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Abstract—We review the generalized Rice formula approach
to deriving long-run distributions of a variety of characteristics
defined at random events defined on a stochastic process. While
the approach stems from the same principle originally introduced
by Rice for the level crossing intensity in a random signal, we
show how it generalizes to more general contexts. Firstly, we
discuss events defined on random surfaces through crossing levels
of possibly multivariate valued stochastic fields. Secondly, the
dynamics is introduced by adding time argument and introducing
the concept of velocity measured at moving surface. Thirdly,
extensions beyond the Gaussian model are shown by presenting
effective models for sampling from the distribution of a non-
Gaussian noise observed at instances of level crossing by a process
driven by this noise. The importance of these generalizations for
engineering applications is illustrated through examples.

I. INTRODUCTION

In the physical world, a random function can be often
conveniently described as a sequence of local maxima or
minima, constituting a series of random waves. In fact, this is
not only the matter of visual representation of the process but
also many technologically important implications in such fields
as metal fatigue caused by random vibrations, failure caused by
excess load on a construction, etc., depend on the character of
the process represented in such a random wave form. Similarly,
random fields can be efficiently summarized by level crossing
contours and some local maxima inside of these contours. One
methodological approach to the so defined summaries of the
fields is through event based statistical distributions of the
stochastic process or field in hand. The basic (random) events
in this theory are level crossings and local extremes and the
central theoretical tool generalizations of the Rice formula.
The latter allows to obtain the distribution of the process at
the instants of level crossings or local extrema (which occur
at the zero-crossing of the derivatives). Generalizations of
the approach can go in several directions: multidimensional
extensions, dynamical evolutions for models in space and time,
more general than Gaussian models. All of them are of great
importance for engineering applications.

In particular, in ocean engineering, it is important to know
the joint distributions of characteristics for the apparent waves
in dynamical models of the sea surface elevation. One can eval-
uate such distributions for wave height, length and period and
study statistical properties of velocities both for the sea surface
and for the envelope field based on this surface, see [1], [2]. In
Figure 1, we see the definition of the wave characteristics based
on level crossing events for one dimensional records together
with the joint distribution of two characteristics computed by
the means of Rice formula.

o

o

o

o

H1

H2

H

T1T2

T

S2

S1

Fig. 1. Events defining wave characteristics for temporal record of the sea
surface (left) and the joint distributions (right) of the crest height H1 and
half-period T1 computed by means of the generalized Rice formula. The
distributions are obtained for a Gaussian sea modeled by a spectrum obtained
from an actual sea elevation record. Dots represent empirical values of T1 and
H1 observed in the record.

The events can be defined by some non-linear functionals
of a process. For example, the envelope process that wraps
smoothly around the original process is convenient to study
extremes or wave groups. The method was applied to the
envelope, yielding the upper bound for the distribution of the
maximum of a process and summarizing differences between
individual waves and wave groups, see [3].

The most common applications are based on the Gaussian
or closely related models. However, a variety of asymmetries is
frequently observed in stochastic records. These asymmetries
among other things can indicate that the underlying process
is no longer Gaussian for which there is distributional sym-
metry both in time and in space. These asymmetries can
be summarized by measures that are motivated by Rice’s
formula for crossing level distributions of the slope, see [4].
In Figure 2, we present a trajectory of a Gaussian (left) and
non-Gaussian moving average process together with the zero
crossing distribution and the crossing level distributions of the
slope as a function of the level. It is well known that for
the Gaussian process, the slope at a crossing level has the
Rayleigh distribution and it does not depend on the level of
the crossing, as seen in the figure. This is non longer true for
non-Gaussian processes as clearly seen in the left hand side
graphs. Notably, the covariance functions of both the processes
are the same, as they are all moving averages with the shown
kernel. Through this approach one can demonstrate not only
distributional skewness but also more complex geometrical
asymmetries in sample paths such as tilting, front-back slope
asymmetry and time irreversibility. Non-Gaussian processes
that exhibit such asymmetries find applications to model road
topography and, in particular, the road surface roughness, [5].
The Slepian model for the non-Gaussian road profile can be



Fig. 2. Crossing distributions of the slope at the level crossings of Gaussian
and non-Gaussian moving averages with the kernel shown in the upper-left
corner of the graphs. The second process is driven by an asymmetric Laplace
noise. Trajectories are shown in the top graphs. In the middle ones the
empirical zero crossing distribution is compared with the one computed using
the Rice’s formula. The bottom-right graph shows asymmetries at different
crossings level that are not present in the Gaussian case (left).

derived which accurately describes the response of a vehicle
encountering extreme transients in the road profile, [6].

In this paper, an account of the recent advances in comput-
ing level crossing distributions is presented and illustrated by
a number of applications to engineering sciences. The paper is
starting with an introductory section presenting the generalized
Rice formula. It is followed by two sections which demon-
strates its applicability to different contexts. In the first section,
the multivariate events for randomly evolving spatial surfaces
are discussed with the emphasize on velocity distributions.
The method is illustrated by velocity distribution of waves and
group waves observed at the sea surface. The second section
presents an approach to event based distributions for models
involving non-Gaussian moving average. An application to
models of the road surface and vehicle responses is presented
to illustrate the effect of non-gaussianity.

II. RICE’S FORMULA AND ITS GENERALIZATION

It is a somewhat surprising and often confusing fact that if
one samples observations of a stationary stochastic process
W (p) only at points p at which W (p) equals zero, the
obtained distribution is not equal to the conditional distribution
of W given that W (0) = 0. This is due to the fact that
sampling at random events affects the distribution.

To discuss such a biased sampling distribution, first we
should find how many points p satisfying W (p) = 0 reside in
an area (volume) of the unit size. The answer is given by the
celebrated Rice formula, [7], [8]. Originally it was formulated
as a one dimensional version of the problem, i.e. when W
depended only on one variable, say, x.

Here and in the rest of the paper process W is assumed
to be ergodic. Let N(X) be the number of times W takes the

value zero in [0, X]. Then if X increases without bound, the
proportion of N(X) to the length X converges with probability
one to∫

|y|fẆ ,W (y, 0)dy = E
[
|Ẇ | W = 0

]
· fW (0), (1)

where fẆ ,W , fW are the density functions of (Ẇ ,W ) and W ,
respectively. The above formulation is a combination of the
ergodic theorem and the original Rice formula, which states
that the average number of crossing N(1), i.e. E(N(1)) equals
the right hand side of (1).

More generally, for the number N(X,A) of times the
process W takes value zero in [0, X] and at the same time
has a property A:

lim
X→∞

N(X,A)

N(X)
=

E
[
{W ∈ A}|Ẇ | W = 0

]
E
[
|Ẇ | W = 0

] , (2)

where the set {W ∈ A} is identified with its indicator func-
tion. Consequently, the right hand side represents the biased
sampling distribution when sampling is made over the 0-level
contour C0. We denote this distribution by P (W ∈ A C0) =
P (W (x+ ·) ∈ A x ∈ C0) and refer to it as the distribution of
W on the contour C0.

These concepts extend to the vector valued and vector
argument setup. Namely, the biased distribution of a vector
valued field V(p), with the biased introduced by the vector
field W(p) is denoted by P(V(p) ∈ A p ∈ Cw} on the
contour Cw = {p : W(p) = w}.
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Fig. 3. (Left) Unbiased sample of velocities on the sea surface. (Right) Biased
sample of velocities along the level crossing contours vs. unbiased sample.
Here the level crossing contour is presented at the initial time 0 and then at
the time dt. (The scale of axes on both the pictures is in meters, velocities
are rescaled for clarity.)

The significance of this distribution follows from its in-
terpretation, which is along the same argument as in the one
dimensional case. The distribution represents the average size
of the part of Cw on which V ∈ A divided by the average
size of the entire Cw. By the ergodic theorem, the so-defined
distribution coincides with the limiting statistical distribution
of V sampled on the contour Cw over a large region.

The sampling interpretation in the multivariate case can be
illustrated using the Gaussian model of sea surface W (p, t).
The time variable t is considered to be fixed and thus by
stationarity it can be set to zero. For this reason and for
simplicity, it is dropped from the notation. The sea surface



W (p) (at time zero) is taken to be the process used in defining
contour Cw. The distributions of the properly defined velocity
V(p) in the gradient direction are of interest, see [2] for the
velocity definition.

In Figure 3(Left), an unbiased sample of velocities recorded
on the entire field is presented, that could be used to estimate
P(V(p) ∈ A). In Figure 3(Right), an example of a biased
sample is presented by velocities sampled along the contour
C0 = {p : W (p) = 0} of the fixed (zero) sea level. The
sample distribution of the velocity vectors obtained along this
contour represents (approximately if the area is large enough)
the biased sampling distribution that could be used to estimate
P(V(p) ∈ A p ∈ C0). As pointed in the above discussion,
the two distributions of V are different.

Our aim is to present techniques for expressing sampling
distributions in terms of the theoretical distribution of the
involved processes that are based on a generalized multivariate
Rice formula to which we turn next.

A. Generalized Rice formula

There exists vast literature on various generalizations of the
Rice formula, see [9], [10], [11], [12] and references therein.
Here we present only a generic formulation in the most general
form and we refer to the literature for proofs and technical
assumptions.

Consider a pair of jointly stationary stochastic processes
V(p), W(p), p ∈ Rk, taking values in Rm and Rn, re-
spectively. Assume that n ≤ k and from now on treat them
as fixed. Further let V stand for the relative volume in Rk
of the dimension k − n (V represents the length of a set if
k = 3 and the area if n = 2, while for n = 3 it simply
counts points in a set). The distribution of V(p) on the contour
Cw = {p ∈ [0, 1]2 : W(p) = w} is given by

P(V(p) ∈ A p ∈ Cw)
def
=

E [V {p ∈ Cw : V(p) ∈ A}]
E [V (Cw)]

A generalized Rice formula is utilized to compute this
distribution. Let W(p) have continuous finite dimensional
distributions and let fW(0)(w) be the density of W(0). Let
Ẇ(p) be the matrix of partial derivatives of W(p) (which are
assumed to exist). The generalized determinant of this matrix
is denoted by

∣∣∣Ẇ(p)
∣∣∣. This allows us to write a generic form

of the Rice formula as

E [V {p ∈ Cw : V(p) ∈ A}] =

= E
(
{V(0) ∈ A} ·

∣∣∣Ẇ(0)
∣∣∣ W(0) = w

)
fW(0)(w).

Notice that if the joint density of V, W, Ẇ is available,
which is always the case in this paper, the right hand side can
be written simply in the form of an integral and the biased
sampling distribution can be written as

P(V(p) ∈ A p ∈ Cw) =

=

∫
A

∫
fV,Ẇ,W(v, ẇ,w) · det ẇ dẇdv∫
fẆ,W(ẇ,w) · det ẇ dẇ

. (3)

Several aspect of this general formulation should be pointed
out. Firstly, the process V(p) can be vector valued or scalar,

for example m = 2 or m = 1. Secondly, the crossing contours
can be also considered multidimensional, unidimensional or
even zero-dimensional (points). Thus, in the case of sampling
on a level crossing contour of two dimensional surface W (p),
n = 1 and k = 2. The determinant is then equal to

∣∣∣Ẇ∣∣∣ =√
W 2
x +W 2

y and V measures the length of the contour on the
plane. The sampling at level crossing points of, say, W (x, 0),
i.e. along the line y = 0, corresponds to n = 1 and k = 1. The
determinant is then simply equal to |Wx(x, 0)| and V counts
the number of level crossing points along the line y = 0.
Sampling is at the so-called specular points, i.e. points for
which (Wx(p),Wy(p)) takes a specified value, implies that
n = 2 and k = 2 and the generalized determinant of the 2× 2
matrix of partial derivatives equals to |WxxWyy −W 2

xy| with
V counting points on the plane. Thirdly, the distribution of
the underlying process does not need to be Gaussian and the
formula can be utilized as long as we can evaluate the right
hand side of (3).

These three types of biased sampling distributions can be of
special interest for certain applications, which can be dictated
by the nature of the problem in hand. However here they were
chosen mainly to illustrate techniques of deriving theoretical
forms of distributions sampled at various cases of contours.
The derivation should help to approach problems of finding
sampling distributions on contours in many other multivariate
situations of practical interest.

III. EVENTS FOR DYNAMICALLY VARYING SPATIAL
FIELDS

Sea surface elevation, atmospheric pressure, air pollution
are examples from a variety of phenomena which can be
modeled as a random two-dimensional field evolving in time.
For such models it is of interest to describe statistical properties
of the motions observed on the surface. This can be best
achieved by studying appropriately defined velocities.

A. Velocity in the gradient direction

While there are many different ways of observing motion
of a surface, here we focus on the velocity defined for crossing
contours moving in the direction of the gradient of the surface,
see [2] and the references therein. In this section, W (p, t)
represents moving surface at point p and time t.

Definition 1: The velocity in the direction of gradient is
denoted by Vgr = Vgrnβ , and is given by[

Wx Wy

−Wy Wx

]
Vgr = −

[
Wt

0

]
. (4)

This is the velocity in the variable direction between the
gradient and the x-axis. We discuss distributions obtained by
sampling over the entire field W (p, t), i.e. unbiased sampling
distributions as well as distributions obtained by sampling at
Cw = {p : W (p, t) = w}.

The following vector, called principal velocity, enters as
an important parameter

vmax =

[
−λ101/λ200

−λ011/λ020

]
, (5)



where spectral moments λijk are defined as

λijk = 2

∫
Λ+

λi1λ
j
2λ
k
3 S(λ1, λ2, λ3)dλ1 dλ2 dλ3,

with Λ+ =
{

(x1, x2, x3) ∈ R3 : x3 ≥ 0
}
.

Next, the parameter γ =
√
λ020/λ200 which could be

referred to as short-crestedness, equals the square root of the
ratio of the intensities of zero-crossings along the y-axis and
along the x-axis. We have γ = 0 for long-crested sea and
γ = 1 for the most irregular, sometimes called short-crested
or “confused” sea. The distributions of Vgr are given in the
next result.
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Fig. 4. (Left) The biased joint density of β and Vgr for the directional
Gaussian sea. The isolines are drawn at the levels: 0.025, 0.01, 0.005, 0.001,
0.0005.. (Right) The conditional densities of Vgr given β = 0, π/2 for the
biased (dashdot) and unbiased (solid) case.

Proposition 1: The speed Vgr in the direction of the gra-
dient has distribution

vTmaxnβ+

+ T

√
λ002

λ020
− λ2

101

λ020λ200
− λ2

011

λ2
020

√
γ2 cos2 β + sin2 β,

where
√
nT is t-distributed with n degrees of freedom and is

independent of β. In the case of unbiased sampling distribu-
tion, n = 2 and β has the density

1

2π

γ

γ2 cos2 β + sin2 β
,

For the case of biased sampling on Cw, n = 3 and β has
density

γ2

4E(
√

1− γ2)

1(
γ2 cos2 β + sin2 β

)3/2 ,
where −π < β ≤ π and the Legendre elliptic integral E(k) =∫ π/2

0

√
1− k2 sin2 β dβ.

B. Envelope velocity

It should be noted that in the previous section we con-
sidered the velocity along a line with random azimuth. One
can also consider a specified fixed direction and ask about
velocity of moving in this direction. We apply this approach
to illustrate difference in dynamics of a random field and its
envelope defined as E =

√
W 2 +W 2

H , where WH is the

Hilbert transform of W , see Figure 5 for illustration and [3]
for further details.

We are interested in the statistical distribution of V when
measured at an arbitrarily selected point on the sea as well
as the so-called biased distribution obtained by measuring this
velocity on the fixed level contour. It is well known that these
two distributions are essentially different, the first one is simply
the distribution of random variable V while the second one
has to be computed with a use of generalized Rice’s formula.
Relatively straightforward although tedious calculations [see
Baxevani et al. (2002)] lead to the following form of the
distributions of velocity V in the direction of the line y = 0:

−a ·
(
b+

√
c · d− e2

X

Y

)
,

a =
1

λ200 − λ2
100/λ000

, b = λ101 − λ100λ001/λ000,

c = λ200 − λ2
100/λ000, d = λ002 − λ2

001/λ000,

e = λ101 − λ100λ001/λ000,

variables X and Y are independent, X having the standard
normal distribution while the distribution of Y is

a) the standard normal if we deal with the unbiased
sampling,

b) the Rayleigh distribution if we deal with the biased
sampling distribution of velocity V sampled at points (p, t)
such that E(p, t) = u.

For comparison, the analogous velocity of the sea surface
has the same form but with the constants a = 1/λ200, b =
λ101, c = λ200, d = λ002, and e = λ101.
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Fig. 5. (Left) Envelope process in space an in time. (Right) Velocities in
along the principal wave direction for waves and wave groups.

C. Illustration

In this section, we illustrate the distributions derived in
the previous section. We consider directional Gaussian sea
given by the directional spectrum S(ω, θ) = S(ω)D(ω, θ) with
frequency spectrum S(ω) being the JONSWAP spectrum with
parameters: significant wave height H1/3 = 7 [m], peak period
11 [s] (peak frequency ωp = 0.57 [rad/s]) and shape parameter
ρ = 2.3853, see [1] for details.

In Figure 4(Left), the joint density of β and Vgr, for
the biased sampling case, is illustrated. The biased density
measures that part of the contour in which both the direction,



described by β, and the Vgr assume specified values. It is
evident from this Figure that the biggest part of the contour is
almost perpendicular to the main direction of wave propaga-
tion, while only a small part of the wave front is parallel to the
main direction. Futhermore, it is also of interest to notice that
the wave front moves with speed close to vmax = (−11, 0)
(area included in the third isoline in Figure 4 (Left). In Fig-
ure 4 (Right), the densities of Vgr conditionally on β = 0 and
β = π/2 are compared. The conditional densities Vgr β = 0
are well concentrated about vmax. This is a consequence of
the symmetry of the spreading function (λ011 = 0).

The case β = π/2, corresponds to the part of the contour
with gradient parallel to the y-axis. Such a part, although small,
still exists. The velocity Vgr in this case, is due to the vertical
motion of the surface and hence has median equal to zero.

In Figure 5, we present the unbiased and biased sampling
distributions of velocities both for the envelope and for the
sea surface. The solid lines represent the unbiased densities
and the dashed-dotted ones corresponds to the biased sampling
densities. We see that the biased sampling distribution which
are more important for applications, are more concentrated
around its center. The group velocity is smaller than that of
individual waves as it is observed in the real life records. The
peaks are at −5.58[m/s] and −10.98[m/s], i.e. the waves are
about twice as fast as the wave groups.

IV. NON-GAUSSIAN MODELS

For non-Gaussian models the problem in using the Rice
formula is in computational challenges – the joint distributions
rarely are available in explicit forms. To circumvent these dif-
ficulties an alternative approach was developed [6] that obtains
effectively crossing distribution of the noise that is driving the
considered models. The novelity of the approach is its focus
on the noise distribution at the crossings and then obtain other
crossing level distributions by simply replacing the underlying
noise by the one that observed at the instants of crossings.
One advantage of the presented approach is a possibility of
simultaneous studies of various random functionals of such
a noise without necessity of separate calculations for each of
the functionals, or from the joint distribution of the functionals
what would be even more challenging. For illustration, we start
with a recap of the approach for the Gaussian case.

A. Noise at Gaussian moving average crossing

The Gaussian moving average model is given by

X(t) =

∫ ∞
−∞

g(s− t) dB(s)

and its derivative Ẋ is given as the moving average with −ġ
as the kernel. The question one can ask is how the noise B
behaves at the instants of crossings by X of a level u. It
can be argued that the biased sampling distribution of dB(x)
is represented by the distribution of the following stochastic
process Bu(t), t ∈ R:

Bu(t) =

= u

∫ t

0

g−R
∫ t

0

ġ−
∫ t

0

g ·
∫
g dB−

∫ t

0

ġ ·
∫
ġ dB+B(t),
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Fig. 6. Left: Six BM samples used in computing samples from the Slepian
model Bu(t). Right: Six samples of Bu corresponding to the BM samples
and u = 5. A single value for the Rayleigh variable is used for all these
samples.

where random variable R has the Rayleigh distribution and is
independent of dB(t), while Bu(t) is understood as a random
measure of [0, t], with the convention that for t < 0, the
measure is understood as minus the measure of [t, 0]. The
models that produce distributions observed at the crossings are
often referred to as Slepian models introduced first in [13], see
also [14] and [15] for a survey on this topic.

Example 1: Let us consider (normalized) kernel g(t) =
(2/π)1/4 e−t

2

, t ∈ R. Direct calculations lead to the following
crossing distribution model

Bu(t) = Fu,g(t) +Gg(t) +B(t),

with
Fu,g(t) =

4
√

2π u Φ0

(√
2t
)
,

Gg(t) =

(
4

√
2

π
R−

√
8

π

∫
se−s

2

dB(u)

)
·
(

1− e−t
2
)

−
√

2

∫
e−s

2

dB(s) · Φ0

(√
2t
)
,

where Φ0(s) = (2π)−1/2
∫ s

0
e−u

2/2 du.

In Figure 6, we show simulations of this noise for a high
level u and compare them with corresponding samples from a
regular BM. For a high level u the main contribution comes
from the deterministic part Fu,g .

To illustrate the convenience of the approach, we consider
a pair of linear functionals of dB, Y = (Y1, Y2). The first
component Y1(t), t ∈ R, is a filtered original process X(t) by
means of a filter h(t), i.e. the output from a linear system that
is described by h(t) when the input is X(t) dt. Thus we have

Y1(t) =

∫
h(s− t)X(s) ds =

∫
h ∗ g(s− t) dB(s).

The second component, Y2(t), t ∈ R is a far more complex
functional of B as it arises from a linear scheme that alter
Gaussian distribution of the moving average process. Namely,
we consider the moving average driven by a Lévy motion
build upon the Laplace distribution – the Laplace motion,
[16]. The Laplace motion is obtained through subordination
of the original BM to a gamma motion. For a kernel f and
the Lévy process Γ such that Γ(1) has the gamma distribution



with shape τ and scale 1/τ (for negative t, the process −Γ(t)
is an independent copy of Γ(t), t ≥ 0), we define the Laplace
moving average

Y2(t) =

∫
f(s− t) dB ◦ Γ(s),

see also [17] and [18], for more details.

The simplicity of the approach that in the models we
simply replace B by Bu while keeping all other independent
components unchanged. For illustration, we take X as in
Example 1 and consider Y1 = X , while Y2 = Y , where

Y (t) =

∫
g(s− t) dB ◦ Γ(s), (6)

which could be viewed as a modified X obtained by random
distortion of time represented by gamma process Γ. We have
the following formulas

Xu(t) =u · e− t2

2 +

(
R− 2

4

√
2

π

∫
se−s

2

dB(s)

)
te−

t2

2

− 4

√
2

π

∫
e−s

2

dB(s) · e− t2

2 +X(t),

Yu(t) =
4
√

2π u ·
∫
e−(s−t)2 dΦ0

(√
2Γ(s)

)
−
√

2

π

(
R− 2

4

√
2

π

∫
se−s

2

dB(s)

)∫
e−(s−t)2 de−Γ2(s)

− 4

√
23

π

∫
e−s

2

dB(s)

∫
e−(s−t)2 dΦ0

(√
2Γ(s)

)
+ Y (t),

Using the above relation, we sampled from the joint up-
crossing distribution of (Y1, Y2). We have chosen τ = 0.5
for the shape parameter of the gamma process. The samples of
underlying Brownian motion are the same as those in Figure 6.

In Figure 7 (top), we observe samples simulated from
bivariate process (X(t), Y (t)) (to facilitate better visual com-
parison we have used the same sample of the underlying
gamma process for all six samples of the Laplace moving
average). They reveal complex leptikurtic behavior of Y , which
shows much larger extreme values than X . In the middle and
right columns we see a sample from the Slepian model at level
u = 0.5 and u = 5, respectively. The level crossing occurs at
t = 0 as seen at the top middle/right plots. We observe in the
bottom graphs that the random time change introduced by the
gamma motion is adding to variability of Y at the crossing
instants of X . For large level u the variability relatively to
the level is reduced however the process Y still significantly
overshoots the crossing value u = 5.

B. Noise at Laplace moving average crossing

The biased sampling distribution of Laplace noise at cross-
ings by a moving average driven by this noise is more com-
plicated. However, it can be effectively implemented although
a Gibbs sampler is needed to obtain samples from the noise.
We consider crossings of

X(t) =

∫
g(s− t) dL(s) =

∫
g(s− t) dB ◦ Γ(s), (7)
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Fig. 7. Left: Six samples from the Gaussian moving average X –
(top) and corresponding samples from the Laplace moving average
Y – (bottom). Samples are based on six samples of the Brownian
motion and a single sample of the gamma process that is used for
process Y . Right: Analogous samples at the crossings by X level
u = 5.

where, as before, Γ(t) is a gamma process with shape τ and
scale 1/τ .

Let us consider an arbitrary process Y and a process
Y (·|γ, z, u) with the distribution equal to conditional distri-
bution of Y given Γ = γ, (γ = γ(·) is a trajectory of Γ),
Ẋ(0) = z, and X(0) = u. Then if t(Γu, Ẋu) is he biased
sampling model for (Γ, Ẋ) at crossings of u by X , then

Yu(t) = Y (t|Γu, Ẋu, u),

where for shortness Ẋu = Ẋu(0). This approach splits the
problem of finding Yu into two separate tasks: firstly, finding
Y (·|γ, z, u), then, secondly finding a model for (Γu, Ẋu).
While finding Y (·|γ, z, u) is specific to a given process Y and
need to be addressed in each case of Y individually, obtaining
(Γu, Ẋu) is universal in the sense that it has the same structure
dependent only on the elements defining the moving average
X but independent of the choice of Y .

In fact, it is easier to consider an extended model
(Lu,Γu, Ẋu) and express the crossing level distribution model
by a convenient Gibbs sampler. Namely, the model will based
on alternate samples from Γu conditionally on Lu, Ẋu and
Lu, Ẋu conditionally on Γu. These two conditional distribu-
tions, given through the Bayes relation

fΓu|Lu,Ẋu
(γ|l, z) ∼ fLu|Γu,Ẋu

(l|γ, z)fẊu|Γu
(z|γ)

fLu,Ẋu|Γu
(l, z|γ) ∼ fLu|Γu,Ẋu

(l|γ, z)fẊu|Γu
(z|γ),
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Fig. 8. Left: The samples from the Slepian noise for the Gaussian (left) and
the Laplace (right), both for the crossing level u = 5.

can be simulated in a straightforward fashion. For further
details we refer to [6].

Example 2: To illustrate the approach, we consider the u-
level crossings of the Laplace moving average defined by (6)
with the Gaussian kernel. We compare how the noise at the
crossings differ from the case when the crossings were taken
by the Gaussian moving average discussed in Example 1. As
before, the shape parameter for the Laplace noise is τ = 0.5.

Using the Gibbs sampler, six samples (Ẋu,Γu, Lu) are
obtained for level u = 5. For a large value of the crossing
level u = 5, the Laplace motion is having large jumps at
the crossing level and thus these jumps convoluted with the
kernel are responsible for the shape of the process at the
crossing. The jumps for the noise at level u = 5 are shown in
Figure 8 in the right hand side graph are accumulating near
the crossing instant. This is in contrast to the Gaussian case
where irregularities of the noise around the crossing instant
are spread over many values as presented at the left hand side
graph of that figure.

C. Application

The road profile roughness is often quantified by means
of the response of a quarter-vehicle model traveling at a
constant velocity on road profiles, see Figure 9 (left). Such
a simplification of a physical vehicle cannot be expected to
predict loads exactly, but it will highlight the most important
road characteristics as far as durability is concerned. Often
one choses the force acting on the sprung mass ms as the
response Y (x) which then is used to compute suitable indexes
to classify severity of road roughness. The parameters in the
model are set to mimic heavy vehicle dynamics developed
in SCANIA. Here the parameters have the following physical
interpretation. Properties of the tire are described by kt, ct,
which relate to vertical stiffness and damping of the tire, while
properties of the suspension are given by vertical stiffness and
damping ks, cs, respectively.

The road profile R(x) will be modeled as moving average
having a symmetrical kernel gR(x) which is introduced here
through its Fourier transform

GR(ω) = Fg(ω) =
√

2πS(ω). (8)

Symbol Value Unit

ms 3400 kg
ks 270 000 N/m
cs 6000 Ns/m
mt 350 kg
kt 950000 N/m
ct 300 Ns/m

100 0 100

x

0.4

0.0

0.4

0.8

gR (x)

100 0 100

x

0.4

0.0

0.4

0.8

gX (x)

100 0 100

x

0.4

0.0

0.4

0.8

gY (x)

Fig. 9. Top: Quarter vehicle model. Bottom plots: Kernels gR(x) given in
(8) and the pair gX(x), gY (x) given in (9).

The responses X(x), Y (x), defined in Figure 9 by means
of a mechanical system, are obtained by linearly filtering road
profile R(x). The filters transfer functions will be given next.

First, by writing the equations of motion for the two
masses, we obtain the transfer function for X:

HX(ω) =
i ωv ct + kt

Ht(ωv)−msω2
v(i ωv ct + kt)/Ht(ωv)

,

where ωv = ω · v and ω is a wave number and v is vehicle
speed in [m/s].

Now, the response Y (t) is filtered X(t) by a filter having
the following transfer function

HY (ω) =
−msω

2
v(i ωv cs + kts)

Hs(ωv)
,

where

Ht(ω) = −mt ω
2 + i ω ct + kt,

Hs(ω) = −ms ω
2 + i ω cs + ks.

Consequently, the processes X(x) and Y (x) are moving
averages with kernels gX and gY defined through theirs Fourier
transforms

GX(ω) = HX(ω)GR(ω),

GY (ω) = 4 · 10−6HY (ω)GX(ω).
(9)

Here, to ease comparisons, we scaled Y (x) by a factor 4·10−6.
The kernels gR, gX and gY are shown in Figure 9.

The Gaussian moving average is commonly used to model
the road profile variability. Although it is well known that
Gaussian processes do not describe the road profiles well, see
[19] and references therein, they are used because many tools
are available for fast computations of probabilities of interest
for durability evaluations. In [20], the Laplace moving average
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Fig. 10. The Laplace and Gaussian cases shown in the bottom and the top
three graphs of each column, respectively. Left: Road profile R(x) (middle)
and responses X(x) (top), Y (x) (bottom). Right: Models Xu(x), Ru(x) and
Yu(x) around the u = 7 upcrossing of X(x) in the Laplace case and around
the u = 4.5 upcrossing of X(x) for the Gaussian case.

road profile model was proposed and it was demonstrated
that it gives much more accurate than the Gaussian counter-
part predictions of fatigue damage accumulations in vehicle
components. We shall illustrate some further properties that
can be useful for a design of components. Our application
is kept simple for transparency of the example but it can be
easily developed further to address more realistic situations by
changing kernels gX , gY and to include additional responses,
linear or even nonlinear functionals of X . The purpose of
the example is to illustrate quantitative differences between
Gaussian and Laplace modeling.

To choose a level u which upcrossed by X defines the
center of an extreme episode, we consider the level crossed
about once per 600 km. In Figure 10 (Left), some sample
paths of the Gaussian and Laplace moving average models for
road profile R and responses X,Y are shown. One can see
that the Laplace model reaches more extreme values than the
Gaussian model does. For example it can be evaluated using
the Rice formula that the frequency of upcrossings of level
u = 4.5 (measured in standard deviation) by the Gaussian
process is about the same at the frequency of upcrossings of
u = 7 (also in the standard deviation unit) by the Laplace
process. This happens rarely but still frequently enough to be of
importance in durability analysis. Note that many components
are designed to hold 200 thousands km with high probability.
Thus the levels u = 4.5, 7 have been chosen for the Gaussian,
Laplace models of X , respectively.

The difference induced by jumps (transients) in the Laplace
model is actually very influential on processes X,R, Y around
u level upcrossings by X , i.e. Xu, Ru and Yu, which can be
observed in Figure 10 (the plots in the right column). First by
studying kernels gX and gR, given in Figure 9, we expect that
the paths of Xu and Ru should be similar. There will be some
extra vibrations in the tire after passing a large bump but those
are relatively small. In contrast, the kernel gY is oscillatory

and asymmetric. These oscillations are characteristic for the
shape of the Yu in the Laplace model which, as oppose to
the Gaussian case, is not a time reversible process. Basically,
the shape of extreme episodes Yu resembles the (asymmetric)
kernel while for Gaussian model the shape is given by the
correlation function of Y which is symmetric in time.
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[4] A. Baxevani, K. Podgórski, and J. Wegener, “Sample path asymmetries
in non-gaussian random processes,” Scandinavian Journal of Statistics,
vol. 41, pp. 1102–1123, 2014.
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