Long-term changes in eggshell thickness in Peregrine Falcons Falco peregrinus in Sweden
Långsiktiga förändringar i äggskalstjocklek hos pilgrimsfalkar Falco peregrinus i Sverige
DOI:
https://doi.org/10.34080/os.v35.26042Keywords:
raptor, eggshell thinning, contaminants, DDT, environmental monitoringAbstract
THE PEREGRINE FALCON populations across Europe and North America were almost exterminated in the 1970s; in Sweden, only 15 pairs were known by 1975. One of the main causes was reduced productivity due to eggshell thinning attributed to the widespread use of organochlorine pesticides. This study analysed eggshell thickness in samples collected across Sweden between 1964 and 2023, and compared with eggs from 1865-1945. The results indicate very thin shells in the 1960s to 1980s when eggshells were on average -16% of normal thickness, with records of -29%. Since then, the average thickness steadily increased and, alongside, the Peregrine population has recovered. While differences in shell thickness and recovery rates between northern and southern Sweden were observed, they were not statistically significant. In 2020s the average eggshell thickness is still -6% below normal which is within safe levels. However, because new substances with the potential to affect eggshell thickness are increasing in the environment, it is worthwhile to continue to collect and measure eggshells as a simple and low-cost way to monitor one of the effects of environmental contaminants. The Peregrine remains an important indicator for unintended side effects of chemical substances released into the environment.
Downloads
References
Andersson CK & Sandberg P. 2015. Winter occupation of breeding territories of Peregrine Falcon Falco peregrinus in western Sweden 2000/2001–2004/2005. Ornis Svecica 25: 15–23. https://doi.org/10.34080/os.v25.22551.
Andreasen NP, Falk K & Møller S. 2018. The Danish Peregrine Falcon population: reestablishment and eggshell thinning. Ornis Hungarica 26: 159–163. https://doi.org/10.1515/orhu-2018-0024.
AviList Core Team. 2025. AviList: the Global Avian Checklist v2025. https://doi.org/10.2173/avilist.v2025.
Beran V, Vrána J & Horal D. 2018. Population trends and diversification of breeding habitats of Peregrine Falcon (Falco peregrinus) in the Czech Republic since 1990. Ornis Hungarica 26: 121–129. https://doi.org/10.1515/orhu-2018-0020.
Brunelli M & Sarrocco S. 2018. Breeding population of Peregrine Falcon (Falco peregrinus) in Lazio, Central Italy: 1983–2017. Ornis Hungarica 26: 114–120. https://doi.org/10.1515/orhu-2018-0019.
Bunck CM, Spann JW, Pattee OH & Fleming WJ. 1984. Changes in eggshell thickness during incubation: implications for evaluating the impact of organochlorine contaminants. Bulletin of Environmental Contamination and Toxicology 35: 173–182. https://doi.org/10.1007/BF01636496.
Burnham WA, Enderson JH & Boardman TJ. 1984. Variation in Peregrine Falcon eggs. Auk 101: 578–583. https://doi.org/10.1093/auk/101.3.578.
Castilla AM, Herrel A, Robles H, Malone J & Negro JJ. 2010b. The effect of developmental stage on eggshell thickness variation in endangered falcons. Zoology 113: 184–188. https://doi.org/10.1016/j.zool.2009.10.002.
Castilla AM, Van Dongen S, Herrel A, Francesh A, de Aragon JM, Malone J & Negro JJ. 2010a. Increase in membrane thickness during development compensates for eggshell thinning due to calcium uptake by the embryo in falcons. Naturwissenschaften 97: 143–151. https://doi.org/10.1007/s00114-009-0620-z.
Cooke AS. 1979. Changes in eggshell characteristics of the sparrowhawk (Accipiter nisus) and Peregrine (Falco peregrinus) associated with exposure to environmental pollutants during recent decades. Journal of Zoology 187: 245–263. https://doi.org/10.1111/j.1469-7998.1979.tb03947.x.
de Solla SR, King LE & Gilroy ÈAM. 2023. Environmental exposure to non-steroidal anti-inflammatory drugs and potential contribution to eggshell thinning in birds. Environment International 171: 107638. https://doi.org/10.1016/j.envint.2022.107638.
Díez-Fernández A, Martín J, Martínez-de la Puente J, Gangoso L, López P, Soriguer R & Figuerola J. 2023. Effects of sex and sampling site on the relative proportion of pesticides in uropygial gland secretions of European Blackbirds (Turdus merula). Ibis 165: 142–152. https://doi.org/10.1111/ibi.13116.
Falk K, Lindberg P, Andersson L-Å, Järås T, Leksén L, Lindström BO, Nilsson P & Olofsson F. 2025. Data from: Long-Term Changes in Eggshell Thickness in the Peregrine Falcon Falco peregrinus in Sweden. Zenodo Digital Repository. https://doi.org/10.5281/zenodo.14692789.
Falk K & Møller S. 1990. Clutch size effects on eggshell thickness in the Peregrine Falcon and European Kestrel. Ornis Scandinavica 21: 265–269. https://doi.org/10.2307/3676390.
Falk K & Møller S. 2023. How to measure eggshell thickness. European Raptor Biodiversity Facility (ERBF) Advice Hub.
Falk K, Møller S & Mattox WG. 2006. A long-term increase in eggshell thickness of Greenlandic Peregrine Falcons Falco peregrinus tundrius. Science of the Total Environment 355: 127–134. https://doi.org/10.1016/j.scitotenv.2005.02.024.
Falk K, Møller S, Rigét FF, Sørensen PB & Vorkamp K. 2018. Raptors are still affected by environmental pollutants: Greenlandic Peregrines will not have normal eggshell thickness until 2034. Ornis Hungarica 26: 171–176. https://doi.org/10.1515/orhu-2018-0026.
Fernie KJ, Shutt JL, Letcher RJ, Ritchie IJ & Bird DM. 2009. Environmentally relevant concentrations of DE-71 and HBCD alter eggshell thickness and reproductive success of American kestrels. Environmental Science and Technology 43: 2124–2130. https://doi.org/10.1021/es8027346.
Fyfe RW, Risebrough RW, Monk JG, Jarman WM, Anderson DW, Kiff LF, Lincer JL, Nisbet ITC, Walker W II & Walton BJ. 1988. DDE, productivity, and eggshell thickness relationships in the genus Falco. Pp. 319–35 in Peregrine Falcon Populations: Their Management and Recovery (Cade TJ, Enderson JH, Thelander CG & White CM, eds). The Peregrine Fund, Boise.
Järås T. 2023. Pilgrimsfalk. Sveriges fåglar 2023. Birdlife Sweden. https://pilgrimsfalksverige.birdlife.se/resultat/.
Johansson A-K, Sellström U, Lindberg P, Bignert A & de Wit CA. 2009. Polybrominated diphenyl ether congener patterns, hexabromocyclododecane, and brominated biphenyl 153 in eggs of Peregrines (Falco peregrinus) breeding in Sweden. Environmental Toxicology and Chemistry 28: 9–17. https://doi.org/10.1897/08-142.1.
Jordbruksverket. 2022. Jordbruksmarkens användning 2022. Slutlig Statistik. https://jordbruksverket.se/om-jordbruksverket/jordbruksverkets-officiella-statistik/jordbruksverkets-statistikrapporter/statistik/2022-10-20-jordbruksmarkens-anvandning-2022.-slutlig-statistik accessed 14 January 2024.
Koskimies P & Ollila T. 2022. Population change and breeding success of the Peregrine Falcon Falco peregrinus in Finland in 1970–2021. Linnut-vuosikirja 2021: 32–39. (In Finnish with English summary.) https://lintulehti.birdlife.fi:8443/pdf/artikkelit/10705/tiedosto/Linnut_VK2021_032-039_Muuttohaukka_artikkelit_10705.pdf.
Lindberg P. 1983. Relations between the diet of Fennoscandian Peregrines Falco peregrinus and organochlorines and mercury in their eggs and feathers, with a comparison to the Gyrfalcons Falco rusticolus. PhD thesis, Department of Zoology, University of Gothenburg, Sweden.
Lindberg P. 2009. The fall and the rise of the Swedish Peregrine Falcon population. Pp 125–132 in Peregrine Falcon Populations – Status and perspectives in the 21st century (Sielicki J & Mizera T, eds). Turul Publisher & Poznan University of Life Science Press, Warsaw, Poznan.
Lindberg P, Odsjö T & Reutergårdh L. 1985. Residue levels of polychlorinated biphenyls, DDT, and mercury in bird species commonly preyed upon by the Peregrine (Falco peregrinus Tunst.) in Sweden. Archives of Environmental Contamination and Toxicology 14: 203–212. https://doi.org/10.1007/BF01055613.
Lindberg P, Schei PJ & Wikman M. 1988. The Peregrine Falcon in Fennoscandia. Pp 139–172 in Peregrine Falcon populations: Their management and recovery (Cade TJ, Enderson JH, Thelander CG & White CM, eds). The Peregrine Fund, Boise, ID.
Lindén H, Nygåard T & Wikman M. 1984. On the eggshell thickness and reproduction of the Peregrine Falcon Falco peregrinus in Finland. Ornis Fennica 61: 116–120. https://ornisfennica.journal.fi/article/view/133159/81705.
Newton I. 1979. Population Ecology of Raptors. T & AD Poyser, Berkhamsted, Hertfordshire.
Newton I, Bogan JA & Haas MB. 1989. Organochlorines and mercury in the eggs of British Peregrines Falco peregrinus. Ibis: 131 355–376. https://doi.org/10.1111/j.1474-919X.1989.tb02785.x.
Nygård T. 1983. Pesticide residues and shell thinning in eggs of Peregrines in Norway. Ornis Scandinavica 14: 161–166. https://doi.org/10.2307/3676021.
Nygård T, Sandercock BK, Reinsborg T & Einvik K. 2019. Population recovery of Peregrines in central Norway in the 4 decades since the DDT-ban. Ecotoxicology 28: 1160–1168. https://doi.org/10.1007/s10646-019-02111-4.
Odsjö T. 2006. The environmental specimen bank, Swedish Museum of Natural History—a base for contaminant monitoring and environmental research. Journal of Environmental Monitoring 8: 791–794. https://doi.org/10.1039/b602676c.
Odsjö T & Lindberg P. 1977. Reduction of eggshell thickness of Peregrine in Sweden. Pp 59–60 in Pilgrimsfalk – rapport från konferensen 1–2 april på Grimsö forskningsstation (Lindberg P, ed). Svenska Naturskyddsföreningen, Stockholm.
Odsjö T & Sondell J. 1982. Eggshell thinning and DDT, PCB and mercury in eggs of osprey (Pandion haliaetus (L.)) in Sweden and their relations to breeding success. Pp 65–111 in Eggshell thickness and levels of DDT, PCB and mercury in eggs of Osprey (Pandion haliaetus (L.)) and Marsh Harrier (Circus aeruginosus (L.)) in relation to their breeding success and population status in Sweden (Odsjö T). PhD thesis, Department of Zoology, University of Stockholm, Sweden.
Odsjö T & Sondell J. 2014. Eggshell thinning of osprey (Pandion haliaetus) breeding in Sweden and its significance for egg breakage and breeding outcome. The Science of the Total Environment 470–471: 1023–1029. https://doi.org/10.1016/j.scitotenv.2013.10.051.
Oli MK, Smith GD, McGrady MJ, Chaudhary V, Rollie CJ, Mearns R, Newton I & Lambin X. 2023. Reproductive performance of Peregrines relative to the use of organochlorine pesticides. Journal of Animal Ecology 92: 2201–2213. https://doi.org/10.1111/1365-2656.14006.
Orłowski G & Hałupka L. 2015. Embryonic eggshell thickness erosion: a literature survey re-assessing embryo-induced eggshell thinning in birds. Environmental Pollution 205: 218–224. https://doi.org/10.1016/j.envpol.2015.06.001.
Peakall DB. 1993. DDE-induced eggshell thinning: an environmental detective story. Environmental Reviews 1: 13–20. https://doi.org/10.1139/a93-002.
Peakall DB & Kiff LF. 1988. DDE contamination in Peregrines and American Kestrels and its effect on reproduction. Pp 337–350 in Peregrine Falcon Populations: Their Management and Recovery (Cade TJ, Enderson JH, Thelander CG & White CM, eds). The Peregrine Fund, Boise, ID.
Peakall DB & Lincer JL. 1996. Do PCBs cause eggshell thinning? Environmental Pollution 91: 127–129. https://doi.org/10.1016/0269-7491(95)00012-G.
Ratcliffe DA. 1958. Broken eggs in Peregrine eyries. British Birds 51: 23–26.
Ratcliffe DA. 1967. Decline in eggshell weight in certain birds of prey. Nature 215: 208–210. https://doi.org/10.1038/215208a0.
Ratcliffe DA. 1970. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. Journal of Applied Ecology 7: 67–115. https://doi.org/10.2307/2401613.
Ratcliffe DA. 1993. The Peregrine Falcon (2nd edition). T & AD Poyser, Calton, Staffordshire.
Risebrough RW. 1986. Pesticides and Bird Populations. Pp 397–427 in Current Ornithology, vol 3. (Johnston RF, ed). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6784-4_9.
Schwarz S, Rackstraw A, Behnisch PA, Brouwer A, Köhler H-R, Kotz A, Kuballa T, Malisch R, Neugebauer F, Schilling F, Schmidt D & von der Trenck KT. 2016. Peregrine egg pollutants. Toxicological and Environmental Chemistry 98: 886–923. https://doi.org/10.1080/02772248.2015.1126717.
Spina F, Baillie SR, Bairlein F, Fiedler W & Thorup K (eds). 2022. The Eurasian African bird migration atlas. https://migrationatlas.org.
Sun CJ, Chen SR, Xu GY, Liu XM & Yang N. 2012. Global variation and uniformity of eggshell thickness for chicken eggs. Poultry Science 91: 2718–2721. https://doi.org/10.3382/ps.2012-02220.
Turusov V, Rakitsky V & Tomatis L. 2002. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environmental Health Perspectives 110: 125–128. https://doi.org/10.1289/ehp.02110125.
Vorkamp K, Falk K, Møller S, Rigét FF, Bossi R & Sørensen PB. 2017. New and updated time trends of persistent organic pollutants and their effects on eggs of Peregrines (Falco peregrinus) from South Greenland. Scientific Report No. 249 from DCE. Danish Centre for Environment and Energy, Aarhus University, Roskilde. https://dce2.au.dk/pub/SR249.pdf.
Wegner P, Kleinstäuber G, Baum F & Schilling F. 2005. Long-term investigation of the degree of exposure of German Peregrines (Falco peregrinus) to damaging chemicals from the environment. Journal of Ornithology 146: 34–54. https://doi.org/10.1007/s10336-004-0053-6.
White CM, Cade TJ & Enderson JH. 2013. Peregrine Falcons of the World. Lynx Edicions, Barcelona, Spain.
White CM, Clum NC, Cade TJ & Hunt WG. 2024. Peregrine Falcon (Falco peregrinus), version 1.1. In Birds of the World (Billerman SM & Smith MG, eds). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.perfal.01.1.
Zuberogoitia I, Morant J, Castillo I, Martínez JE, Burgos G, Zuberogoitia J, Azkona A, Guijarro JR & González-Oreja JA. 2018. Population trends of Peregrine Falcon in Northern Spain – results of a long-term monitoring project. Ornis Hungarica 26: 51–68. https://doi.org/10.1515/orhu-2018-0015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dr Knud Falk, Dr Peter Lindberg, Lars-Åke Andersson, Tommy Järås, Lars Leksén, Berth-Ove Lindström, Peter Nilsson, Frans Olofsson

This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of each contribution belongs to the author(s), but all contributions are published under a Creative Commons license, so that anyone is free to share and reuse the contribution as long as the copyright holder is attributed.

