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Abstract: It is well-known that [S(x)]n and [F (x)]n are the survival function and the

distribution function of the minimum and the maximum of n independent, identically

distributed random variables, where S and F are their common survival and distribution

functions, respectively. These two extreme order statistics play important role in countless

applications, and are the central and well-studied objects of extreme value theory. In this

work we provide stochastic representations for the quantities [S(x)]α and [F (x)]α, where

α > 0 is no longer an integer, and construct a bivariate model with these margins. Our

constructions and representations involve maxima and minima with a random number of

terms. We also discuss generalizations to random process and further extensions.
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1. Introduction

Let {Xi} be a sequence of independent and identically distributed (IID) random vari-

ables with cumulative distribution function (CDF) F and survival function (SF) S. The

extreme order statistics connected with this sequence, the minimum

(1.1) sma.osSn =
n∧
j=1

Xj = min
1≤j≤n

{X1, . . . , Xn}
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and the maximum

(1.2) Mn =
n∨
j=1

Xj = max
1≤j≤n

{X1, . . . , Xn},

which are crucial in countless applications, are the central and well-studied objects of

extreme value theory (see, e..g., monographs [2, 3, 8, 9, 11, 16, 19, 26, 27] and extensive

references therein as well as in [15]). It is well-known (see, e.g, [1] or [6]) that the SF of Sn

and the CDF of Mn are given by [S(x)]n and [F (x)]n, respectively, while the joint CDF

of the vector (Sn,Mn) has the form

(1.3) P(Sn ≤ x,Mn ≤ y) =

 [F (y)]n − [F (y)− F (x)]n for x < y

[F (y)]n for x ≥ y.

It is rather obvious that the quantities

(1.4) [S(x)]α and [F (x)]α

are genuine survival and distribution functions, respectively, for any positive value of

α, although the interpretations (1.1) and (1.2) no longer apply when α is not an integer.

Nevertheless, many interesting, flexible, and useful univariate families of distributions have

been defined this way over the years, with earliest works connected with an exponential

model going back to the first half of the nineteenth century (see, e.g., [10]). In addition

to the exponential, these new classes of distributions - often referred to as exponentiated

distributions - include those connected with gamma, Pareto, and Weibull laws (see, e.g.,

[12, 13, 14, 21, 22, 24] and references therein).

In this work we study a bivariate generalization of the joint distribution (1.3) in the

same spirit, where the margins are given by (1.4) and the bivariate model reduces to (1.3)

when α is an integer. Moreover, the bivariate model with a non-integer α, as well as the

margins (1.4), are constructed through maxima and minima. This generalization does not

arise by simply replacing the integer n by α in the bivariate CDF (1.3), as the latter fails

to be a CDF for α ∈ (0, 1). Instead, the model follows a construction involving random

maxima and minima of IID random variables, preserving the spirit of the vector (Sn,Mn).

Our work begins with Section 2, which introduces new stochastic representations for

random variables given by (1.4) through random maxima and minima. These leads to new
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representations of the variables with exponentiated distributions based on exponential,

gamma, Weibull, Pareto and other models. These results are instrumental in defining a

bivariate model presented in Section 3. Generalizations to random process and further

extensions are presented in Section 5. The last section contains proofs and auxiliary

results.

2. Univariate distributions

As before, let {Xi} be a sequence of IID random variables with CDF F and SF S.

Further, let N be a non-negative, integer-valued random variable with PDF p(n) = P(N =

n) and probability generating function (PGF) GN (s) = EsN , |s| ≤ 1. The following lemma

is crucial in obtaining representations of random variables with the SF or the CDF given

in (1.4) through random maxima and minima. Here, and throughout the paper, we shall

use the convention that the minimum and the maximum over an empty set are ∞ and

−∞, respectively.

Lemma 2.1. In the above setting, if N is independent of the sequence {Xi}, then the

CDF and the SF of the random variables

(2.1) X =
N∨
j=1

Xj and Y =
N∧
j=1

Xj

are given by FX(x) = GN (F (x)) and SY (y) = GN (S(y)), respectively.

We shall use this result to obtain representations of random variables with the SF and

the CDF given in (1.4) through random maxima and minima with suitably chosen N .

This cannot be accomplished by insisting that the CDF of X be [F (x)]α and the SF of Y

be [S(y)]α, since no PGF will satisfy the resulting equations,

GN (F (x)) = [F (x)]α, GN (S(y)) = [S(y)]α,

equivalent to GN (s) = sα, unless α is an integer. To obtain a solution to this problem,

one has to swap the maximum with the minimum, and instead stipulate that the SF of

X be [S(x)]α and the CDF of Y be [F (y)]α. According to Lemma 2.1, this leads to the

equations

1−GN (F (x)) = [S(x)]α, 1−GN (S(y)) = [F (y)]α,
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which are equivalent to

(2.2) GN (s) = 1− (1− s)α, |s| ≤ 1.

The above expression is indeed a genuine PGF, albeit only for α ∈ (0, 1], and represents

a Sibuya random variable Nα (see, [30]) with the PDF

(2.3) pα(n) = P(Nα = n) =

(
α

n

)
(−1)n+1 =

α(α− 1) · · · (α− n+ 1)

n!
(−1)n+1, n ∈ N,

where N = {1, 2, 3, . . .}, arising in connection with discrete stable, Linnik, and Mittag-

Leffler distributions (see, e.g., [4, 5, 7, 23, 25]).

Remark 2.2. Expressing the function (2.2) as a power series,

(2.4) 1− (1− s)α =
∞∑
n=1

(
α

n

)
(−1)n+1sn, |s| ≤ 1,

makes it clear that this is not a PGF when α > 1, as then not all coefficients of sn in

the above series are non-negative. For α ∈ (0, 1] this variable represents the number of

trials till the first success in an infinite sequence of independent Bernoulli trials where the

nth trial is a success with probability α/n. Clearly, at the boundary value α = 1, the

distribution is concentrated at n = 1. Let us also mention that in the special case α = 1/2,

we obtain the distribution of Z+1, where Z has a discrete Mittag-Leffler distribution with

the PGF G(s) = [1 + c(1− s)α]−1 with c = 1 (see, e.g., [25]).

In view of this discussion, we obtain the following result.

Corollary 2.3. Let F be a distribution function on R and S be the corresponding survival

function, S(x) = 1− F (x). Further, let X and Y have SF and CDF given by [S(x)]α and

[F (x)]α, respectively, where α ∈ (0, 1]. Then X and Y admit the stochastic representations

(2.5) X =

Nα∨
j=1

Xj and Y =

Nα∧
j=1

Xj ,

where Nα has the Sibuya distribution (2.3) and is independent of the IID {Xj} with the

CDF F .

Let us note that that in view of (2.5) the variables X and Y from Corollary 2.3 satisfy

the relation X ≥ Y , which is consistent with the following lemma.
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Lemma 2.4. Let F be a distribution function on R and S be the corresponding survival

function, S(x) = 1− F (x). Further, let X and Y have SF and CDF given by [S(x)]α and

[F (x)]α, respectively. Then, the variable X is stochastically larger than Y if and only if

α ∈ (0, 1] and Y is stochastically larger than X if and only if α ∈ [1,∞).

An extension of Corollary 2.3 to the case α ∈ (0,∞) is rather straightforward. In the

following result and throughout the paper we shall use the notation

(2.6) {t} = k and 〈t〉 = t− k whenever k < t ≤ k + 1, k = 0, 1, 2, . . . .

Corollary 2.5. Let F be a distribution function on R and S be the corresponding survival

function, S(x) = 1− F (x). Further, let X and Y have SF and CDF given by [S(x)]t and

[F (x)]t, respectively, where t ∈ (0,∞). Then X and Y admit the stochastic representations

(2.7) X =

{t}∧
j=1

Xj ∧
{t}+N〈t〉∨
j={t}+1

Xj and Y =

{t}∨
j=1

Xj ∨
{t}+N〈t〉∧
j={t}+1

Xj ,

where N〈t〉 has the Sibuya distribution (2.3) with parameter α = 〈t〉 and is independent of

the IID {Xj} with the CDF F .

3. Bivariate models

An extension to bivariate distribution having margins with SF and CDF given by (1.4)

is straightforward. One such distribution is obtained by putting together the X and Y

defined in Corollary 2.3. Let us start with the following result, which extends Lemma 2.1

to the bivariate setting.

Lemma 3.1. Let

(3.1) (X,Y ) =

 N∨
j=1

Xj ,

N∧
j=1

Xj

 ,

where N is an integer-valued random variable N supported on N = {1, 2, . . .} and the {Xi}

are IID random variables, independent of N . Then, the CDF of (X,Y ) is given by

(3.2) F (x, y) =

 GN (F (x))−GN (F (x)− F (y)) for x > y

GN (F (x)) for x ≤ y,

where GN (·) and F (·) are the PGF of N and the common CDF of the {Xi}, respectively.
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According to Lemma 2.1, the marginal CDF of X in (3.1) is FX(x) = GN (F (x)) while

the marginal SF of Y in (3.1) SY (y) = GN (S(y)), where S(y) = 1− F (y) is the common

SF of the {Xi}. Taking N to be Sibuya distributed Nα given by the PGF (2.2) we obtain a

bivariate distribution with marginal SF of X and the marginal CDF of Y given by [S(x)]α

and [F (x)]α, respectively. The following result summarizes this.

Corollary 3.2. Let

(3.3) (X,Y ) =

Nα∨
j=1

Xj ,

Nα∧
j=1

Xj

 ,

where Nα is Sibuya distributed given by the PGF (2.2) with α ∈ (0, 1] and the {Xi} are

IID random variables, independent of Nα. Then, the joint CDF of (X,Y ) is given by

(3.4) F (x, y) =

 [1− F (x) + F (y)]α − [1− F (x)]α for x > y

1− [1− F (x)]α for x ≤ y,

the marginal SF of X is SX(x) = [S(x)]α, while the marginal CDF of Y is FY (y) =

[F (x)]α, where S(·) and F (·) are the common SF and CDF of the {Xi}, respectively.

Remark 3.3. In the special case α = 1, the joint CDF (3.4) becomes

(3.5) F (x, y) =

 F (y) for x > y

F (x) for x ≤ y,

and it describes the random vector (X,X), to which (3.3) reduces in this case (since

Nα = 1 when α = 1). Note that this CDF is also a special case n = 1 of the joint CDF of

the two extreme order statistics, Sn and Mn, given by (1.3).

Observe that replacing the n in the joint CDF (1.3) of the two extreme order statistics

with α ∈ (0, 1) does not produce the CDF (3.4). Moreover, the resulting quantity is not

even a proper CDF, as can be easily verified. Our next result provides a generalization of

the bivariate CDF (1.3) to non-integer values of n.
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Proposition 3.4. Let t = n+ α ∈ (0,∞), where n = {t} ∈ {0} ∪ N and α = 〈t〉 ∈ (0, 1],

and define

(3.6) (X,Y ) =

 n∧
j=1

Xj ∧
n+Nα∨
j=n+1

Xj ,
n∨
j=1

Xj ∨
n+Nα∧
j=n+1

Xj

 ,

where Nα has the Sibuya distribution (2.3), and is independent of the IID {Xj} with the

CDF F . Then, the joint CDF of (X,Y ) is

(3.7)

F (x, y) =

 [F (y)]n+α − {F (y)− F (x)}n{[F (y)]α − 1 + [1− F (x)]α} for x < y

[F (y)]n+α − {[F (y)]α − [1− F (x) + F (y)]α + [1− F (x)]α}I{0}(n) for x ≥ y,

where IA(·) is the indicator function of the set A.

Remark 3.5. Note that by Corollary 2.5, the marginal SF of X is [S(x)]t and the marginal

CDF of Y is [F (y)]t, where S(·) and F (·) are the common SF and CDF of the {Xi},

respectively. This can also be seen by taking the limits x → ∞ or y → ∞ in (3.7).

Moreover, when t ∈ N, the CDF (3.7) coincides with (1.3). Additionally, when n = 0, the

indicator function in (3.7) takes on the value of 1, and we obtain (3.4). Formally, the CDF

(3.7) is well defined for any non-negative integer n and any α ∈ [0, 1]. For the boundary

cases α = 0 or α = 1, we recover the bivariate CDF of the extreme order statistics.

If the bivariate distributions discussed above are continuous, they can also be described

through the copula representation (see [31])

F (x, y) = C(FX(x), FY (y)), x, y ∈ R.

Straightforward calculations show that the copula CN connected with the bivariate distri-

bution (3.2) is given by

(3.8) CN (u, v) =

 u−GN (G−1N (u) +G−1N (1− v)− 1) for G−1N (u) +G−1N (1− v) > 1

u for G−1N (u) +G−1N (1− v) ≤ 1.

In the Sibuya case, the copula Cα = CNα connected with the bivariate distribution (3.3)

is given by

(3.9) Cα(u, v) =

 u− 1 + {(1− u)1/α + v1/α}α for (1− u)1/α + v1/α < 1

u for (1− u)1/α + v1/α ≥ 1.
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Similarly, in the more general case of (3.6) with n ≥ 1, the copula is

(3.10)

Cα,n(u, v) =

 v for (1− u)
1

α+n + v
1

α+n ≤ 1

v − {(1− u)
1

α+n + v
1

α+n − 1}n{(1− u)
α

α+n + v
α

α+n − 1} otherwise.

This is a generalization of the min-max copula discussed in [28], to which it reduces for

boundary values α = 0, 1.

4. Further examples and a duality of distributions on N

Numerous new families of distributions can be generated from a “base” CDF F (·) (or

SF S(·)) via Lemma 2.1 with suitably chosen distribution of N . One well-known example

of such a construction is the so-called Marshall-Olkin scheme introduced in [20], where a

SF S generates a family of SFs given by

(4.1) S(x;α) =
αS(x)

1− (1− α)S(x)
, x ∈ R, α ∈ R+.

For α = p ∈ (0, 1), the above SF is of the form GN (S(x)), where GN is the PGF of a

geometric random variable N with parameter p, given by the PDF

(4.2) P(N = n) = p(1− p)n−1, n ∈ N.

A straightforward calculation shows that, when α > 1, then the CDF corresponding to

(4.1) is of the form GN (F (x)), where F (x) = 1− S(x) and GN is the PGF of a geometric

random variable with parameter p = 1/α. Thus, in view of Lemma 2.1, the family

of distributions defined viz. (4.1) is generated by geometric minima (0 < α < 1) and

geometric maxima (α > 1) of IID random variables with the base SF S, as noted in [20].

Another example of this construction is connected with the so-called transmuted distri-

butions, which have populated the literature since the introduction of the quadratic rank

transmutation map in [29]. The latter, defined via

(4.3) u→ u+ αu(1− u), u ∈ [0, 1], α ∈ [−1, 1],

is used to transform a base CDF F into its transmuted version Fα, where

(4.4) Fα(x) = (1 + α)F (x)− αF 2(x), x ∈ R.
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As recently shown in [17], the CDF in (4.4) is of the form G−α(F (x)) for α ∈ [−1, 0] and

of the form 1−Gα(1− F (x)) for α ∈ [0, 1], where

(4.5) Gp(s) = s(1− p+ ps), s ∈ [0, 1],

is the PGF of a Bernoulli distribution with parameter p ∈ [0, 1] shifted up by one. Again,

by Lemma 2.1, the family of distributions defined viz. (4.4) is generated by random

minima (0 ≤ α ≤ 1) and random maxima (−1 ≤ α ≤ 0) of IID random variables with the

base CDF F . See [17] for more information and extensive references.

The above examples illustrate the fact that virtually any integer-valued random vari-

able N generates a new probability distribution from that of a base random variable X

connected with the maximum (or minimum) of N IID copies of X. In view of this, we

pose the following question: If X is coupled with N as in Lemma 2.1 to generate a new

distribution of Y
d
= max{X1, . . . , XN}, then can this process be reversed, so that for some

integer-valued random variable Ñ we would also have X
d
= min{Y1, . . . , YÑ}, where the

{Yi} are IID copies of Y , independent of Ñ? Similarly, if the new distribution is generated

via a random minimum rather than maximum, so that, Y
d
= min{X1, . . . , XN}, then is

there an integer-valued random variable Ñ so that we would have X
d
= max{Y1, . . . , YÑ}?

In view of of our results in Section 2, it is not hard to see that in order for these conditions

to hold the PGFs of N and Ñ need to satisfy the relation

(4.6) GÑ (1−GN (s)) = 1− s, s ∈ [0, 1],

so that

(4.7) GÑ (s) = 1−G−1N (1− s), s ∈ [0, 1].

In turn, if the quantity on the right-hand-side of (4.7) is a genuine PGF, then the process of

taking random maxima (or minima) can be “reversed” as described above. This motivates

the following definition.

Definition 4.1. Let N be a random variable supported on N with the PGF GN . If the

quantity in (4.7) is a genuine PGF, then the corresponding random variable Ñ supported

on N is said to be a dual to N with respect to the operation of random min/max.
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Note that the notion of being a dual is symmetric, that is if Ñ is a dual to N then in

turn N is a dual of Ñ . Further, as noted above, the four operations of taking random

min/max with either N or Ñ are reversible and recover the original distribution, as stated

in the following result.

Proposition 4.2. If N and Ñ are a dual pair of random variables supported on N, then

for any double-sequence {Xij} of IID random variables we have

(4.8) X11
d
=

N∧
i=1

Ñi∨
j=1

Xij
d
=

N∨
i=1

Ñi∧
j=1

Xij
d
=

Ñ∧
i=1

Ni∨
j=1

Xij
d
=

Ñ∨
i=1

Ni∧
j=1

Xij ,

with the {Xij} being independent of all the integer valued random variables that appear in

(4.8).

Let us now present several dual pairs related to Sibuya and other standard probability

distributions.

4.1. Deterministic/Sibuya pair. If the random variable N is a deterministic one, tak-

ing on the value of n ∈ N with probability 1, then the PGF of N is GN (s) = sn while the

dual PGF in (4.7) becomes

(4.9) GÑ (s) = 1− (1− s)1/n, s ∈ [0, 1],

which we recognize to be Sibuya distributed with parameter 1/n ∈ (0, 1]. In turn, the dual

to a Sibuya variable with parameter 1/n is a deterministic variable equal to n. However, if

N is taken to be Sibuya with parameter α where 1/α is not an integer, then the quantity

GÑ (s) = s1/α is not a valid PGF. Thus, a Sibua random variable has no dual unless 1/α

is an integer.

4.2. Shifted Bernoulli/tilted Sibuya pair. Let N have a Bernoulli distribution with

parameter p ∈ [0, 1] shifted up by one, given by the PGF (4.5). Then routine albeit lengthy

calculations lead to the dual PGF,

(4.10) GÑ (s) =
1 + p

2p

{
1−

(
1− 4p

(1 + p)2
s

) 1
2

}
, s ∈ [0, 1],
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which, upon expending the square root above into a power series, produces the dual PDF

(4.11) P(Ñ = n) =
1 + p

2p

[
4p

(1 + p)2

]n(1/2

n

)
(−1)n+1, n ∈ N.

This can be seen as an exponentially tilted Sibuya distribution of Nα given by (2.3) with

α = 1/2,

(4.12) P(Ñ = n) =
rnP(Nα = n)

ErNα
, n ∈ N,

where r = 4p/(1 + p)2.

4.3. Poisson/logarithmic pair. Consider a Poisson random variable with parameter λ

truncated below at 1, given by the PDF

(4.13) P(N = n) =
e−λλn

n!(1− e−λ)
, n ∈ N,

and the PGF

(4.14) GN (s) =
e−λ(1−s) − e−λ

1− e−λ
, s ∈ [0, 1].

Straightforward algebra shows that the dual PGF in (4.7) becomes

(4.15) GÑ (s) = − 1

λ
log
{

1− (1− e−λ)s
}
, s ∈ [0, 1],

which, upon expending the logarithm above into a power series, is seen to describe a

logarithmic distribution with the PDF

(4.16) P(Ñ = n) = −(1− q)n

n log q
, n ∈ N, q = e−λ ∈ (0, 1).

4.4. Negative binomial/negative binomial pair. Consider a negative binomial (NB)

distribution with parameters r ∈ R+ and p ∈ (0, 1], given by the PDF

(4.17) pn =

(
r + n− 1

r

)
pr(1− p)n, n ∈ N0 = {0, 1, . . .}.

Let N have the above distribution truncated below at 1, with the probabilities given by

pn/(1− pr), n ∈ N, and the PGF

(4.18) GN (s) =
1

1− pr

{[
p

1− (1− p)s

]r
− pr

}
, s ∈ [0, 1].
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After routine calculation, we find the dual PGF to be

(4.19) GÑ (s) =
1

1− p

{[
pr

1− (1− pr)s

] 1
r

− p

}
, s ∈ [0, 1],

which we recognize to be a NB distribution with parameters 1/r and pr, truncated below

at 1. Thus, NB distributions with parameters r, p and 1/r, pr, both truncated below

at 1, form a dual pair in our scheme. In particular, when r = 1, both distributions

of the dual pair are the same geometric distributions, given by the PDF (4.2). This

has an interesting interpretation: If N is geometrically distributed and Y is obtained

via a maximum (minimum) of N IID variables {Xi} and in turn we take the minimum

(maximum) of N IID copies of Y , then we recover the distribution of the {Xi}.

5. Extensions to random processes

The Sibuya distribution with parameter t = α, t ∈ [0, 1], can be obtained as the marginal

distribution of a Sibuya random process on [0, 1],

(5.1) N(t) = min{n ∈ N : Un ≤ t/n}, t ∈ [0, 1],

which was introduced in [18]. Here, the {Un} are IID standard uniform random variables

and N(0) = ∞. Clearly, since P(nUn ≤ t) = t/n for each t ∈ (0, 1], the variable N(t)

has the Sibuya distribution (2.3) with α = t. Moreover, as shown in [18], this is a right-

continuous, pure-jump, and non-increasing process, with an infinite number of jumps in

any (right) neighborhood of zero. In addition, the location of the jumps and their sizes

are closely related to the magnitudes and the locations of the records connected with the

sequence {nUn}, where the value that is smaller than all the previous values sets a new

record. These are described via the pairs Ki and Ri, which are the time and the size,

respectively, of the ith record among the {nUn}. By assumption, the first value is a

record, so that K1 = 1 and R1 = U1. Since U1 is less than one with probability one, all

the {Ri} are less than one as well. Further, we let δi = Ri−1−Ri (with R0 = 1) represent

the differences between successive record values while τi = Ki−Ki−1 are the inter-arrival

times between successive records. With this notation, the Sibuya process (5.1) admits the
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representation

(5.2) N(t) = 1 +

∞∑
i=1

τi+1I(t,1](ri), t ∈ [0, 1],

where IA(·) is the indicator function of the set A. Viewing from right to left, the random

process N(t) starts with N(1) = 1 and then jumps up by τi+1 at every record value

Ri. Other than that, the values of N(t) are constant on the intervals [Rn, Rn−1), and

N(Rn) = Kn. Twenty samples of the Sibuya process is presented in Figure 1. More

information about this process can be found in [18].

The above Sibuya process can be used to construct a bivariate extremal process on

[0, 1] via Corollary 3.2. Starting with a sequence {Xn} of IID random variables with the

common CDF F and SF S, we let

(5.3) (X(t), Y (t)) =

N(t)∨
j=1

Xj ,

N(t)∧
j=1

Xj

 , t ∈ [0, 1],

where N(t) is the Sibuya process, independent of the {Xn}. It follows that for each

t ∈ (0, 1) the marginal distributions of (X(t), Y (t)) are given by (3.4) with α = t. In

particular, the marginal SF of X(t) is [S(·)]t, while the marginal CDF of Y (t) is [F (·)]t.

Below we extend this construction beyond the unit interval using Proposition 3.4.

5.1. A random record process. Consider a sequence X = {Xn} of IID, non-negative

random variables, and the corresponding upper and the lower records based on these

variables, denoted by (KU
i (X), RUi (X)) and (KL

i (X), RLi (X)), respectively. Thus, KU
i is

the time (index) at which the ith record occurs among the {Xi}, and RUi = XKU
i

is the

size of that record, where a value that is larger than all the previous values sets a new

record. The quantities KL
i and RLi = XKL

i
are defined similarly, when a new record is the

value that is smaller than the ones previously observed.

We propose a continuous time process {(X(t), Y (t)), t > 0}, containing full information

about the records connected with the {Xn}, and having certain invariance properties that

in our opinion justify naming it the record process. Embedding the records in the record

process is similar to embedding the minima Sn or the maxima Mn (given by (1.1) and

(1.2), respectively), into the extremal processes, as described in [27]. However, despite the
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fact the record process and the extremal processes have the same marginal distributions,

they are essentially different, as it will be shown below.

The record process connected with the sequence X = {Xn} is defined through a sequence

{N (i)(t)}, i ∈ N, of independent Sibuya processes, which are independent of X. Here, each

{N (i)(t)} is connected with an underlying sequences Ui,n (n ∈ N) of IID standard uniform

random variables, as discussed above. As in Section 2, a real t is split into its integer part

{t} and its fractional part 〈t〉 = t− {t}, defined in (2.6). Subsequently, we set

(5.4) (X(t), Y (t)) =

 {t}∧
j=1

Xj ∧
N({t})(〈t〉)∨

i=1

X{t}+i,

{t}∨
j=1

Xj ∨
N({t})(〈t〉)∧

i=1

X{t}+i

 , t ∈ (0,∞).

For t ∈ (0, 1), where we have {t} = 0 and 〈t〉 = t, the minimum
∧0
j=1Xj and the maximum∨{t}

j=1Xj above are understood as ∞ and −∞, respectively, and (X(t), Y (t)) has the same

structure as (5.3). The component X(t) of this construction connects with the lower

records (KL
i (X), RLi (X)) of the sequence X = {Xn}, while the component Y (t) relates to

its upper records (KU
i (X), RUi (X)). Moreover, by Proposition 3.4, the bivariate marginal

distributions of (X(t), Y (t)) are given by (3.7) with n = {t} and α = 〈t〉. In particular,

the the marginal SF of X(t) is [S(·)]t, while the marginal CDF of Y (t) is [F (·)]t for each

t ∈ R+. The following result summarizes fundamental properties of the record process

(5.4).

Theorem 5.1. Let (X(t), Y (t)) be a random record process (5.4) connected with a sequence

X = {Xn} of IID, non-negative random variables with the CDF F and the SF S. Then

we have the following:

(i) For t ∈ R+, the SF of X(t) is given by St(·) while the CDF of Y (t) is given by F t(·).

(ii) For t ∈ R+, the joint distributions of (X(t), Y (t)) is given by (3.7) with n = {t} and

α = 〈t〉.

(iii) Both, X(t) and Y (t) are a pure jump processes, with right-hand-side continuous tra-

jectories. Moreover, the trajectories of X(t) are non-increasing, while the trajectories of

Y (t) are non-decreasing.

(iv) If t = n ∈ N, then X(n) =
∧n
k=1Xk and Y (n) =

∨n
k=1Xk with probability one.
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(v) If tn ∈ (n, n+ 1) is the location of the last jump of X on (n, n+ 1), then X on (n, tn)

is independent of X(t) on R+ \ (n, tn). Similar property holds for the Y (t).

Remark 5.2. Let us note that, in contrast with the extremal processes described in [27],

here X(t) and Y (t) are directly related to the maxima and the minima of the underlying

sequence {Xn}. Moreover, if the value of Xn (n > 1) does not set a new record, so

that Sn−1 ≤ Xn ≤ Mn−1, the trajectories of X(t) and Y (t) are constant on the interval

[n − 1, n]. If Xn does set a new record with Xn > Mn−1, then the trajectory of X(t) is

still constant (and equal to Sn−1) on [n− 1, n] while that of Y (t) will be increasing from

Y (n − 1) = Mn−1 to Y (n) = Mn through a sequence of jumps on the interval [n − 1, n],

with both, the jump sizes and their locations, affected by the “future” values {Xi}∞i=n of

the underlying sequence X. Similarly, If Xn sets a new downward record with Xn < Sn−1,

then the trajectory of Y (t) will be constant (and equal to Mn−1) on the interval [n− 1, n]

while that of X(t) will be decreasing from X(n − 1) = Sn−1 to X(n) = Sn through a

sequence of jumps on [n − 1, n], related to the future values of X. Interestingly, if a

trajectory of either component of our process does go up (or down) in (n− 1, n), one can

predict a record value is to occur at time t = n.

While a complete analysis of the bivariate process (5.4) is beyond the scope of this paper,

below we provide few additional remarks shedding more light on its basic properties. First,

let us contrast the properties of the introduced process with some misleading intuition

following from extreme value theory. Let us start with a discussion of the structure of

the Sibuya process N(t), discussed fully in [18]. Namely, the arrival times (R1, . . . , RN )

of the first N jumps can be represented as
(∏N

i=1 Ui, · · · , U1

)
, where the {Ui} are IID

standard uniform variables. The jump sizes (viewed from left to right) can be iteratively

computed from the following scheme. We take τN = 1 as the first value of the jump

at RN = rN , and then recursively evaluate the jumps at the locations rN−k, k ≥ 1, by

taking τN−k = [log(Vk)/ log(1 − pk)] + 1, where the {Vk} are IID uniformly distributed

(independently of everything else), while the {pk} are sampled independently from a beta

distribution with parameters (1−rN−k+1, rN−k+1+τN−k+1). Due to extremely large values

that the process N(t) takes in the vicinity of zero, this scheme is much more effective in
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Figure 1. Twenty samples from the Sibuya process on the logarithmic

scale in values. The abscissae of the circles indicate locations of jumps and

their ordinates the logarithmic values of the Sibuya process after the jump

simulating values of the Sibuya process than directly from (5.1), which would require an

enormous number of uniform variables to be simulated. Nevertheless, typically there are

only very few jumps that can be realistically observed in the process due to their extremely

large values when process nears in the argument to zero. This can be seen from Figure 1,

where twenty samples from the process are given on the logarithmic scale in values.

As we stated above, the jumps of the process N(t) are extremely large. In our simula-

tions, they were on the order of 1010 or higher for t < 0.05. Thus, based on classical extreme

value theory, one might expect that the extremal process given in (5.3) would exhibit some

asymptotical distributional invariance. Namely, by extremal types theorem, under certain

conditions on the {Xj} and when appropriately normalized, the maximum Mn =
∨n
j=1Xj
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converges in distribution to one of the three standard extreme value distributions. For ex-

ample, if the {Xj} were standard Pareto distributed with the SF S(x) = 1∧x−α, then the

limiting distribution of Mn/n
1/α is the Fréchet distribution given by the CDF exp(−x−α),

x > 0. However despite the fact that N(t) is very large when t is close to zero, the process

X(t) =
∨N(t)
j=1 Xj does not lose the effect of the entire SF of X on its SF, which is [S(x)]t.

In our special case, this is still Pareto distribution, but with the tail parameter αt, and

thus with much heavier power tail than that of the Fréchet distribution.

The above considerations lead to a question about the asymptotics of X(t) at zero.

Namely, are there any normalizing functions a(t) and b(t) such

(5.5) Z(t) = (X(t)− b(t))/a(t)

has a non-degenerate limiting distribution as t approaches zero? This is normally the case

when the random index N(t) tends to infinity while a scaled version of it, c(t)N(t), has a

non-zero limiting distribution (see, e.g., [8], Section 4.3). However, as shown below, the

Sibuya distribution N(t) increases so fast as t gets close to zero, that no normalization

c(t) can make it converge to a non-zero limit.

Proposition 5.3. For p ∈ (0, 1), let Np have a Sibua distribution (2.3) with parameter

α = p, and suppose that cpNp
d→ Z as p→ 0 for some cp > 0. Then P(Z = 0) = 1.

In view of the above result, one may suspect that the quantity Z(t) in (5.5) can never

converge to an extreme value (or other non-degenerate) distribution as t approaches zero.

As shown below, this is indeed the case. To see this, consider again standard Pareto

distributed {Xi} and assume to the contrary that there exist functions a(t) and b(t) such

that the distribution of Z(t) has a non-degenerate limit at zero. If this was so, then a(t)

would have to converge to infinity, as otherwise b(t) would have to converge to infinity to

ensure that the SF 1∧(xa(t)+b(t))−αt would converge to a SF. However such a limit would

be independent of x, and thus it would not constitute a proper distribution. Further, note

that b(t)/a(t) must converge to infinity as well, since otherwise 1 ∧ (xa(t) + b(t))−αt =

1 ∧ x−αta(t)−αt
(

1 + b(t)
xa(t)

)−αt
would converge to a constant independent of x. However,

if both a(t) and b(t)/a(t) converge to infinity, then 1∧x−αtb(t)−αt
(

1
x + a(t)

b(t)

)−αt
will have
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a limit not dependent on x and thus not a proper distribution function. We conclude that

no the extremal types theorem holds for X(t) =
∨N(t)
j=1 Xj as t converges to zero.

6. Proofs

Proof of Lemma 2.1. This result follows from a standard conditioning argument. Indeed,

since

P(
N∨
j=1

Xj ≤ x) =
∑
n

P(
N∨
j=1

Xj ≤ x|N = n)pn =
∑
n

P(
n∨
j=1

Xj ≤ x)pn =
∑
n

[F (x)]npn,

we obtain FX(x) = GN (F (x)). Similarly,

P(
N∧
j=1

Xj > y) =
∑
n

P(
N∧
j=1

Xj > y|N = n)pn =
∑
n

P(
n∧
j=1

Xj > y)pn =
∑
n

[S(y)]npn,

leads to SY (y) = GN (S(y)), and completes the proof. �

Proof of Lemma 2.4. Recall that X is stochastically larger than Y if and only if the CDF

of X is always less or equal than the CDF Y , which in our case is equivalent to 1−[S(x)]α ≤

[F (x)]α for all x ∈ R. Let gα(u) = uα + (1 − u)α, u ∈ [0, 1]. Then, the above inequality

is equivalent to gα(u) ≥ 1 for all u ∈ [0, 1]. It is easy to see that the latter holds if

and only if α ∈ (0, 1]. Indeed, the inequality holds trivially when α = 1. Moreover, we

have gα(0) = gα(1) = 1 and the function gα is increasing on (0, 1/2) and decreasing on

(1/2, 1) whenever α ∈ (0, 1), in which case gα(u) ≥ g(1) = 1 for all u ∈ [0, 1]. This proofs

the first part of the lemma. Similarly, Y is stochastically larger than X if and only if

1 − [S(x)]α ≥ [F (x)]α for all x ∈ R, which in terms of gα means that gα(u) ≤ 1 for all

u ∈ [0, 1]. This again holds trivially when α = 1, while for α ∈ (1,∞) the function gα is

decreasing on (0, 1/2) and increasing on (1/2, 1), leading to gα(u) ≤ g(1) = 1 in this case.

This concludes the proof. �

Proof of Lemma 3.2. Write F (x, y) = P(X ≤ x) − P(X ≤ x, Y > y), which, by Lemma

2.1, leads to F (x, y) = GN (F (x)) − P(X ≤ x, Y > y). Next, we consider the term

P(X ≤ x, Y > y). Clearly, this reduces to zero whenever x ≤ y (since, by the definition of
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these variables, we have X ≥ Y ). In turn, for x > y, by conditioning on N we obtain

P(X ≤ x, Y > y) =

∞∑
n=1

P(

N∨
j=1

Xj ≤ x,
N∧
j=1

Xj > y|N = n)P(N = n).

Since the {Xi} and N are independent, we have

P (
N∨
j=1

Xj ≤ x,
N∧
j=1

Xj > y|N = n) = P (
n∨
j=1

Xj ≤ x,
n∧
j=1

Xj > y) = [P(y < Xj ≤ x)]n,

so that

P(X ≤ x, Y > y) =

∞∑
n=1

[F (x)− F (y)]nP(N = n) = GN (F (x)− F (y)).

This completes the proof. �

Proof of Proposition 3.4. Write

(X̃, Ỹ ) =

 n∧
j=1

Xj ,
n∨
j=1

Xj

 and (Xα, Yα) =

n+Nα∨
j=n+1

Xj ,

n+Nα∧
j=n+1

Xj

 ,

noting that (X,Y ) = (X̃∧Xα, Ỹ ∨Yα) and the two random vectors above are independent.

Using this representation allows for expressing the joint CDF of (X,Y ) as

(6.1) F (x, y) = P(Ỹ ∨ Yα ≤ y)− P(X̃ ∧Xα > x, Ỹ ∨ Yα ≤ y).

By independence of Ỹ and Yα, the first term on the right-hand-side above can be written

as

P(Ỹ ∨ Yα ≤ y) = P(Ỹ ≤ y, Yα ≤ y) = [F (y)]n+α,

since the marginal CDFs of Ỹ and Yα are given by [F (y)]n and [F (y)]α, respectively. Next,

we write the second term on the right-hand-side in (6.3) as

(6.2) P(X̃ > x,Xα > x, Ỹ ≤ y, Yα ≤ y) = P(X̃ > x, Ỹ ≤ y)P(Xα > x, Yα ≤ y),

which is equivalent to

[P(Ỹ ≤ y)− P(X̃ ≤ x, Ỹ ≤ y)][P(Yα ≤ y)− P(Xα ≤ x, Yα ≤ y)].

To complete the proof, substitute the CDFs of (X̃, Ỹ ) and (Xα, Yα), which are given by

(1.3) and (3.4), respectively. �
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Proof of Theorem 5.1. Let Y1(t) =
∨{t}
k=1Xk and Y2(t) =

∧N{t}(〈t〉)
i=1 X{t}+i. It is clear that

Y1(t) and Y2(t) are independent for each fixed t so that by Corollary 2.3

P(Y (t) ≤ x) = P(Y1(t) ≤ x)P(Y2(t) ≤ x) = F [t](x) · F 〈t〉(x) = F t(x).

Both the processes Y1 and Y2 are non-decreasing and have right hand side continuous

trajectories. �

Proof of Proposition 5.3. Suppose that for some deterministic cp > 0 we have conver-

gence in distribution to some (necessarily non-negative) random variable Z stated in the

proposition. Expressing this in terms of Laplace transforms (LTs) we will have

E(e−tcpNp) = Gp(e
−tcp)→ ψ(t) as p→ 0

for each t > 0, where ψ(·) is the LT of Z and Gp(s) is the PGF of Np given by the right-

hand-side of (2.2) with α = p. Consequently, we conclude that, for each t > 0, we would

have

(6.3) (1− e−tcp)p → 1− ψ(t) as p→ 0.

However, we have

(6.4) (1− e−tcp)p =

(
1− e−tcp

cp
cp

)p
=

(
1− e−tcp

cp

)p
cpp

and, since we must have cp → 0 as p→ 0, we would have(
1− e−tcp

cp

)p
→ t0 = 1 as p→ 0.

In view of this, along with (6.3)-(6.4), we conclude that, for each t > 0, we must have the

convergence

cpp → 1− ψ(t) as p→ 0,

which can not hold unless the right-hand-side is independent on t, which is the case only

if P(Z = 0) = 1. This concludes the proof. �
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