Investigating the Brain Processes Underlying an Unusual Visual Experience
A Case Study
DOI:
https://doi.org/10.31156/jaex.25894Keywords:
EEG, Perception, Imagination, Mental imagery, upsight, source localization, functional connectivity, anomalous experienceAbstract
Background. This case study investigated the neural correlates of an unusual visual experience in which an individual constantly perceives highly detailed holographic images overlaid on his visual field and can modulate them to an extent. We named this experience Upsight. Our aim was to assess how the phenomenon may relate or differ from visual mental imagery (VMI such as hyperphantasia), imagination, or visual hallucinations (e.g., Charles Bonnet Syndrome). Method: EEG (64-channels) data were collected while the participant alternated between 30-second trials of Upsight and visual mental imagery (VMI) conditions (200 trials each). We conducted power spectral density (scalp and source levels) as well as source functional connectivity (FC) analyses, as well as robust statistics to test the null hypothesis of an absence of a difference (nonparametric statistics and spatiotemporal cluster corrections). Results: Scalp results revealed that, relative to VMI, the Upsight experience was characterized by strong alpha and delta power decreases (widespread with a peak in posterior regions), and gamma power increase (29-45 Hz) in the right frontal and left posterior regions, supporting increased engagement of cognitive and visual processes. Similarly, after source localization, we observed a strong decrease in both spectral power and FC in the alpha frequency band, in brain areas involved in visual processing, spatial orientation, and sensory integration, reflecting increased cortical activation of these areas and brain networks. Conclusions: Upsight involves heightened engagement and processing in visual and cognitive networks relative to VMI. We discuss the phenomenology and results in relation to VMI, imagination, and visual hallucinations.
References
Ablin, P., Cardoso, J.-F., & Gramfort, A. (2018). Faster independent component analysis by preconditioning with Hessian approximations. IEEE Transactions on Signal Processing, 66(15), 4040–4049. https://doi.org/10.1109/TSP.2018.2844203
Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral cortex, 9(5), 415-430.
Bear, M., Connors, B., & Paradiso, M. A. (2020). Neuroscience: Exploring the brain, enhanced edition: Exploring the brain. Jones & Bartlett Learning.
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5(1), 10964.
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95. https://doi.org/10.1016/j.tics.2015.10.004
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Brisbon, N. M., & Lowery, G. A. (2009). Mindfulness and levels of stress: A comparison of beginner and advanced hatha yoga practitioners. Journal of Religion and Health. 19949871. https://doi.org/10.1007/s10943-009-9305-3
Briscoe, A. D., & Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471–510. https://doi.org/10.1146/annurev.ento.46.1.471
Collerton, D., Perry, E., & McKeith, I. (2005). Why people see things that are not there: A novel perception and attention deficit model for recurrent complex visual hallucinations. The Behavioral and Brain Sciences, 28(6), 737–757; discussion 757-794. https://doi.org/10.1017/S0140525X05000130
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9–21.
Engel, A. K., & Fries, P. (2010). Beta-band oscillations—Signalling the status quo? Current Opinion in Neurobiology, 20(2), 156–165. https://doi.org/10.1016/j.conb.2010.02.015
Etz, A., Chávez de la Peña, A. F., Baroja, L., Medriano, K., & Vandekerckhove, J. (2024). The HDI and ROPE decision rule is logically incoherent but we can fix it. Psychological Methods. https://doi.org/10.1037/met0000660
Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 32(1), 209-224.
Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36.
Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: An fMRI study. Cognitive Brain Research, 20(2), 226–241.
Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1), 331–343. https://doi.org/10.1016/j.brainresrev.2011.04.002
Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7. https://doi.org/10.3389/fnint.2013.00083
Hart, E., & Hay, L. (2022). Do you see what I see? Exploring vividness of visual mental imagery in product design ideation. Proceedings of the Design Society, 2, 881–890.
Husain, M., & Nachev, P. (2007). Space and the parietal cortex. Trends in Cognitive Sciences, 11(1), 30–36. https://doi.org/10.1016/j.tics.2006.10.011
Ishai, A., Haxby, J. V., & Ungerleider, L. G. (2002). Visual imagery of famous faces: Effects of memory and attention revealed by fMRI. NeuroImage, 17(4), 1729–1741. https://doi.org/10.1006/nimg.2002.1330
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186
Kaas, J. H. (1983). What, if anything, is SI? Organization of first somatosensory area of cortex. Physiological Reviews, 63(1), 206–231. https://doi.org/10.1152/physrev.1983.63.1.206
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
Kim, H., Luo, J., Chu, S., Cannard, C., Hoffmann, S., & Miyakoshi, M. (2023). ICA’s bug: How ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing. Frontiers in Signal Processing, 3. https://doi.org/10.3389/frsip.2023.1064138
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195.
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003
Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2(9), 635–642.
Kosslyn, S. M., Thompson, W. L., Klm, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378(6556), 496–498.
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual (Technical Report A-8). University of Florida, Gainesville, FL.
Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(1), 12–32. https://doi.org/10.1093/brain/awt162
Luck, S. J. (2005). Ten simple rules for designing ERP experiments. In T. C. Handy (Ed.), Event-Related Potentials: A Methods Handbook (pp. 17–32). MIT Press.
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. MIT Press.
Machielsen, W. C., Rombouts, S. A., Barkhof, F., Scheltens, P., & Witter, M. P. (2000). FMRI of visual encoding: Reproducibility of activation. Human Brain Mapping, 9(3), 156–164. https://doi.org/10.1002/(sici)1097-0193(200003)9:3<156::aid-hbm4>3.0.co;2-q
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
Mathewson, K. E., Lleras, A., Beck, D. M., Fabiani, M., Ro, T., & Gratton, G. (2011). Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Frontiers in Psychology, 2, 99. https://doi.org/10.3389/fpsyg.2011.00099
Mazaheri, A., van Schouwenburg, M. R., Dimitrijevic, A., Denys, D., Cools, R., & Jensen, O. (2014). Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage, 87, 356–362. https://doi.org/10.1016/j.neuroimage.2013.10.052
Menon, G. J., Rahman, I., Menon, S. J., & Dutton, G. N. (2003). Complex visual hallucinations in the visually impaired: The Charles Bonnet syndrome. Survey of Ophthalmology, 48(1), 58–72. https://doi.org/10.1016/S0039-6257(02)00414-9
Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics. NeuroImage, 67, 111–118.
Monti, M. M. (2011). Statistical analysis of fMRI time-series: A critical review of the GLM approach. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00028
Morgan, H. M., Klein, C., Boehm, S. G., Shapiro, K. L., & Linden, D. E. (2008). Working memory load for faces modulates P300, N170, and N250r. Journal of Cognitive Neuroscience, 20(6), 989-1002.
Palmer, S. E. (1999). Vision science: Photons to phenomenology. MIT press.
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590–602. https://doi.org/10.1016/j.tics.2015.08.003
Pellegrini, F., Delorme, A., Nikulin, V., & Haufe, S. (2023). Identifying good practices for detecting inter-regional linear functional connectivity from EEG. NeuroImage, 120218. https://doi.org/10.1016/j.neuroimage.2023.120218 
Pernet, C. R., Latinus, M., Nichols, T. E., & Rousselet, G. A. (2015). Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study. Journal of Neuroscience Methods. https://doi.org/10.1016/j.jneumeth.2014.08.003
Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.
Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). The ICLabel dataset of electroencephalographic (EEG) independent component (IC) features. Data in Brief, 25. https://doi.org/10.1016/j.dib.2019.104101
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.
Shine, J. M., Koyejo, O., Bell, P. T., Gorgolewski, K. J., Gilat, M., & Poldrack, R. A. (2015). Estimation of dynamic functional connectivity using multiplication of temporal derivatives. NeuroImage, 122, 399–407.
Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right supramarginal gyrus is crucial to overcome emotional egocentricity bias in social judgments. Journal of Neuroscience, 33(39), 15466–15476. https://doi.org/10.1523/JNEUROSCI.1488-13.2013
Spagna, A., Hajhajate, D., Liu, J., & Bartolomeo, P. (2021). Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neuroscience & Biobehavioral Reviews, 122, 201–217.
Teunisse, R. J., Zitman, F. G., Cruysberg, J. R. M., Hoefnagels, W. H. L., & Verbeek, A. L. M. (1996). Visual hallucinations in psychologically normal people: Charles Bonnet’s syndrome. The Lancet, 347(9004), 794–797. https://doi.org/10.1016/S0140-6736(96)90869-7
Vanni, S., Tanskanen, T., Seppä, M., Uutela, K., & Hari, R. (2001). Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proceedings of the National Academy of Sciences, 98(5), 2776–2780. https://doi.org/10.1073/pnas.041600898
Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190–203.
Wandell, B. A., Dumoulin, S. O., & Brewer, A. A. (2007). Visual field maps in human cortex. Neuron, 56(2), 366–383. https://doi.org/10.1016/j.neuron.2007.10.012
Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: The role of the human superior parietal lobe. Nature Neuroscience, 1(6), 529–533. https://doi.org/10.1038/2245
Yao, D. (2001). A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiological Measurement, 22(4), 693–711. https://doi.org/10.1088/0967-3334/22/4/305
Yao, D., Wang, L., Oostenveld, R., Nielsen, K. D., Arendt-Nielsen, L., & Chen, A. C. N. (2005). A comparative study of different references for EEG spectral mapping: The issue of the neutral reference and the use of the infinity reference. Physiological Measurement, 26(3), 173–184. https://doi.org/10.1088/0967-3334/26/3/003
Yuen, K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 61(1), 165–170. https://doi.org/10.1093/biomet/61.1.165
Zeman, A., Milton, F., Della Sala, S., Dewar, M., Frayling, T., Gaddum, J., Hattersley, A., Heuerman-Williamson, B., Jones, K., & MacKisack, M. (2020). Phantasia–the psychological significance of lifelong visual imagery vividness extremes. Cortex, 130, 426–440.
Zeman, A. Z., Dewar, M. T., & Della Sala, S. (2016). Reflections on aphantasia. Cortex, 74, 336–337.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cedric Cannard, Cassandra Vieten, Garret Yount, Mateo Vega, Fadi Kayale, Arnaud Delorme

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in JAEX are open access, freely and universally accessible online, and archived in the open journal’s Lund University website (https://journals.lub.lu.se). Articles in JAEX can be distributed under the terms of the Creative Commons Attribution 4.0 International License CCBY (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, with appropriate credit to the original author(s) and the source, a link to the Creative Commons license, and an indication if changes were made.
