109.x DOI: https://doi.org/10.1111/j.1365-2664.2005.01109.x

Krapu GL, Brandt DA, Kinzel PJ & Pearse AT. 2014. Spring migration ecology of the mid-continent sandhill crane population with an emphasis on use of the Central Platte River Valley, Nebraska. Wildlife Monographs 189: 1–41. https://doi.org/10.1002/wmon.1013 DOI: https://doi.org/10.1002/wmon.1013

Leito A, Ojaste I & Sellis U. 2011. The migration routes of Eurasian cranes breeding in Estonia. Hirundo 24: 41–53.

Leito A, Bunce RGH, Külvik M, Ojaste I, Raet J, Villoslada M, Leivits M, Kull A, Kuusemets V, Kull T, Metzger MJ & Sepp K. 2015. The potential impacts of changes in ecological networks, land use and climate on the Eurasian crane population in Estonia. Landscape Ecology 30: 887–904. https://doi.org/10.1007/s10980-015-0161-0 DOI: https://doi.org/10.1007/s10980-015-0161-0

LPO. 2020. Informations about migration sites and Common cranes. https://champagne-ardenne.lpo.fr/grue-cendree/grus-en Lundin G. 2005. Cranes—where, when and why? Supplement no 43 of Vår Fågelvärld. Swedish Ornithological Society (SOF), Falköping, Sweden.

Madsen J, Williams JH, Johnson FA, Tombre IM, Dereliev S & Kuijken E. 2017. Implementation of the first adaptive management plan for a European migratory waterbird population: The case of the Svalbard pink-footed goose Anser brachyrhynchus. Ambio 46: 275–289. https://doi.org/10.1007/s13280-016-0888-0 DOI: https://doi.org/10.1007/s13280-016-0888-0

Månsson J, Nilsson L & Hake M. 2013. Territory size and habitat selection of breeding common cranes (Grus grus) in a boreal landscape. Ornis Fennica 90: 65–72. DOI: https://doi.org/10.51812/of.133823

Månsson J, Liljebäck N, Nilsson L, Olsson C & Kruckenberg H. 2022. Migration patterns of Swedish Greylag geese Anser anser – implications for flyway management in a changing world. European Journal of Wildlife Research 28: 1–11. https://10.1007/s10344-022- 01561-2 DOI: https://doi.org/10.1007/s10344-022-01561-2

Martin TG, Chadès I, Arcese P, Marra PP, Possingham HP & Norris DR. 2007. Optimal conservation of migratory species. PLoS One 2: e751. https://doi.org/10.1371/journal.pone.0000751 DOI: https://doi.org/10.1371/journal.pone.0000751

Mingozzi T, Storino P, Venuto G, Alessandria G, Arcamone E, Urso S, Ruggieri L, Massetti L & Massolo A. 2013. Autumn migration of Common Cranes Grus grus through the Italian Peninsula: new vs. historical flyways and their meteorological correlates. Acta Ornithologica 48: 165–177. https://doi. org/10.3161/000164513X678810 DOI: https://doi.org/10.3161/000164513X678810

Montràs-Janer T, Knape J, Nilsson L, Tombre I, Pärt T & Månsson J. 2019. Relating national levels of crop damage to the abundance of large grazing birds: implications for management. Journal of Applied Ecology 56: 2286–2297. https://doi.org/10.1111/1365-2664.13457 DOI: https://doi.org/10.1111/1365-2664.13457

Mueller T, O’Hara RB, Converse SJ, Urbanek RP & Fagan WF. 2013. Social learning of migratory performance. Science 341: 999–1002. https://doi.org/10.1126/science.1237139 DOI: https://doi.org/10.1126/science.1237139

Nilsson L, Aronsson M, Persson J & Månsson J. 2018. Drifting space use of common cranes—Is there a mismatch between daytime behaviour and management? Ecological Indicators 85: 556–562. https://doi.org/10.1016/j.ecolind.2017.11.007 DOI: https://doi.org/10.1016/j.ecolind.2017.11.007

Nilsson L, Bunnefeld N, Persson J, Žydelis R & Månsson J. 2019. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biological Conservation 236: 1–7. https://doi.org/10.1016/j. biocon.2019.05.006 167 DOI: https://doi.org/10.1016/j.biocon.2019.05.006

Ojaste I, Leito A, Sepp K, Väli Ü & Hedenström A. 2020. From northern Europe to Ethiopia: long-distance migration of Common Cranes (Grus grus). Ornis Fennica 97: 12–25. Pearse AT, Krapu GL, Brandt DA & Kinzel PJ. 2010. Changes in agriculture and abundance of Snow Geese affect carrying capacity of Sandhill Cranes in Nebraska. Journal of Wildlife Management 74: 479–488. https://doi.org/10.2193/2008-539 DOI: https://doi.org/10.51812/of.133962

Prange H. 2010. Reasons for changes in crane migration patterns along the West-European flyway. Pp 35–48 in Cranes, agriculture and climate change (Harris, J, ed.). International Crane Foundation and Muraviovka Park for Sustainable Land Use, Muraviovka Park, Russia.

Runge A, Martin TG, Possingham HP, Willis SG & Fuller RA. 2014. Conserving mobile species. Frontiers in Ecology and the Environment 12: 395–402. https://doi.org/10.1890/130237 DOI: https://doi.org/10.1890/130237

Runge CA, Watson JEM, Butchart SHM, Hanson JO, Possingham HP & Fuller RA. 2015. Protected areas and global conservation of migratory birds. Science 350: 1255–1258. https://doi.org/10.1126/ science.aac9180 Salvi A. 2010. Eurasian cranes (Grus grus) and agriculture in France. Pp 65–70 in Cranes, agriculture and climate change (Harris, J ed.). The International Crane Foundation, Muraviovka Park, Russia. DOI: https://doi.org/10.1126/science.aac9180

Saurola P, Valkama J & Velmala W. 2013. The Finnish Bird Ringing Atlas. Vol. I. Luonnontieteellinen Keskusmuseo, Helsinki, Finland.

Singh NJ & Milner-Gulland EJ. 2011. Conserving a moving target: planning protection for a migratory species as its distribution changes. Journal of Applied Ecology 48: 35–46. https://doi. org/10.1111/j.1365-2664.2010.01905.x DOI: https://doi.org/10.1111/j.1365-2664.2010.01905.x

Skov H, Desholm M, Heinänen S, Kahlert JA, Laubek B, Jensen NE, Žydelis R & Jensen BP. 2016. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biology Letters 12: 20160804. https://doi.org/10.1098/rsbl.2016.0804 DOI: https://doi.org/10.1098/rsbl.2016.0804

Skyllberg U, Hansson P, Bernhardtson P & Naudot E. 2005. The roost-feeding area complex of Taiga Bean Goose Anser f. fabalis in the Ume River Delta Plains, Sweden – foraging patterns in comparison with Greylag Goose Anser anser, Whooper Swan Cygnus cygnus and Eurasian Crane Grus grus. Ornis Svecica 15: 73–88. https://doi.org/10.34080/os.v15.22742 DOI: https://doi.org/10.34080/os.v15.22742

Skyllberg U, Hansson P, Röper S & Seppälä H. 2014. Flyways and staging of Eurasian cranes breeding in northern Sweden. Proceedings VIII European Crane Conference: 1–10. Gallocanta, Spain. https://europeancraneconference2014.wordpress.com/

Thaker M, Zambre A & Bhosale H. 2018. Wind farms have cascading impacts on ecosystems across trophic levels. Nature Ecology and Evolution 2: 1854–1858. https://doi.org/10.1038/ s41559-018-0707-z DOI: https://doi.org/10.1038/s41559-018-0707-z

Thorup K, Alerstam T, Hake M & Kjellén N. 2003. Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proceedings of the Royal Society B: Biological Sciences 270: S8–S11. https://doi.org/10.1098/RSBL.2003.0014 DOI: https://doi.org/10.1098/rsbl.2003.0014

Thorup K, Korner-Nievergelt F, Cohen EB & Baillie SR. 2014. Largescale spatial analysis of ringing and re-encounter data to infer movement patterns: A review including methodological perspectives. Methods in Ecology and Evolution 5: 1337–1350. https:// doi.org/10.1111/2041-210X.12258 DOI: https://doi.org/10.1111/2041-210X.12258

Treves A, Wallace RB, Naughton-Treves L & Morales A. 2006. Co-Managing Human–Wildlife Conflicts: A Review. Human Dimensions of Wildlife 11: 383–396. https://doi. org/10.1080/10871200600984265 DOI: https://doi.org/10.1080/10871200600984265

Vegvari Z & Tar J. 2002. Autumn roost site selection by the common crane Grus grus in the Hortobagy National Park, Hungary, between 1995–2000. Ornis Fennica 79: 101–110.

Vegvari Z, Barta Z, Mustakallio P & Szekely T. 2011. Consistent avoidance of human disturbance over large geographical distances by a migratory bird. Biology Letters 7: 814–817. https://doi. org/10.1098/rsbl.2011.0295 DOI: https://doi.org/10.1098/rsbl.2011.0295

Wakefield ED, Cleasby IR, Bearhop S, Bodey TW, Davies RD, Miller PI, Newton J, Votier SC & Hamer KC. 2015. Long-term individual foraging site fidelity—why some gannets don’t change their spots. Ecology 96: 3058–3074. https://doi.org/10.1890/14-1300.1 DOI: https://doi.org/10.1890/14-1300.1

Wirdheim A. 2019. Tranparadoxen: Stjärna eller syndabock? Vår Fågelvärld 2019/2: 26–30.

Downloads

Published

2024-12-16

How to Cite

Hansson, P., Nilsson, L., Lundgren, S., Skyllberg, U., Sandvik, J., & Månsson, J. (2024). Flyways of Common Cranes Grus grus breeding in Fennoscandia. Ornis Svecica, 34, 155–170. https://doi.org/10.34080/os.v34.23602

Issue

Section

Research Papers

Most read articles by the same author(s)