Herbivory on aquatic macrophytes by geese and swans—a review of methods, effects, and management
DOI:
https://doi.org/10.34080/os.v34.25271Keywords:
exclosure, grazing, vegetation, waterbird, wetlandAbstract
In recent decades, interest has grown in how increasing populations of herbivorous geese and swans (Anseriformes: Anatidae: Anserinae) affect macrophyte communities in wetlands, especially because many waterbodies are simultaneously subjected to stressors like eutrophication and biodiversity declines. Here, we review the literature on methods applied in grazing experiments that have been conducted in aquatic ecosystems. We also investigate and how different macrophyte characteristics may respond to waterfowl herbivory. Results indicate that both research methodology and responses of macrophytes differ widely among studies. While most experimental studies on grazing pressure employ a ‘paired plot design’ with exclosures and open control plots, the structure, size, and placement of plots vary among studies. Commonly sampled macrophyte variables are biomass (of either above- or below-ground plant parts), density, height, plant cover, and community composition. The literature provides support that geese and swans significantly affect several of these variables, but the outcome depends on additional factors, e.g., waterfowl density, water depth, and timing (within or between seasons/years). Because of the persisting conservation threats to aquatic ecosystems, more knowledge is needed about potential direct and indirect consequences of waterfowl herbivory in these environments.
Downloads
References
Alikhani S, Nummi P & Ojala A. 2021. Urban wetlands: A review on ecological and cultural values. Water 13: 3301. https://doi.org/10.3390/w13223301 DOI: https://doi.org/10.3390/w13223301
Allin CC & Husband TP. 2003. Mute swan (Cygnus olor) impact on submerged aquatic vegetation and macroinvertebrates in a Rhode Island coastal pond. Northeastern Naturalist 10: 305–318. https://doi.org/10.1656/1092-6194(2003)010[0305:MSCOIO]2.0.CO;2 DOI: https://doi.org/10.1656/1092-6194(2003)010[0305:MSCOIO]2.0.CO;2
Alsos IG, Eidesen PB, Ehrich D, Skrede I, Westergaard K, Jacobsen GH, Landvik JY, Taberlet P & Brochmann C. 2007. Frequent long-distance plant colonization in the changing Arctic. Science 316: 1606–1609. https://doi.org/10.1126/science.1139178 DOI: https://doi.org/10.1126/science.1139178
Andersen LH, Nummi P, Rafn J, Frederiksen CMS, Kristjansen MP, Lauridsen TL, Trøjelsgaard K, Pertoldi C, Bruhn D & Bahrndorff S. 2021. Can reed harvest be used as a management strategy for improving invertebrate biomass and diversity? Journal of Environmental Management 300: 113637. https://doi.org/10.1016/j.jenvman.2021.113637 DOI: https://doi.org/10.1016/j.jenvman.2021.113637
Bakker ES, Wood KA, Pagès JF, Veen GF, Christianen, Santamaría L, Nolet BA & Hilt S. 2016a. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36. https://doi.org/10.1016/j.aquabot.2016.04.008 DOI: https://doi.org/10.1016/j.aquabot.2016.04.008
Bakker ES, Pagès JF, Arthur R & Alcoverro T. 2016b. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39: 162–179. https://doi.org/10.1111/ecog.01651 DOI: https://doi.org/10.1111/ecog.01651
Bakker ES, Veen CGF, Ter Heerdt GJN, Huig N & Sarneel JM. 2018. High grazing pressure of geese threatens conservation and restoration of reed belts. Frontiers in Plant Science 9: 1649. https://doi.org/10.3389/fpls.2018.01649 DOI: https://doi.org/10.3389/fpls.2018.01649
Bauer S & Hoye BJ. 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344: 1242552. https://doi.org/10.1126/science.1242552 DOI: https://doi.org/10.1126/science.1242552
Bayley SE & Prather CM. 2003. Do wetland lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes. Limnology and Oceanography 48: 2335–2345. https://doi.org/10.4319/lo.2003.48.6.2335 DOI: https://doi.org/10.4319/lo.2003.48.6.2335
Bergman BG & Bump JK. 2015. Experimental evidence that the ecosystem effects of aquatic herbivory by moose and beaver may be contingent on water body type. Freshwater Biology 60: 1635–1646. https://doi.org/10.1111/fwb.12595 DOI: https://doi.org/10.1111/fwb.12595
Bjerke JW, Tombre IM, Hanssen M & Olsen AKB. 2021. Springtime grazing by Arctic-breeding geese reduces first- and second-harvest yields on sub-Arctic agricultural grasslands. Science of the Total Environment 793: 148619. https://doi.org/10.1016/j.scitotenv.2021.148619 DOI: https://doi.org/10.1016/j.scitotenv.2021.148619
Bruun HH, Lundgren R & Philipp M. 2008. Enhancement of local species richness in tundra by seed dispersal through guts of muskox and barnacle goose. Oecologia 155: 101–110. https://doi.org/10.1007/s00442-007-0892-y DOI: https://doi.org/10.1007/s00442-007-0892-y
Buij R, Melman TC, Loonen MJ & Fox AD. 2017. Balancing ecosystem function, services and disservices resulting from expanding goose populations. Ambio 46: 301–318. https://doi.org/10.1007/s13280-017-0902-1 DOI: https://doi.org/10.1007/s13280-017-0902-1
Bump JK, Bergman BG, Schrank AJ, Marcarelli AM, Kane ES, Risch AC & Schütz M. 2017. Nutrient release from moose bioturbation in aquatic ecosystems. Oikos 126: 389–397. https://doi.org/10.1111/oik.03591 DOI: https://doi.org/10.1111/oik.03591
CAFF. 2018. A Global Audit of the Status and Trends of Arctic and Northern Hemisphere Goose Populations. Conservation of Arctic Flora and Fauna International Secretariat.
Chaichana R, Leah R & Moss B. 2011. Seasonal impact of waterfowl on communities of macrophytes in a shallow lake. Aquatic Botany 95: 39–44. https://doi.org/10.1016/j.aquabot.2011.03.008 DOI: https://doi.org/10.1016/j.aquabot.2011.03.008
Clausen P, Nolet BA, Fox AD & Klaassen M. 2002. Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe – a critical review of possibilities and limitations. Acta Oecologica 23: 191–203. https://doi.org/10.1016/S1146-609X(02)01150-5 DOI: https://doi.org/10.1016/S1146-609X(02)01150-5
Cramp E, Simmons KEL, Ferguson-Lees IJ, Gillmor R, Hollom PAD, Hudson R, Nicholson EM, Olney PJS, Voous KH & Wattel J. 1986. Pp 368–470 in Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Oxford University Press, Oxford.
Cyr H & Pace ML. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150. https://doi.org/10.1038/361148a0 DOI: https://doi.org/10.1038/361148a0
Danell K. 1979. Reduction of aquatic vegetation following the colonization of a northern Swedish lake by the muskrat, Ondatra zibethica. Oecologia 38: 101–106. https://doi.org/10.1007/BF00347828 DOI: https://doi.org/10.1007/BF00347828
Dar NA, Pandit AK & Ganai BA. 2014. Factors affecting the distribution patterns of aquatic macrophytes. Limnological Review 14: 75–81. https://doi.org/10.2478/limre-2014-0008 DOI: https://doi.org/10.2478/limre-2014-0008
Dessborn L, Hessel R & Elmberg J. 2016. Geese as vectors of nitrogen and phosphorus to freshwater systems. Inland Waters 6: 111–122. https://doi.org/10.5268/IW-6.1.897 DOI: https://doi.org/10.5268/IW-6.1.897
Dos Santos VM, Matheson FE, Pilditch CA & Elger A. 2012. Is black swan grazing a threat to seagrass? Indications from an observational study in New Zealand. Aquatic Botany 100: 41–50. https://doi.org/10.1016/j.aquabot.2012.03.009 DOI: https://doi.org/10.1016/j.aquabot.2012.03.009
Dos Santos VM, Matheson FE, Pilditch CA & Elger A. 2013. Seagrass resilience to waterfowl grazing in a temperate estuary: A multi-site experimental study. Journal of Experimental Marine Biology and Ecology 446: 194–201. https://doi.org/10.1016/j.jembe.2013.05.030 DOI: https://doi.org/10.1016/j.jembe.2013.05.030
Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ & Sullivan CA. 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. https://doi.org/10.1017/S1464793105006950 DOI: https://doi.org/10.1017/S1464793105006950
Flemming SA, Smith PA, Kennedy LV, Anderson AM & Nol E. 2022. Habitat alteration and fecal deposition by geese alter tundra invertebrate communities: Implications for diets of sympatric birds. PLoS One 17: e0269938. https://doi.org/10.1371/journal.pone.0269938 DOI: https://doi.org/10.1371/journal.pone.0269938
Fox AD, Ebbinge BS, Mitchell C, Heinicke T, Aarvak T, Colhoun K, Clausen P, Dereliev S, Faragó S, Koffijberg K, Kruckenberg H, Loonen MJJE, Madsen J, Mooij J, Musil P, Nilsson L, Pihl S & van der Jeug H. 2010. Current estimates of goose population sizes in Western Europe, a gap analysis and an assessment of trends. Ornis Svecica 20: 115–127. https://doi.org/10.34080/os.v20.19922 DOI: https://doi.org/10.34080/os.v20.19922
Fox AD, Elmberg J, Tombre IM & Hessel R. 2017a. Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biological Reviews of the Cambridge Philosophical Society 92: 854–877. https://doi.org/10.1111/brv.12258 DOI: https://doi.org/10.1111/brv.12258
Fox AD & Madsen J. 2017b. Threatened species to super-abundance: The unexpected international implications of successful goose conservation. Ambio 46 : 179–187. https://doi.org/10.1007/s13280-016-0878-2 DOI: https://doi.org/10.1007/s13280-016-0878-2
García-Álvarez A, van Leeuwen CHA, Luque CJ, Hussner A, Vélez-Martín A, Pérez-Vázquez A, Green AJ & Castellanos EM. 2015. Internal transport of alien and native plants by geese and ducks: An experimental study. Freshwater Biology 60: 1316–1329. https://doi.org/10.1111/fwb.12567 DOI: https://doi.org/10.1111/fwb.12567
Gauthier G. 2006. The impact of goose grazing on arctic and temperate wetlands. Acta Zoologica Sinica 52: 108–111.
Gayet G, Guillemain M, Fritz H, Mesleard F, Begnis C, Costiou A, Body G, Curtet L & Broyer J. 2011a. Do mute swan (Cygnus olor) grazing, swan residence and fishpond nutrient availability interactively control macrophyte communities? Aquatic Botany 95: 110–116. https://doi.org/10.1016/j.aquabot.2011.04.003 DOI: https://doi.org/10.1016/j.aquabot.2011.04.003
Gayet G, Guillemain M, Mesléard F, Fritz H, Vaux V & Broyer J. 2011b. Are Mute Swans (Cygnus olor) really limiting fishpond use by waterbirds in the Dombes, Eastern France. Journal of Ornithology 152: 45–53. https://doi.org/10.1007/s10336-010-0545-5 DOI: https://doi.org/10.1007/s10336-010-0545-5
Gayet G, Croce N, Grillas P, Nourry C, Deschamps C & du Rau PD. 2012. Expected and unexpected effects of waterbirds on Mediterranean aquatic plants. Aquatic Botany 103: 98–105. https://doi.org/10.1016/j.aquabot.2012.07.002 DOI: https://doi.org/10.1016/j.aquabot.2012.07.002
Green AJ & Elmberg J. 2014. Ecosystem services provided by waterbirds. Biological Reviews 89: 105–122. https://doi.org/10.1111/brv.12045 DOI: https://doi.org/10.1111/brv.12045
Green AJ, Lovas‐Kiss Á, Reynolds C, Sebastián‐González E, Silva GG, van Leeuwen CH & Wilkinson DM. 2023. Dispersal of aquatic and terrestrial organisms by waterbirds: A review of current knowledge and future priorities. Freshwater Biology 68: 173–190. https://doi.org/10.1111/fwb.14038 DOI: https://doi.org/10.1111/fwb.14038
Guillaume G, Matthieu G, Pierre DdR & Patrick G. 2014. Effects of mute swans on wetlands: a synthesis. Hydrobiologia 723: 195–204. https://doi.org/10.1007/s10750-013-1704-5 DOI: https://doi.org/10.1007/s10750-013-1704-5
Guillemain M, Pöysä H, Fox AD, Arzel C, Dessborn L, Ekroos J, Gunnarsson G, Holm TE, Christensen TK, Lehikoinen A, Mitchell C, Rintala J & Møller AP. 2013. Effects of climate change on European ducks: what do we know and what do we need to know? Wildlife Biology 19: 404–419. https://doi.org/10.2981/12-118 DOI: https://doi.org/10.2981/12-118
Gyimesi A, van Lith B & Nolet BA. 2012. Commensal foraging with Bewick’s Swans Cygnus bewickii doubles instantaneous intake rate of Common Pochards Aythya Ferina. Ardea 100: 55–62. https://doi.org/10.5253/078.100.0109 DOI: https://doi.org/10.5253/078.100.0109
Hidding B, Nolet BA, de Boer T, de Vries PP & Klaassen M. 2009. Compensatory growth in an aquatic plant mediates exploitative competition between seasonally tied herbivores. Ecology 90: 1891–1899. https://doi.org/10.1890/08-1218.1 DOI: https://doi.org/10.1890/08-1218.1
Hidding B, Nolet BA, De Boer T, De Vries PP & Klaassen M. 2010. Above-and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community. Oecologia 162: 199–208. https://doi.org/10.1007/s00442-009-1450-6 DOI: https://doi.org/10.1007/s00442-009-1450-6
Hidding B, Bakker ES, Hootsmans MJ & Hilt S. 2016. Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos 125: 1489–1495. https://doi.org/10.1111/oik.03104 DOI: https://doi.org/10.1111/oik.03104
Hilt S. 2006. Recovery of Potamogeton pectinatus L. stands in a shallow eutrophic lake under extreme grazing pressure. Hydrobiologia 570: 95–99. https://doi.org/10.1007/s10750-006-0167-3 DOI: https://doi.org/10.1007/s10750-006-0167-3
Holopainen S & Lehikoinen A. 2022. Role of forest ditching and agriculture on water quality: Connecting the long-term physico-chemical subsurface state of lakes with landscape and habitat structure information. Science of the Total Environment 806: 151477. https://doi.org/10.1016/j.scitotenv.2021.151477 DOI: https://doi.org/10.1016/j.scitotenv.2021.151477
Jefferies RL & Rockwell RF. 2002. Foraging geese, vegetation loss and soil degradation in an Arctic salt marsh. Applied Vegetation Science 5: 7–16. https://doi.org/10.1111/j.1654-109X.2002.tb00531.x DOI: https://doi.org/10.1111/j.1654-109X.2002.tb00531.x
Jensen TC, Walseng B, Hessen DO, Dimante‐Deimantovica I, Novichkova AA, Chertoprud ES, Chertoprud MV, Sakharova EG, Krylov AV, Frisch D & Christoffersen KS. 2019. Changes in trophic state and aquatic communities in high Arctic ponds in response to increasing goose populations. Freshwater Biology 64: 1241–1254. https://doi.org/10.1111/fwb.13299 DOI: https://doi.org/10.1111/fwb.13299
Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ & Jensen L. 1997. Top-down control in freshwater lakes: The role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164. https://doi.org/10.1023/A:1017046130329 DOI: https://doi.org/10.1023/A:1017046130329
Jobe J, Krafft C, Milton M & Gedan K. 2022. Herbivory by geese inhibits tidal freshwater wetland restoration success. Diversity 14: 278. https://doi.org/10.3390/d14040278 DOI: https://doi.org/10.3390/d14040278
Jupp BJ & Spence DHN. 1977. Limitations of macrophytes in a eutrophic lake, Loch Leven: II. wave action, sediments and waterfowl grazing. Journal of Ecology 65: 431–446. https://doi.org/10.2307/2259493 DOI: https://doi.org/10.2307/2259493
Källander H. 2005. Commensal association of waterfowl with feeding swans. Waterbirds 28: 326–330. https://www.jstor.org/stable/4132546 DOI: https://doi.org/10.1675/1524-4695(2005)028[0326:CAOWWF]2.0.CO;2
Kollars NM, Henry AK, Whalen MA, Boyer KE, Cusson M, Eklöf JS, Hereu CM, Jorgensen P, Kiriakopolos SL, Reynolds PL, Tomas F, Turner MS & Ruesink JL. 2017. Meta-analysis of reciprocal linkages between temperate seagrasses and waterfowl with implications for conservation. Frontiers in Plant Science 8: 2119. https://doi.org/10.3389/fpls.2017.02119 DOI: https://doi.org/10.3389/fpls.2017.02119
Kritzberg ES, Hasselquist EM, Škerlep M, Löfgren S, Olsson O, Stadmark J, Valinia S, Hansson L-A & Laudon H. 2020. Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49: 375–390. https://doi.org/10.1007/s13280-019-01227-5 DOI: https://doi.org/10.1007/s13280-019-01227-5
Kuiper JJ, van Altena C, De Ruiter PC, Van Gerven L, Janse JH & Mooij WM. 2015. Food-web stability signals critical transitions in temperate shallow lakes. Nature Communications 6: 7727. https://doi.org/10.1038/ncomms8727 DOI: https://doi.org/10.1038/ncomms8727
Laubek B. 1995. Habitat use by Whooper Swans Cygnus cygnus and Bewick’s Swans Cygnus columbianus bewickii wintering in Denmark: Increasing agricultural conflicts. Wildfowl 46: 8–15. https://wildfowl.wwt.org.uk/index.php/wildfowl/article/view/962
Lauridsen TL, Jeppesen E & Andersen FØ. 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Væng: impact of sediment composition and waterfowl grazing. Aquatic Botany 46: 1–15. https://doi.org/10.1016/0304-3770(93)90061-Z DOI: https://doi.org/10.1016/0304-3770(93)90061-Z
Lauridsen TL, Sandsten H & Hald Møller P. 2003. The restoration of a shallow lake by introducing Potamogeton spp.: The impact of waterfowl grazing. Lakes and Reservoirs: Research and Management 8: 177–187. https://doi.org/10.1111/j.1440-1770.2003.00224.x DOI: https://doi.org/10.1111/j.1440-1770.2003.00224.x
Law A, Jones KC & Willby NJ. 2014. Medium vs. short-term effects of herbivory by Eurasian beaver on aquatic vegetation. Aquatic Botany 116: 27–34. https://doi.org/10.1016/j.aquabot.2014.01.004 DOI: https://doi.org/10.1016/j.aquabot.2014.01.004
Lawniczak A, Zbierska J, Choiński A & Szczepaniak W. 2010. Response of emergent macrophytes to hydrological changes in a shallow lake, with special reference to nutrient cycling. Hydrobiologia 656: 243–254. https://doi.org/10.1007/s10750-010-0436-z DOI: https://doi.org/10.1007/s10750-010-0436-z
Liljebäck N, Bergqvist G, Elmberg J, Haas F, Nilsson L, Lindström Å & Månsson J. 2021. Learning from long time series of harvest and population data: Swedish lessons for European goose management. Wildlife Biology 2021: wlb.00733. https://doi.org/10.2981/wlb.00733 DOI: https://doi.org/10.2981/wlb.00733
Lodge DM, Cronin G, van Donk E & Froelich AJ. 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. Pp 149–174 in The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen E, Søndergaard M, Søndergaard M & Christoffersen K, eds). Springer, New York. https://doi.org/10.1007/978-1-4612-0695-8_8 DOI: https://doi.org/10.1007/978-1-4612-0695-8_8
Lodge KA & Tyler AC. 2020. Divergent impact of grazing on plant communities of created wetlands with varying hydrology and antecedent land use. Wetlands Ecology and Management 28: 797–813. https://doi.org/10.1007/s11273-020-09750-z DOI: https://doi.org/10.1007/s11273-020-09750-z
Lovas-Kiss Á, Martín-Vélez V, Brides K, Wilkinson DM, Griffin LR & Green AJ. 2023. Migratory geese allow plants to disperse to cooler latitudes across the ocean. Journal of Biogeography 50: 1602–1614. https://doi.org/10.1111/jbi.14674 DOI: https://doi.org/10.1111/jbi.14674
Madsen J, Marcussen LK, Knudsen N, Balsby TJS & Clausen KK. 2019. Does intensive goose grazing affect breeding waders? Ecology and Evolution 9: 14512–14522. https://doi.org/10.1002/ece3.5923 DOI: https://doi.org/10.1002/ece3.5923
Marklund O, Sandsten H, Hansson LA & Blindow I. 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshwater Biology 47: 2049–2059. https://doi.org/10.1046/j.1365-2427.2002.00949.x DOI: https://doi.org/10.1046/j.1365-2427.2002.00949.x
Matuszak A, Mörtl M, Quillfeldt P & Bauer HG. 2012. Exclosure study on the exploitation of macrophytes by summering and moulting waterbirds at Lower Lake Constance. Hydrobiologia 697: 31–44. https://doi.org/10.1007/s10750-012-1168-z DOI: https://doi.org/10.1007/s10750-012-1168-z
Mayhew P & Houston D. 1999. Effects of winter and early spring grazing by wigeon Anas penelope on their food supply. Ibis 141: 80–84. https://doi.org/10.1111/j.1474-919X.1999.tb04265.x DOI: https://doi.org/10.1111/j.1474-919X.1999.tb04265.x
Milakovic B & Jefferies R. 2003. The effects of goose herbivory and loss of vegetation on ground beetle and spider assemblages in an Arctic supratidal marsh. Ecoscience 10: 57–65. https://doi.org/10.1080/11956860.2003.11682751 DOI: https://doi.org/10.1080/11956860.2003.11682751
Mitchell SF & Perrow MR. 1998. Interactions between grazing birds and macrophytes. Pp. 175–196 in The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen E, Søndergaard M, Søndergaard M & Christoffersen K, eds). Springer, New York. https://doi.org/10.1007/978-1-4612-0695-8_9 DOI: https://doi.org/10.1007/978-1-4612-0695-8_9
Mitsch WJ, Bernal B & Hernandez ME. 2015. Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystem Services and Management 11: 1–4. https://doi.org/10.1080/21513732.2015.1006250 DOI: https://doi.org/10.1080/21513732.2015.1006250
Moomaw WR, Chmura G, Davies GT, Finlayson C, Middleton BA, Natali SM, Perry J, Roulet N & Sutton-Grier AE. 2018. Wetlands in a changing climate: Science, policy and management. Wetlands 38: 183–205. https://doi.org/10.1007/s13157-018-1023-8 DOI: https://doi.org/10.1007/s13157-018-1023-8
Navarro-Ramos MJ, van Leeuwen CHA, Olsson C, Elmberg J, Månsson J, Martin-Velez V, Lovas-Kiss A & Green AJ. 2024. Seed dispersal between aquatic and agricultural habitats by greylag geese. Agriculture, Ecosystems and Environment 359: 108741. https://doi.org/10.1016/j.agee.2023.108741 DOI: https://doi.org/10.1016/j.agee.2023.108741
Nilsson L. 2014. Long-term trends in the number of whooper swans Cygnus cygnus breeding and wintering in Sweden. Wildfowl 64: 197–206. https://wildfowl.wwt.org.uk/index.php/wildfowl/article/view/2591
Nolet BA. 2004. Overcompensation and grazing optimisation in a swan–pondweed system? Freshwater Biology 49: 1391–1399. https://doi.org/10.1111/j.1365-2427.2004.01275.x DOI: https://doi.org/10.1111/j.1365-2427.2004.01275.x
Nuijten RJ, Vriend SJ, Wood KA, Haitjema T, Rees EC, Jongejans E & Nolet BA. 2020. Apparent breeding success drives long-term population dynamics of a migratory swan. Journal of Avian Biology 51: e02574. https://doi.org/10.1111/jav.02574 DOI: https://doi.org/10.1111/jav.02574
O’Hare M, Stillman R, McDonnell JO & Wood L. 2007. Effects of mute swan grazing on a keystone macrophyte. Freshwater Biology 52: 2463–2475. https://doi.org/10.1111/j.1365-2427.2007.01841.x DOI: https://doi.org/10.1111/j.1365-2427.2007.01841.x
Paice RL, Chambers JM & Robson BJ. 2016. Outcomes of submerged macrophyte restoration in a shallow impounded, eutrophic river. Hydrobiologia 778: 179–192. https://doi.org/10.1007/s10750-015-2441-8 DOI: https://doi.org/10.1007/s10750-015-2441-8
Paolacci S, Jansen MA, Stejskal V, Kelly TC & Coughlan NE. 2023. Metabolically active angiosperms survive passage through the digestive tract of a large-bodied waterbird. Royal Society Open Science 10: 230090. https://doi.org/10.1098/rsos.230090 DOI: https://doi.org/10.1098/rsos.230090
Perrow MR, Schutten JH, Howes JR, Holzer T, Madgwick FJ & Jowitt AJ. 1997. Interactions between coot (Fulica atra) and submerged macrophytes: The role of birds in the restoration process. Hydrobiologia 342: 241–255. https://doi.org/10.1023/A:1017007911190 DOI: https://doi.org/10.1023/A:1017007911190
Peterson SL, Rockwell RF, Witte CR & Koons DN. 2013. The legacy of destructive snow goose foraging on supratidal marsh habitat in the Hudson Bay lowlands. Arctic, Antarctic, and Alpine Research 45: 575–583. https://doi.org/10.1657/1938-4246.45.4.575 DOI: https://doi.org/10.1657/1938-4246.45.4.575
Peterson SL, Rockwell RF, Witte CR & Koons DN. 2014. Legacy effects of habitat degradation by lesser snow geese on nesting savannah sparrows. The Condor: Ornithological Applications 116: 527–537. https://doi.org/10.1650/CONDOR-14-45.1 DOI: https://doi.org/10.1650/CONDOR-14-45.1
Phillips G, Willby N & Moss B. 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45. https://doi.org/10.1016/j.aquabot.2016.04.004 DOI: https://doi.org/10.1016/j.aquabot.2016.04.004
Porter EM, Bowman WD, Clark CM, Compton JE, Pardo LH & Soong JL. 2013. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry 114: 93–120. https://doi.org/10.1007/s10533-012-9803-3 DOI: https://doi.org/10.1007/s10533-012-9803-3
Pöysä H, Elmberg J, Gunnarsson G, Holopainen S, Nummi P & Sjöberg K. 2017. Habitat associations and habitat change: seeking explanation for population decline in breeding Eurasian wigeon Anas penelope. Hydrobiologia 785: 207–217. https://doi.org/10.1007/s10750-016-2922-4 DOI: https://doi.org/10.1007/s10750-016-2922-4
Pöysä H, Elmberg J, Gunnarsson G, Holopainen S, Nummi P & Sjöberg K. 2018. Recovering whooper swans do not cause a decline in Eurasian wigeon via their grazing impact on habitat. Journal of Ornithology 159: 447–455. https://doi.org/10.1007/s10336-017-1520-1 DOI: https://doi.org/10.1007/s10336-017-1520-1
Prejs A. 1984. Herbivory by temperate freshwater fishes and its consequences. Environmental Biology of Fishes 10: 281–296. https://doi.org/10.1007/BF00001481 DOI: https://doi.org/10.1007/BF00001481
Rees EC, Cao L, Clausen P, Coleman JT, Cornely J, Einarsson O, Ely CR, Kingsford RT, Ma M & Mitchell CD. 2019. Conservation status of the world’s swan populations, Cygnus sp. and Coscoroba sp.: a review of current trends and gaps in knowledge. Wildfowl 2019: 35–72. https://wildfowl.wwt.org.uk/index.php/wildfowl/article/view/2705
Reijers VC, Cruijsen PMJM, Hoetjes SCS, van den Akker M, Heusinkveld JHT, van de Koppel J, Lamers LPM, Olff H & van der Heide T. 2019. Loss of spatial structure after temporary herbivore absence in a high-productivity reed marsh. Journal of Applied Ecology 56: 1817–1826. https://doi.org/10.1111/1365-2664.13394 DOI: https://doi.org/10.1111/1365-2664.13394
Rip WJ, Rawee N & de Jong A. 2006. Alternation between clear, high-vegetation and turbid, low-vegetation states in a shallow lake: the role of birds. Aquatic Botany 85: 184–190. https://doi.org/10.1016/j.aquabot.2006.03.003 DOI: https://doi.org/10.1016/j.aquabot.2006.03.003
Rivers DO & Short FT. 2007. Effect of grazing by Canada geese Branta canadensis on an intertidal eelgrass Zostera marina meadow. Marine Ecology – Progress Series 333: 271–279. https://doi.org/10.3354/meps333271 DOI: https://doi.org/10.3354/meps333271
Sandsten H & Klaassen M. 2008. Swan foraging shapes spatial distribution of two submerged plants, favouring the preferred prey species. Oecologia 156: 569–576. https://doi.org/10.1007/s00442-008-1010-5 DOI: https://doi.org/10.1007/s00442-008-1010-5
Santamaría L & Rodríguez‐Gironés M. 2002. Hiding from swans: optimal burial depth of sago pondweed tubers foraged by Bewick’s swans. Journal of Ecology 90: 303–315. https://doi.org/10.1046/j.1365-2745.2001.00668.x DOI: https://doi.org/10.1046/j.1365-2745.2001.00668.x
Sarneel JM, Huig N, Veen G, Rip W & Bakker E. 2014. Herbivores enforce sharp boundaries between terrestrial and aquatic ecosystems. Ecosystems 17: 1426–1438. https://doi.org/10.1007/s10021-014-9805-1 DOI: https://doi.org/10.1007/s10021-014-9805-1
Scheffer M, Hosper SH, Meijer ML, Moss B & Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279. https://doi.org/10.1016/0169-5347(93)90254-M DOI: https://doi.org/10.1016/0169-5347(93)90254-M
Søndergaard M, Bruun L, Lauridsen T, Jeppesen E & Madsen TV. 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84. https://doi.org/doi:10.1016/0304-3770(95)01013-0 DOI: https://doi.org/10.1016/0304-3770(95)01013-0
Sponberg AF & Lodge DM. 2005. Seasonal belowground herbivory and a density refuge from waterfowl herbivory for Vallisneria americana. Ecology 86: 2127–2134. https://doi.org/10.1890/04-1335 DOI: https://doi.org/10.1890/04-1335
Stafford JD, Eichholz MW & Phillips AC. 2012. Impacts of mute swans (Cygnus olor) on submerged aquatic vegetation in Illinois river valley backwaters. Wetlands 32: 851–857. https://doi.org/10.1007/s13157-012-0316-6 DOI: https://doi.org/10.1007/s13157-012-0316-6
Svidenský R, Kučerová A & Čížková H. 2021. Causes of the dieback of littoral stands in an overpopulated water bird reserve: Role of eutrophication, fish and geese. European Journal of Environmental Sciences 11: 79–90. https://doi.org/10.14712/23361964.2021.9 DOI: https://doi.org/10.14712/23361964.2021.9
Tabacchi E, Lambs L, Guilloy H, Planty‐Tabacchi AM, Muller E & Decamps H. 2000. Impacts of riparian vegetation on hydrological processes. Hydrological Processes 14: 2959–2976. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.0.CO;2-B DOI: https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.3.CO;2-2
Tatu KS, Anderson JT, Hindman LJ & Seidel G. 2007. Mute swans’ impact on submerged aquatic vegetation in Chesapeake Bay. The Journal of Wildlife Management 71: 1431–1439. https://doi.org/10.2193/2006-130 DOI: https://doi.org/10.2193/2006-130
Temmink RJ, van den Akker M, van Leeuwen CH, Thöle Y, Olff H, Reijers VC, Weideveld ST, Robroek BJ, Lamers LP & Bakker ES. 2022. Herbivore exclusion and active planting stimulate reed marsh development on a newly constructed archipelago. Ecological Engineering 175: 106474. https://doi.org/10.1016/j.ecoleng.2021.106474 DOI: https://doi.org/10.1016/j.ecoleng.2021.106474
Valkama E, Lyytinen S & Koricheva J. 2008. The impact of reed management on wildlife: A meta-analytical review of European studies. Biological Conservation 141: 364–374. https://doi.org/10.1016/j.biocon.2007.11.006 DOI: https://doi.org/10.1016/j.biocon.2007.11.006
van Altena C, Bakker ES, Kuiper JJ & Mooij WM. 2016. The impact of bird herbivory on macrophytes and the resilience of the clear-water state in shallow lakes: a model study. Hydrobiologia 777: 197–207. https://doi.org/10.1007/s10750-016-2779-6 DOI: https://doi.org/10.1007/s10750-016-2779-6
Van den Wyngaert I, Wienk L, Sollie S, Bobbink R & Verhoeven J. 2003. Long-term effects of yearly grazing by moulting greylag geese (Anser anser) on reed (Phragmites australis) growth and nutrient dynamics. Aquatic Botany 75: 229–248. https://doi.org/10.1016/S0304-3770(02)00178-X DOI: https://doi.org/10.1016/S0304-3770(02)00178-X
Van Donk E & Otte A. 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290. https://doi.org/10.1007/BF00012769 DOI: https://doi.org/10.1007/978-94-011-5782-7_45
Van Onsem S & Triest L. 2018. Turbidity, waterfowl herbivory, and propagule banks shape submerged aquatic vegetation in ponds. Frontiers in Plant Science 9: 1514. https://doi.org/10.3389/fpls.2018.01514 DOI: https://doi.org/10.3389/fpls.2018.01514
Veen G, Sarneel JM, Ravensbergen L, Huig N, van Paassen J, Rip W & Bakker ES. 2013. Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient. Freshwater Biology 58: 1794–1803. https://doi.org/10.1111/fwb.12168 DOI: https://doi.org/10.1111/fwb.12168
Vermaat JE, Bos B & Van Der Burg P. 2016. Why do reed beds decline and fail to re-establish? A case study of Dutch peat lakes. Freshwater Biology 61: 1580–1589. https://doi.org/10.1111/fwb.12801 DOI: https://doi.org/10.1111/fwb.12801
Weisner SEB, Strand JB & Sandsten H. 1997. Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes. Oecologia 109: 592–599. https://doi.org/10.1007/s004420050121 DOI: https://doi.org/10.1007/s004420050121
Wood KA, Stillman RA, Clarke RT, Daunt F & O’Hare MT. 2012a. The impact of waterfowl herbivory on plant standing crop: A meta-analysis. Hydrobiologia 686: 157–167. https://doi.org/10.1007/s10750-012-1007-2 DOI: https://doi.org/10.1007/s10750-012-1007-2
Wood KA, Stillman RA, Clarke RT, Daunt F & O’Hare MT. 2012b. Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle. PLoS One 7: e49824. https://doi.org/10.1371/journal.pone.0049824 DOI: https://doi.org/10.1371/journal.pone.0049824
Wood KA, O’Hare MT, McDonald C, Searle KR, Daunt F & Stillman RA. 2017. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews 92: 1128–1141. https://doi.org/10.1111/brv.12272 DOI: https://doi.org/10.1111/brv.12272
Yallop ML, O’Connell MJ & Bullock R. 2004. Waterbird herbivory on a newly created wetland complex: potential implications for site management and habitat creation. Wetlands Ecology and Management 12: 395–408. https://doi.org/10.1007/s11273-004-7915-9 DOI: https://doi.org/10.1007/s11273-004-7915-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Elsie Kjeller, Jonas Waldenström, Johan Elmberg, Gunnar Gunnarsson
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of each contribution belongs to the author(s), but all contributions are published under a Creative Commons license, so that anyone is free to share and reuse the contribution as long as the copyright holder is attributed.