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Abstract The Sibuya distribution arises as the distribution of the waiting time for the

first success in Bernoulli trials, where the probabilities of success are inversely proportional

to the number of a trial. We study a generalization that is obtained as the distribution

of the excess random variable N − k given N > k, where N has the Sibuya distribution.

We summarize basic facts regarding this distribution and provide several new results and

characterizations, shedding more light on its origin and possible applications. In particular,

we emphasize the role Sibuya distribution plays in the extreme value theory and point out

its invariance property with respect to random thinning operation.
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1. Introduction

Let Xi, i = 1, 2, . . ., be a sequence of independent and identically distributed (IID)

continuous random variables. The first Xi that exceeds all previous values is called the

first record value. Let Ij , j = 1, 2, . . ., be the associated sequence of Bernoulli random

variables, indicating wether or not a particular Xj is a record. It follows from the random

records theory [see, e.g., Rényi (1962, 1976)] that the variables Ij are mutually independent

and

(1.1) P(Ij = 1) =
1

1 + j
, j ∈ N = {1, 2, . . .}.

Accordingly, if N denotes the waiting time for the first record to occur, then

(1.2) P(N = n) =
1

n(n+ 1)
=

1

1 + (n− 1)
− 1

1 + n
, n ∈ N.
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The probability distribution given by (1.2) is a special case with α = 1 and σ = 1 of

discrete Pareto distribution, which in general has the probability mass function (PMF)

(1.3) P(N = n) =

(
1

1 + n−1
σ

)α
−
(

1

1 + n
σ

)α
, n ∈ N,

and arises by discretization of continuous Pareto Type II (Lomax) distribution with tail

parameter α > 0 and scale parameter σ > 0 [see Krishna and Singh Pundir (2009),

Buddana and Kozubowski (2014)]. The distribution given by (1.2) is also a special case

α = 1 of Yule distribution [see Yule (1925)], which in general case α > 0 is given by the

PMF

(1.4) P(N = n) =
αΓ(α+ 1)Γ(n)

Γ(α+ n+ 1)
, n ∈ N.

Both Yule and discrete Pareto distributions are heavy tailed, with power law behavior of

their PMFs (and tails),

(1.5) P(N = n) = O

(
1

nα+1

)
as n→∞.

Along with the Zipf’s law, whose PMF has the same asymptotics [see, e.g., Zipf (1949)

or Johnson et al. (1993)], these distributions provide important modeling tools whenever

empirical distributions display power-law tails. Such scaling behavior has been observed

across many fields, including biology, chemistry, computer science, economics, finance,

geo-sciences, and social science [see, e.g., Aban et al. (2006), Clauset and Newman (2009),

Gabaix (2009), Newman (2005), Sornette (2006), Stumpf and Porter (2012)].

In this paper we study another generalization of (1.2), which is directly related to

its interpretation through the record process described above. Namely, we define a dis-

crete variable N to be the waiting time for the first success in a sequence of independent

Bernoulli trials {Ij , j ∈ N}, where the probabilities of success are given by

(1.6) P(Ij = 1) =
α

k + j
, k ∈ N0 = N ∪ {0} and 0 < α < k + 1.

We observe that the record times correspond to α = k = 1. If N is the number of trials

until the first success, then

(1.7) P(N = n) =

(
1− α

k + 1

)
· · ·
(

1− α

k + n− 1

)
α

k + n
, n ∈ N.
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It can be shown that, asymptotically, the probabilities (1.7) are also power laws of the

form (1.5). Moreover, in the special case k = 0 and α ∈ (0, 1), we obtain the Sibuya

distribution with the PMF

(1.8) P(N = n) =
α(α− 1) · · · (α− n+ 1)

n!
(−1)n+1 =

(
α

n

)
(−1)n+1, n ∈ N,

which first appeared in Sibuya (1979) and was later studied in connection with discrete

stable, Linnik, and Mittag-Leffler distributions [see, e.g., Christoph and Schreiber (1998,

2000), Devroye (1993), Pakes (1995), Pillai and Jayakumar (1995), Satheesh and Nair

(2002)]. Due to this connection, we name the distribution with the PMF (1.7) generalized

Sibuya.

The main goal of the paper is to account for basic properties of the generalized Sibuya

distribution (1.7), and to show how it interrelates with its special case of Sibuya distribu-

tion (1.8). Additionally, we wish to emphasize the importance of the Sibuya distribution

in the distribution theory, and provide its new characterization which goes beyond the

class of generalized Sibuya variables. To this end, let us first comment on the importance

of the Sibuya model in the extreme value theory. It is well known that, for any n ∈ N,

the quantity [F (x)]n, where F is a cumulative distribution function, is also a distribution

function, corresponding to the random variable

(1.9) X = max{X1, . . . , Xn} =
n∨
j=1

Xj ,

where the {Xj} are IID with the CDF F . For a non-integer exponent α > 0, the quantity

[F (x)]α is a genuine CDF as well, although in this case we no longer have the interpretation

(1.9) through the maximum. Similarly, the quantity [S(x)]n, where S(x) = 1 − F (x) is

the survival function (SF) of the {Xj}, is the survival function corresponding to

(1.10) Y = min{X1, . . . , Xn} =

n∧
j=1

Xj ,

although [S(x)]α, still being a genuine survival function, lacks such an interpretation for

fractional α > 0. It turns out that the Sibuya distribution (1.8) provides a missing link,

allowing an interpretation through stochastic maxima and minima as presented in the

following result.
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Proposition 1.1. Let F be a distribution function on R and S be the corresponding

survival function, S(x) = 1 − F (x). Further, let X and Y have SF and CDF given by

[S(x)]α and [F (x)]α, respectively, where α ∈ (0, 1]. Then X and Y admit the stochastic

representations

(1.11) X
d
=

Nα∨
j=1

Xj and Y
d
=

Nα∧
j=1

Xj ,

where Nα has the Sibuya distribution (1.8) and is independent of the IID {Xj} with the

CDF F .

We refer to Kozubowski and Podgórski (2016) for the proof, further results on ran-

dom maxima and minima with Sibuya number of terms, and generalizations to random

processes. As we shall see in Section 5, one can define a pure jump random process with

Sibuya marginal distributions. The laws of the jumps are related to the generalized Sibuya

distribution. In particular, the size of the first jump of this process has the generalized

Sibuya distribution (1.7) with k = 1. Such relations between the Sibuya and general-

ized Sibuya distributions, along with the importance of the former, provide additional

motivation for studying the latter.

Let us finally provide yet another result on the Sibuya distribution, which appears to be

new. It relates to the theory of birth/death Markov processes. Consider a sequence {Xi},

i ∈ N, of IID random variables having continuous distribution on R+ = (0,∞). Suppose

that at time t = 0, a population consists of a random number N ∈ N of individuals, whose

future lifetimes are given by Xi, i = 1, . . . , N . Then

(1.12) N(t) =

N∑
i=1

I(t,∞)(Xi), t ≥ 0,

is a pure death process, describing the number of individuals alive at time t (the quantity

IA is an indicator of the set A). It turns out that if N has the Sibuya distribution (1.8) with

some α ∈ (0, 1), then, regardless of a choice for the distribution of Xi’s, the conditional

distribution of N(t)|N(t) > 0 is the same as that of N . In other words, the Sibuya

distribution provides a stationary conditional distribution of N(t) for each t ∈ [0,∞): if it

is known that the population is still alive at time t > 0, its size is described by the same
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Sibuya distribution. This in fact is a characterization of the Sibuya distribution, as stated

in the following result, which is proven in the Appendix.

Proposition 1.2. Let {Xi}, i ∈ N, be a sequence of IID random variables having contin-

uous distribution on R+ = (0,∞), and let N be a random variable on N, independent of

the Xi’s. Then N has a Sibuya distribution (1.8) with some α ∈ (0, 1) if and only if for

each t ∈ [0,∞) we have the equality in distribution

(1.13) N
d
= N(t)|N(t) > 0,

where N(t) is a pure death process defined by (1.12).

The rest of the paper is a careful account of the properties of the generalized Sibuya

model. We start with Section 2, where we introduce the model and derive its basic

characteristics. Various stochastic representations of the model appear in Section 3. They

are followed by account of divisibility properties in Section 4. In Section 5 we define a

Sibuya random process on [0, 1] and study the structure of its sample paths. We conclude

with the Appendix, containing (selected) proofs and auxiliary results.

2. Definition and basic properties

We begin with a definition of the generalized Sibuya stochastic model.

Definition 2.1. A random variable N with the PMF (1.7) is said to have a generalized

Sibuya distribution with parameters α ∈ R+ and k ∈ N0, denoted by GS1(α, k). The two

parameters are restricted by the relation 0 < α < k + 1.

The subscript in the notation indicates that the distribution is supported on the set N

of positive integers. Another version of this distribution, which is defined as the number

of failures before the first success, shall be denoted by GS0(α, k), i.e.

(2.1) N ∼ GS1(α, k) if and only if N − 1 ∼ GS0(α, k).

The properties provided in the sequel shall be stated in terms of either one of the two

distributions, and can be easily re-formulated in terms of the other if needed.
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2.1. Special cases. Note that at the boundary of the parameter space, where 0 < α =

k + 1, the distribution collapses to a point mass at 1. This exceptional case shall be

omitted from most considerations. The Sibuya distribution (1.8) arises as a special case

of GS1(α, k) with α ∈ (0, 1) and k = 0. This distribution is often described through its

probability generating function (PGF), which, compared with the general case discussed

in the sequel, is of a particularly simple form:

(2.2) GN (s) =
∞∑
n=1

(
α

n

)
(−1)n+1sn = 1− (1− s)α, 0 < s < 1.

In the further special case α = 1/2, we have that GS0(1/2, 0) is a discrete Mittag-Leffler

distribution with the PGF G(s) = [1+(1−s)α]−1 [see, e.g., Pillai and Jayakumar (1995)].

We have already noted the special case α = k = 1 of the GS1(α, k) distribution, where

the PMF simplifies to (1.2) and we obtain a particular case of the discrete Pareto and the

Yule distributions. For α = 1 and general k ∈ N, the GS PMF (1.7) becomes

(2.3) P(N = n) =

(
1− 1

k + 1

)
· · ·
(

1− 1

k + n− 1

)
1

k + n
=

k

k + n− 1
− k

k + n
,

and we also obtain a case of discrete Pareto distribution (1.3) with α = 1 and σ = k.

2.2. Distribution and survival functions. The CDF and the SF of a GS random

variable N ∼ GS1(α, k) are straightforward to derive. Indeed, for any n ∈ N:

(2.4) P(N > n) = P(Ij = 0, j = 1, . . . , n) =

(
1− α

k + 1

)
· · ·
(

1− α

k + n

)
.

It follows that the SF and the PMF of N ∼ GS1(α, k) are linked as follows:

(2.5) P(N = n) =
α

n+ k − α
P(N > n), n ∈ N.

We now consider the conditional distribution of N − m given N > m. Straightforward

algebra incorporating the above results shows that

(2.6)

P(N −m = n|N > m) =

(
1− α

k +m+ 1

)
· · ·
(

1− α

k +m+ n− 1

)
α

k +m+ n
, n ∈ N.

The above is recognized as a GS probability as well, with parameters α and k + m. In

particular, if N has Sibuya distribution (1.8), then the corresponding excess N −m condi-

tionally on N > m is generalized Sibuya GS1(α,m). Thus the class of generalized Sibuya
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distributions is closed with respect to the operation of taking the excess, as summarized

in the result below.

Proposition 2.2. If m ∈ N0 and N ∼ GS1(α, k) then N −m|N > m ∼ GS1(α, k +m).

2.3. Moments and tail behavior. As shown in Christoph and Schreiber (2000), Sibuya

probabilities (1.8) admit the asymptotic representation

(2.7) P(N = n) ∼ 1

π
sin(απ)Γ(1 + α)

1

nα+1
as n→∞,

where f(x) ∼ g(x) means that f(x)/g(x)→ 1 as x→∞. Thus, if N ∼ G1(α, 0) (ordinary

Sibuya), where necessarily α ∈ (0, 1), then we have (1.5). As shown below, the latter

asymptotic relation holds for generalized Sibuya distribution as well.

Proposition 2.3. If N ∼ GS1(α, k) then

(2.8) P(N = n) ∼ Γ(k + 1)

Γ(k + 1− α)

α

nα+1
as n→∞.

Remark 2.4. Note that if we set k = 0 in (2.8) and use two well-known properties of the

gamma function,

Γ(α)Γ(1− α) =
π

sin(απ)
, Γ(1 + α) = αΓ(α),

then we recover (2.7).

In view of the link (2.5) between generalized Sibuya survival function and its probabil-

ities, the above result immediately provides the asymptotics of the tail, stated below.

Corollary 2.5. If N ∼ GS1(α, k) then

(2.9) P(N > n) ∼ Γ(k + 1)

Γ(k + 1− α)

1

nα
as n→∞.

Because of the power-law asymptotics (2.9) of its tail, the moments of order α and

above of generalized Sibuya distribution do not exist.

Corollary 2.6. Let γ ∈ R+. If N ∼ GS1(α, k) then ENγ <∞ if and only if γ ∈ (0, α).
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In particular, the expectation of N ∼ GS1(α, k) exists whenever α > 1 (so that neces-

sarily k ≥ 1), while the variance exists if and only if α > 2 (so that k ≥ 2). Perhaps the

most convenient way to obtain these, along with other moments, is through the mixture

representation of generalized Sibuya distribution provided by Proposition 3.5. Using tower

property for conditional expectations, that result allows us to write

(2.10) EN j = Efj(Y ), j ∈ N0,

where N ∼ GS0(α, k), Y has a beta distribution with parameters α and β = 1 − α + k,

and fj(p) denotes the jth (raw) moment of geometric distribution with parameter p and

PMF given by (3.10). In order to compute the expectation and the second moment of N ,

one would substitute

f1(p) =
1− p
p

, f2(p) =
1− p
p2

+
(1− p)2

p2
,

respectively, into (2.10). Routine integration of the resulting expressions, details of which

shall be omitted, leads to the following result.

Proposition 2.7. Let N ∼ GS0(α, k). If α > 1 and k ∈ N, then the mean of N is finite

and is given by

(2.11) EN =
k

α− 1
− 1.

Further, the variance of N exists only if α > 2, in which case we have

(2.12) VarN =
αk(1− α+ k)

(α− 1)2(α− 2)
.

Remark 2.8. We note that the expectation of a generalized Sibuya distribution is straight-

forward, as it does not involve any special functions or infinite series, which is not the case

with discrete Pareto distribution (1.3), which has the same asymptotics of the tail. For

example, the expectation of N ∼ GS0(α, k) with k = 1 and α = 1 + p, where 0 < p < 1, is

equal to EN = (1− p)/p, and coincides with that of geometric variable with parameter p.

Remark 2.9. The mean of N ∼ GS1(α, k) also exists whenever α > 1, in which case we

have EN = k/(α− 1). When α > 2, its variance exists as well, and coincides with (2.12).
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2.4. The probability generating function. The probability generating function of gen-

eralized Sibuya distribution can be obtained via the mixed Poisson representation (3.3),

coupled with the relation (3.6). The following result provides relevant details.

Proposition 2.10. If N ∼ GS0(α, k) then the PGF of N is

(2.13) GN (t) =
k!

Γ(α)Γ(1− α+ k)

π

sin(πα)

1

s1+k


k∑
j=0

sj(−α)j
j!

− (1− s)α
 , 0 < s < 1,

where (a)j denotes the Pochhammer’s symbol (3.8).

Remark 2.11. If N ∼ GS1(α, k), then, due to the relation (2.1), its PGF is given by (2.13)

with s1+k replaced by sk. In particular, when k = 0, we obtain the PGF (2.2) of Sibuya

distribution with the PMF (1.8).

Remark 2.12. Note that for integer values of α, the quantity sin(πα) in the denominator

of the right-hand-side of (2.13) becomes zero. In this case the expression for the PGF

is understood in the limiting sense. For example, by taking the limit as α → 1 of the

right-hand-side of (2.13) with k = 1, we find that the PGF of GS0(1, 1) distribution is

given by

(2.14) GN (t) =
s+ (1− s) log(1− s)

s
, 0 < s < 1.

Remark 2.13. When α > 1, the expectation of generalized Sibuya distribution can also be

computed via the relation

(2.15) EN =
d

ds
GN (s)

∣∣∣∣
s=1

,

where GN is the PGF of N . However, this is not a convenient way of getting the mean.

For example, for non integer values of α > 1, this leads the expression

(2.16) EN =
k!

Γ(α)Γ(1− α+ k)

π

sin(πα)


k−1∑
j=0

(−α)j+1

j!
− (k + 1)

k∑
j=0

(−α)j
j!

 ,

which is not immediately seen to coincide with (2.11).
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3. Stochastic representations

Below we provide an account of several stochastic representations of generalized Sibuya

random variables, involving a randomly stopped Poisson process, mixtures of geometric

distributions, and a discretization scheme.

3.1. Randomly stopped Poisson process. Consider a random variable

(3.1) X
d
=

E

Tα,k

where E and Tα,k are independent, E is standard exponential, and Tα,k has a beta distri-

bution of the second kind, given by the PDF

(3.2) f(x) =
k!

Γ(α)Γ(1− α+ k)
xα−1

(
1

1 + x

)k+1

, x ∈ R+ (k ∈ N0, 0 < α < k + 1).

Proposition 3.1. If N ∼ GS0(α, k), then

(3.3) N
d
= N(X),

where X is given by (3.1) and is independent of a standard Poisson process {N(t), t > 0}.

Remark 3.2. Note that Tα,k can be obtained as

(3.4) Tα,k
d
=

Xα

Xα−1+k
,

where the variables on the right-hand-side of (3.4) are independent and Xβ denotes stan-

dard gamma variable with shape parameter β (and unit scale). This shows that generalized

Sibuya distribution is a special case a = 1, b = 1−α+k, c = α of the generalized hyperbolic

distribution of Type B3, defined via the stochastic representation (3.3) with

(3.5) X
d
=
XaXb

Xc
,

where the three variables on the right-hand-side of (3.5) are independent and have standard

gamma distributions [see, e.g., Sibuya (1979), Sibuya and Shimizu (1981), or Devroye

(1993)].
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Remark 3.3. The result of Proposition 3.1 in case of (shifted) Sibuya distribution GS0(α, 0)

was noted in Devroye (1993) in connection with the problem of random variate genera-

tion from this distribution. Note that if N ∼ GS1(α, 0), then N does not admit the

representation (3.3) with any X; instead, in this case we have N
d
= 1 +N(X).

Remark 3.4. It can be easily seen that if N admits the stochastic representation (3.3),

then the PGF of N must be of the form

(3.6) GN (s) = EsN = φX(1− s), s ∈ (0, 1),

where φX(·) is the Laplace transform of X [see, e.g., Steutel and van Harn (2004)]. This

allows for a derivation of one of the functions, GN (·) or φX(·), from the other one. It can

be shown [see the proof of Proposition 2.10 in the Appendix] that the Laplace transform

of X defined by (3.1) is of the form

(3.7) φX(t) =
k!

Γ(α)Γ(1− α+ k)

π

sin(πα)

1

(1− t)1+k


k∑
j=0

(−α)j(1− t)j

j!
− tα

 , t ∈ R+,

where (a)n denotes Pochhammer’s symbol defined as

(3.8) (a)n =

 a(a+ 1) · · · (a+ n− 1) for n ≥ 1

1 for n = 0.

This leads to the PGF of generalized Sibuya distribution GS0(α, k), given in Proposition

2.10. In case of (shifted) Sibuya distribution GS0(α, 0), the function (3.7) reduces to

(3.9) φX(t) =
1− tα

1− t
, t ∈ R+,

which can also be recovered from the PGF of N ∼ GS0(α, 0) via φX(t) = GN (1 − t).

However, if N ∼ GS1(α, 0) with the PGF (2.2), then GN (1 − t) does not lead to a valid

Laplace transform, as noted by Satheesh and Nair (2002).

3.2. Randomly mixed geometric variable. Our second representation shows that a

generalized Sibuya distribution can be thought of as a mixed geometric distribution. The

result below, which follows from the theory of generalized hypergeometric distributions of

Type B3 [see, e.g, Sibuya (1979), Sibuya and Shimizu (1981)], can be proven directly from

the representation (3.3) and standard conditioning arguments.
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Proposition 3.5. Let Y have a beta distribution with parameters α and β = 1 − α + k,

where k ∈ N0 and 0 < α < k + 1. Further, assume that, conditionally on Y = p, N has a

geometric distribution with parameter p, i.e.

(3.10) P(N = n|Y = p) = p(1− p)n, n ∈ N0.

Then, unconditionally, N ∼ GS0(α, k).

Remark 3.6. The GS1(α, k) version of generalized Sibuya distribution is also mixed geo-

metric with the same stochastic probability of success, but with a shifted-by-one version

of the geometric variable.

Remark 3.7. This result can aid derivation of properties of generalized Sibuya distribution,

such as its moments, by “mixing” the corresponding results for geometric distribution.

3.3. Discretization scheme. A generalized Sibuya variable arises also by a discretization

scheme of the form N = [W ], where a discrete counterpart of a continuously distributed W

is the integer part of W . A discrete counterpart of exponential distribution in this scheme

is a geometric variable, while discretization of continuous Pareto II (Lomax distribution)

leads to discrete Pareto distribution [see, e.g., Buddana and Kozubowski (2014)].

Proposition 3.8. If W is a mixed exponential variable of the form

(3.11) W
d
=

E

Vα,k
,

where E and Vα,k are independent, E is standard exponential, and Vα,k has the PDF

(3.12) g(x) =
k!e−kx

Γ(α)Γ(1− α+ k)
(ex − 1)α−1, x ∈ R+ (k ∈ N0, 0 < α < k + 1),

then N = [W ] ∼ GS0(α, k).

4. Divisibility properties

4.1. Infinite divisibility. Recall that a random variable X (and its distribution) is in-

finitely divisible (ID) if for each n ∈ N it can be decomposed into the sum

(4.1) X
d
= Xn,1 + · · ·+Xn,n
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of IID random variables {Xn,j} (1 ≤ j ≤ n). Further, an integer-valued random variable

X supported on N0 is discrete infinitely divisible if it is ID and the variables {Xn,j} in

(4.1) are integer-valued and supported on N0 as well. It is well-known that (shifted)

Sibuya distribution GS0(α, 0) is discrete ID [see, e.g., Christoph and Schreiber (2000)],

implying that Sibuya distribution GS1(α, 0) is ID (but not discrete ID). Similar properties

hold for generalized Sibuya distribution, and follow from their representations as mixtures

of geometric distributions, as the latter are ID [see, e.g., Steutel and van Harn (2004),

Theorem 7.8, p. 381]. The following result summarizes these facts.

Proposition 4.1. If N ∼ GS0(α, k), then the distribution of N is discrete ID (and thus

ID). Further, the distribution of N + 1 ∼ GS1(α, k) is ID (but not discrete ID).

This property allows us to build a continuous-time discrete-value stochastic processes

based on the generalized Sibuya distribution. In particular, we can define a Lévy motion

{N(t), t > 0}, a process with stationary, independent increments, whereN(1) isGS0(α, k)

with PGF G given by (2.13), and, for each t > 0, the PGF of N(t) is Gt.

4.2. Self-decomposability. A discrete-valued random variable N supported on N0 is

discrete self-decomposable (DSD) if for each c ∈ (0, 1) it can be decomposed as

(4.2) N
d
= c�N +Nc,

where the variable Nc is also discrete-valued and supported on N0, and is independent

of c � N [see, e.g., Steutel and van Harn (1979)]. The dot product c � N is the discrete

multiplication (also known as thinning), defined as

(4.3) c�N d
=

N∑
j=1

Ij , c ∈ (0, 1),

where the {Ij} are IID Bernoulli variables with parameter c, independent of N . In terms

of the PGFs, the condition (4.2) can be stated as

(4.4) GN (s) = GN (1− c+ cs)Gc(s), s ∈ (0, 1),

where GN is the PGF of N , GN (1 − c + cs) is the PGF of the dot product (4.3), and

Gc is the PGF of Nc. It was shown by Christoph and Schreiber (2000) that the (shifted)
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Sibuya distribution GS0(α, 0) is DSD for each α ∈ (0, 1). The following result provides an

extension to the generalized Sibuya case.

Proposition 4.2. If N ∼ GS0(α, k), then the distribution of N is discrete self decompos-

able.

Remark 4.3. Let us note that if N ∼ GS1(α, k) then N is not DSD, since P(N = 0) = 0.

In particular, Sibuya distribution (1.8) is not DSD. However, for c ∈ (0, 1), the scaled

Sibuya variable

(4.5) N (c) d
= c�N,

where N ∼ GS1(α, 0), may be DSD, depending on the value of c. Indeed, as shown in

Christoph and Schreiber (2000), the variable (4.5) is DSD if and only if

0 < c ≤
(

1− α
1 + α

)1/α

.

Moreover, it is also shown in Christoph and Schreiber (2000), that N (c) is (discrete)

infinitely divisible if and only if 0 < c ≤ (1− α)1/α.

4.3. Invariance properties. In this section we present an important new characteriza-

tion of the Sibuya distribution, which is connected with the thinning operation (4.3) and

(partially) explains the characterization of this distribution stated in Proposition 1.2. Let

N have Sibuya distribution GS1(α, 0), given by the PMF (1.8). As been observed by

several authors [see, e.g., Christoph and Schreiber (2000)], the probability distribution

corresponding to the scaled Sibuya variable N (c), defined by (4.5), is a mixture of a point

mass at zero (with probability 1− cα) and the original distribution of N (with probability

cα). In other words, we can write

(4.6) c�N d
= I(c) ·N, c ∈ (0, 1),

where I(c) is a Bernoulli random variable with parameter pc = cα, independent of N .

A natural question is whether the property (4.6) is unique to Sibuya distribution, that

is whether there is any other variable N supported on N for which we have (4.6) with

some pc ∈ (0, 1). As shown below, there is no such distribution other than the Sibuya

distribution.
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Proposition 4.4. If a random variable N supported on N satisfies the relation (4.6),

where I(c) is a Bernoulli random variable with some parameter pc ∈ (0, 1), independent of

N , then N must have Sibuya distribution GS1(α, 0) and pc = cα.

Observe that whenever we have (4.6), then for n ∈ N

(4.7) P(c�N = n|c�N > 0) =
P(I(c) ·N = n)

P(I(c) ·N > 0)
=

P(I(c) = 1)P(N = n)

1− P(I(c) = 0)
= P(N = n),

so that

(4.8) c�N |c�N > 0
d
= N, c ∈ (0, 1).

In other words, the distribution of the thinned random variable c � N , conditioned on

being positive, is the same as that of N , regardless of the thinning parameter c ∈ (0, 1).

Note that, for c ∈ (0, 1) and any integer-valued variable N supported on N0, we have

P(c � N = 0) = GN (1 − c) = 1 − P(c � N > 0). Thus, if an integer-valued variable N

supported on N satisfies (4.8), then it also satisfies (4.6) with

(4.9) pc = P(I(c) = 1) = 1−GN (1− c), c ∈ (0, 1).

Thus, in view of Proposition 4.4, the only distributions that are stable with respect to the

operation of thinning, in the sense of (4.8), are Sibuya distributions.

Corollary 4.5. Within the class of all probability distributions supported on N, the stabil-

ity property (4.8) is unique to Sibuya distributions GS1(α, 0), defined by the PMF (1.8).

Let us relate these properties to the characterization of the Sibuya distribution given

in Proposition 1.2. Consider again the pure death process (1.12), connected with the

population of N individuals, whose lifetimes {Xj} are IID with the common CDF F . In

terms of the operation of thinning, we have

(4.10) N(t)
d
= c(t)�N,

where c(t) = P(Xj > t) = 1−F (t) is a function on R+ with the range coinciding with the

interval (0, 1). In view of this, the condition (1.13) is essentially a restatement of (4.8),

which, according to Corollary 4.5, is known to characterize the Sibuya distribution.
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5. A Sibuya random process on [0, 1]

The Sibuya distribution with parameter α less than one arises as the marginal distri-

bution of the Sibuya random process that we define as follows. Consider a sequence of IID

uniform random variables Un, n ∈ N, and set

(5.1) N(t) = min{n ∈ N0 : nUn ≤ t}, t ∈ [0, 1],

with the convention that the minimum over an empty set is infinity, so that N(0) = ∞.

Since for each n ∈ N we have P(nUn ≤ t) = t/n, the variable N(t) has the Sibuya

distribution GS1(α, 0) given by the PMF (1.8) with α = t.

This process can be conveniently described throughout the classical concept of records.

Let x = {xn}, n ∈ N, be a sequence of positive numbers, and consider the pairs

(ki, ri) = (ki(x), ri(x)), i ∈ N,

where the ki is the time (index) at which the ith record occurs among the {xi}, while

ri = xki is the size of that record. Here, a value that is smaller than all the previous

values sets a new record, and x1 is also considered to be a record, so that k1 = 1 and

r1 = x1. Further, assume that x1 ≤ 1, so that all the {ri} are smaller than one (while the

{xi} are not required to be such). Moreover, let δi = ri−1− ri (with r0 = 1) represent the

differences between successive record values and let τi = ki − ki−1 (with k0 = 0) be the

inter-arrival times between successive records. Under this notation, define

(5.2) Nx(t) = 1 +
∞∑
i=1

τi+1I(t,1](ri), t ∈ [0, 1],

where, as before, IA is an indicator function of the set A.

Clearly, the N(t) defined by (5.1) is the same as the Nx(t) above if we take x = {nUn}.

We see that, looking from right to left, the random process N(t) initially “starts” with

the value of one at t = 1 and then jumps up at every record value ri, with the size of the

jump being τi+1. Further, by the definition of the process, the values of N(t) are constant

on the intervals [rn, rn−1), and N(rn) = kn. The following result provides basic properties

of the Sibuya random process {N(t), t ∈ [0, 1]} discussed above.
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Proposition 5.1. For each t ∈ [0, 1], the marginal distribution N(t) is Sibuya given

by (1.8) with α = t. Further, N(t) is a right-continuous, pure jump, and non-increasing

random process. Moreover, for any δ ∈ (0, 1), the number of jumps is finite on the interval

[δ, 1] and infinite on the interval [0, δ].

Remark 5.2. One application of the Sibuya process is a construction of an extremal process

on [0, 1] (and beyond) via Proposition 1.1, as discussed in Kozubowski and Podgórski

(2016). For example, if {Xn} is a sequence of IID random variables with the common

CDF F and we let

(5.3) Y (t) =

N(t)∧
n=1

Xn, t ∈ [0, 1],

where N(t) is the Sibuya process defined above, independent of the {Xn}, then the CDF

of Y (t) is given by F t for each t ∈ [0, 1]. This extends the notion of an extreme value of

n IID random variables to fractional values of n.

We now look at the sample path structure of the Sibuya process. For convenience, we

will look at a time-reversed process S(t) = N(1 − t), as it is more natural to follow the

evolution of the sample paths from left to right. In Figure 1, we schematically present a

part of a sample path of S(t).

By Proposition 5.1, S(t) is a pure-jump process whose sample paths (which start at

S(0) = 1 almost surely) are continuous from the left and non-decreasing. We already

know from the above construction, that the jumps of this process and the waiting times

between them, are closely related to record inter-arrival times and record sizes connected

with a random sequence {nUn}. Here, the locations of the jumps occur at an increasing

sequence {Ti}, where Ti = 1−Ri and the Ri is the location of the ith jump of the process

N(t) (counted from right to left). Our first result describes the joint distribution of the

locations of the jumps.

Proposition 5.3. Let S(t) = N(1− t), where {N(t) t ∈ [0, 1]} is a Sibuya process defined

by (5.1), and let {Γn} be the successive arrival times of a standard Poisson process. Then

for each n ∈ N we have

(5.4) (T1, . . . , Tn)
d
= (H(Γ1), . . . ,H(Γn)),
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Figure 1. A schematic sketch of an individual sample of the Sibuya pro-

cess S(t). The horizontal lines represent the values of nUn, with the

doted lines marking records at which the process jumps. Three locations

(T1, T2, T3) and corresponding jumps (J1, J2, J3) are shown and the trajec-

tory is marked by a thick line. The arrows indicate that the lengths of lines

extend beyond the figure due to large values of nUn and the jumps size J3.

where 0 < T1 < · · · < Tn < 1 are the (random) locations of the first n jumps of S(t) and

H is the CDF of standard exponential distribution.

Remark 5.4. It follows that the location of the first jump of the process S(t) has a standard

uniform distribution, while for n ≥ 2 the joint distribution of the locations of its first n

jumps is given by the PDF

(5.5) g(t1, . . . , tn) =
1

(1− t1)(1− t2) · · · (1− tn−1)
, 0 < t1 < · · · < tn < 1.

An equivalent description of this is through the conditional distributions: for each n ∈ N,

the conditional distribution of Tn given the n − 1 values 0 < t1 < · · · < tn−1 < 1 of

the previous jump locations has a uniform distribution on the interval (tn−1, 1). This

distribution is known as random division of the unit interval.
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Remark 5.5. It follows that if the time has not been reversed, the jumps of the Sibuya

process (5.1), when viewed from right to left, occur at the points exp(−Γn), n ∈ N. More-

over, if the time line is stretched to (0,∞) via logarithmic transformation t→ − log(1− t),

the locations of the jumps of S(t) will coincide with those of the standard Poisson process.

Our final result, concerning the joint conditional distribution of the jump sizes and

their locations, shades light on the probabilistic structure of the time-reversed Sibuya

process. Using the above notation connected with the record process, we shall look at the

evolution of the sequence of random points (Ti,Ki), i ∈ N, where Ki is the time of the

ith record connected with the sequence {nUn}. As illustrated in Figure 1, S(t) is a pure

jump process started at S(0) = 1, with the first jump occurring at the random location T1.

Regarding the first random point (T1,K1), we have K1 = 1 and, by Proposition 5.3, the

variable T1 is standard uniform. We now consider the second pair (T2,K2), conditioned

on the event B1 = {T1 = t1,K1 = 1}, and consider the joint distribution of (T2, J2), where

J2 = K2 −K1 is the size of the jump of S(t) at t = t1. By the construction of the process

S(t), for t1 < t < 1 we have

P(T2 > t, J2 = n|B1) = P(2U2 > 1− t1, . . . , nUn > 1− t1, (n+ 1)Un+1 < 1− t)),

so that

(5.6) P(T2 > t, J2 = n|B1) = p(r1, 1, n)
1− t
1− t1

,

where r1 = 1− t1 and

(5.7) p(r, k, n) =

(
1− r

k + 1

)
· · ·
(

1− r

k + n− 1

)
r

k + n
, n ∈ N,

represents the probability P(S = n) with S ∼ GS1(r, k). In view of (5.6) and the fact

that the fraction on the right-hand-side in (5.6) is the probability P(T2 > t|T1 = t1), we

conclude that, conditioned on B1, the variables T2 and J2 are independent, with the latter

having the generalized Sibuya distribution GS1(1− t1, 1). These calculations extend in a

straightforward way beyond the second pair (T2, J2), leading to the following result.
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Proposition 5.6. In the above setting, conditioned on Bn = {T1 = t1, . . . , Tn = tn,K1 =

k1, . . .Kn = kn}, the variables Tn+1 and Jn+1 are independent, with Tn+1 having uniform

distribution on (tn, 1) and with Jn+1 ∼ GS1(1− tn, kn).

According to the above result, the conditional distributions of the jumps of the time-

reversed Sibuya process S(t) have generalized Sibuya distributions.

6. Appendix

Proof of Proposition 1.2. Suppose that, for some α ∈ (0, 1), N has Sibuya distribution

GS1(α, 0), given by the PMF (1.8). Then, for each t ∈ R+, the value of the process N(t)

defined by (1.12) admits the stochastic representation (4.10), where c(t) = P(Xj > t).

Since N is Sibuya, we also have (4.6) with c = c(t), which, in turn, implies (4.7). Thus

N(t) satisfies (1.13), as desired. Next, assume that N(t) satisfies equation (1.13). Thus,

for each t ∈ R+, we have

(6.1) P(X(t) = n) = P(N = n)P(X(t) > 0), n ∈ N.

Using standard conditioning argument, write

(6.2) P(X(t) = n) =
∞∑
k=1

P(X(t) = n|N = k)P(N = k).

Noting that for k < 0 we have P(X(t) = n|N = k) = 0 while for k ≥ n the variable

X(t) = n|N = k is binomial with parameters k and p = 1− F (t), where F is the CDF of

the {Xj}, we conclude that

(6.3) P(X(t) = n) =
∞∑
k=n

(
k

n

)
[1− F (t)]n[F (t)]k−nP(N = k), n ∈ N, t ∈ R+.

For n = 0, equation (6.2) shows that

(6.4) P(X(t) = 0) =
∞∑
k=1

[F (t)]kP(N = k), t ∈ R+.

We now write s = F (t) ∈ (0, 1) and pn = P(N = n) and substitute (6.2) and (6.4) into

(6.1), which results in the following equation

(6.5) (1− s)n
∞∑
k=n

(
k

n

)
sk−npk = pn

(
1−

∞∑
k=1

skpk

)
, n ∈ N, s ∈ (0, 1).
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Further, by expanding the term (1 − s)n into a power series in s and changing the index

of the summation on the left-hand-side of (6.5) to j = k − n, we conclude that

(6.6)

{
n∑
k=0

(
n

k

)
(−1)ksk

}
·


∞∑
j=0

(
j + n

n

)
pj+ns

j

 = pn−
∞∑
j=1

pjpns
j , n ∈ N, s ∈ (0, 1).

Using standard result for power series, stating that the coefficients ck of the product

(6.7)
∞∑
k=0

cks
k =

{ ∞∑
i=0

ais
i

}
·


∞∑
j=0

bjs
j


are given by

ck =
k∑
i=0

aibk−i,

following some algebra, we conclude the left-hand-side of (6.6) is of the form (6.7) with

(6.8) ck =

k∑
j=0

(
n

j

)(
k − j + n

n

)
pk−j+n(−1)j , 0 ≤ k ≤ n, n ∈ N.

Thus, in view of the above coupled with (6.6), and by the uniqueness of the power series,

we conclude that

(6.9)
k∑
j=0

(
n

j

)(
k − j + n

n

)
pk−j+n(−1)j = −pkpn, 1 ≤ k ≤ n, n ∈ N.

In particular, for k = 1, relation (6.9) reduces to

(6.10) (n+ 1)pn+1 − npn = −p1pn, n ∈ N,

leading to

(6.11) pn+1 =
(n− p1)pn
n+ 1

, n ∈ N.

It now follows by induction that the {pn} coincide with Sibuya probabilities (1.8), where

α = p1 = P(N = 1). This concludes the proof.

Proof of Proposition 2.3. Since, in view of (2.5), the results of Proposition 2.3 and Corollary

2.5 are equivalent, it is enough to establish (2.9). First, by incorporating the well-known

property of the gamma function,

(6.12) Γ(η + k) = Γ(η)η(η + 1) · · · (η + k − 1), η ∈ R+, k ∈ N,
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the generalized Sibuya SF (2.4) can be written as

(6.13) P(N > n) =
1

nα
Γ(k + 1− α+ n)

Γ(n)nk+1−α
Γ(n)nk+1

Γ(n+ k + 1)

Γ(k + 1)

Γ(k + 1− α)
.

Next, since for any γ > 0 we have

Γ(γ + n)

Γ(n)nγ
→ 1 as n→∞,

the right-hand-side of (6.13) divided by the right-hand-side of (2.9) converges to 1 as

n→∞, as desired.

Proof of Proposition 2.10. By Proposition 3.1, the PGF of N is given by (3.6), where

φN (·) is the LT of the variable X defined in (3.1). To prove the result, it is enough to

show that the LT of X is given by (3.7). To establish the latter, we condition on Tα,k

when computing the LT of X, leading to

φX(t) =

∫ ∞
0

Ee−tE/xf(x)dx,

where f(x) is given in (3.2) and E is standard exponential with the LT

Ee−tE =
1

1 + t
, t ∈ R+.

Thus, after some algebra, we obtain

φX(t) =
k!

Γ(α)Γ(1− α+ k)

∫ ∞
0

xα

(t+ x)(1 + x)k+1
dx.

The result now follows by the integration formula 6 on p. 321 of Gradshteyn and Ryzhik

(2007) with ν = α+ 1, n = 1 + k, γ = 1, and β = t.

Proof of Proposition 3.1. It is known [see, e.g., Devroye (1993)] that the generalized

hypergeometric distribution of Type B3, given in (3.3) with X as in (3.5), is of the form

(6.14) P(N = n) =
Γ(a+ c)Γ(b+ c)Γ(a+ n)Γ(b+ n)

Γ(a)Γ(b)Γ(c)Γ(a+ b+ c+ n)n!
, n ∈ N0.

Setting a = 1, b = 1− α+ k, and c = α in (6.14) produces the GS0(α, k) distribution.

Proof of Proposition 3.8. We proceed by showing that the PMF of the variable [W ] coin-

cides with that of the GS0(α, k) distribution. First, using standard conditioning argument,
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write

(6.15) P([W ] = n) =

∫ ∞
0

P([E/x] = n)g(x)dx, n ∈ N0,

where E is unit exponential and g is the PDF of Vα,k, given by (3.12). Since

P([E/x] = n) = P(nx ≤ E < (n+ 1)x) = e−nx − e(n+1)x,

the probability (6.15) takes on the form

(6.16) P([W ] = n) =
k!

Γ(α)Γ(1− α+ k)
{Ik+n(α)− Ik+n+1(α)} ,

where

(6.17) Ik(α) =

∫ ∞
0

e−kx(ex − 1)α−1dx, k ∈ N0, 0 < α < k + 1.

Noting that the function g(·) in (3.12) is a genuine PDF for each k ∈ N0 and 0 < α < k+1,

we conclude that

(6.18) Ik(α) =
Γ(α)Γ(1− α+ k)

k!
, k ∈ N0, 0 < α < k + 1.

A substitution of (6.18) into (6.16), followed by some algebra, produces the GS0(α, k)

distribution. This concludes the proof.

Proof of Proposition 4.2. To prove the result, we shall use the following sufficient condition

for this property to hold [see, Bondesson (1992), p. 28]: A strictly decreasing PMF {pn},

n ∈ N0, is DSD if

(6.19) max
0≤n≤j

pn+1

pn
≤ j + 2

j + 1

pj+1 − pj+2

pj − pj+1
, j ∈ N0.

First, we shall show that generalized Sibuya PMF is strictly decreasing in n. To see this,

note that the ratio

(6.20)
pn+1

pn
=

P(N = n+ 1)

P(N = n)
=
k + n+ 1− α
k + n+ 2

, n ∈ N0,

is strictly increasing in n ∈ N0. Indeed, the derivative of the function

(6.21) g(x) =
k + 1− α+ x

k + 2 + x
, x ∈ R+,

is positive for all x ∈ R+, which can be checked by straightforward algebra. Since the ratio

(6.20) converges to 1 as n → ∞, we conclude that pn+1/pn < 1 for all n ∈ N0, showing
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the monotonicity of the sequence {pn}, n ∈ N0. This also shows that the maximum on

the left-hand-side of (6.19) is attained for n = j, so that the condition (6.19) becomes

(6.22)
pj+1

pj
≤ j + 2

j + 1

pj+1 − pj+2

pj − pj+1
, j ∈ N0.

After some algebra, condition (6.22) can be re-stated as

(6.23) (j + 1)

(
1− pj+1

pj

)
≤ (j + 2)

(
1− pj+2

pj+1

)
, j ∈ N0.

Since

(6.24) (j + 1)

(
1− pj+1

pj

)
=

(j + 1)(1 + α)

k + 1 + (j + 1)
, j ∈ N0,

and the function

h(x) =
x(1 + α)

k + 1 + x
=

1 + α

1 + k+1
x

is non-decreasing in x ∈ R+, we obtain (6.23). This concludes the proof.

Proof of Proposition 4.4. According to the remarks following the statement of Proposition

4.4, condition (4.6) implies (4.8), which, in view of (4.10), is equivalent to (1.13). The

result now follows from Proposition 1.2.

Proof of Proposition 5.3. For n = 1, the statement is trivial. To prove the result for

general n ∈ N, it is enough to show that for each n ≥ 2, the conditional distribution of

Tn given the n − 1 values 0 < t1 < · · · < tn−1 < 1 of the previous jump locations has a

uniform distribution on the interval (tn−1, 1). Indeed, in this case the PDF of the joint

distribution of (T1, . . . , Tn) is easily seen to be given by (5.5). This, in turn, is the joint

PDF of the random vector on the right-hand-side of (5.4), as can be verified by standard

calculation.

To establish the above we start with n = 2, and consider the conditional probability

P(T2 > t|T1 = t1) for t1 < t < 1. Using the law of total probability we obtain

P(T2 > t|T1 = t1) =

∞∑
k=2

P(R2 < 1− t,K2 = k|R1 = r1),

where (Ki, Ri) are the random pairs of record times and their sizes (with Ri = 1 − Ti),

connected with the sequence {nUn} (as described in Section 5). Note that the probability
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under the above sum can be written in terms of the {Un} as

P(R2 < 1− t,K2 = k|R1 = r1) = P(2U2 > r1, . . . , (k − 1)Uk−1 > r1, kUk < 1− t),

or, equivalently, as

P(R2 < 1− t,K2 = k|R1 = r1) = p(r1, k)
1− t
r1

,

where

p(r1, k) =
(

1− r1
2

)
· · ·
(

1− r1
k − 1

)
r1
k
, k ≥ 2.

When compared with (1.7), the quantity p(r1, k) is recognized as the probability P(S =

k − 1), where S ∼ GS1(r1, 1). Consequently,

P(T2 > t|T1 = t1) =
1− t
r1

∞∑
k=2

p(r1, k) =
1− t
1− t1

,

since the probabilities above sum up to one. Since the quantity on the right-hand-side

above is the survival function of the uniform distribution on the interval (t1, 1), the result

holds for n = 2. The proof in the case k > 2 is similar. Under the same notation and

using again the law of total probability, we have

P(Tn > t|An−1) =
∞∑

k=n−1

∞∑
m=1

P(Tn > t,Kn = k+m|Kn−1 = k)P(Kn−1 = k), tn−1 < t < 1,

where An−1 denotes the condition T1 = t1, . . . , Tn−1 = tn−1. Similarly as before, the

conditional probabilities under the double sum above can be expressed as

P(Tn > t,Kn = k +m|Kn−1 = k) = p(rn−1, k,m)
1− t
rn−1

,

where

p(rn−1, k,m) =

(
1− rn−1

k + 1

)
· · ·
(

1− rn−1
k +m− 1

)
rn−1
k +m

, m ∈ N,

is recognized as the probability P(S = m) with S ∼ GS1(r1, k). Since these probabilities

sum up to one across the values of m ∈ N0, and so do the probabilities P(Kn−1 = k) across

the values of k ≥ n− 1, we obtain

P(Tn > t|An−1) =
1− t
rn−1

∞∑
k=n−1

P(Kn−1 = k)

∞∑
m=1

p(rn−1, k,m) =
1− t

1− tn−1
, tn−1 < t < 1.
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Since the quantity on the right-hand-side above is the survival function of the uniform

distribution on the interval (tn−1, 1), the result follows.
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A. Rényi, Vol. 3, pp. 50-65, Akadémiai Kiadó, Budapest.
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