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Abstract: A method of measuring three-dimensional spatial wave size is proposed and statistical dis-
tributions of the size characteristics are derived in explicit integral forms for Gaussian sea surfaces.
New definitions of wave characteristics such as the crest-height, the length, the size and the wave front
location are provided in fully dimensional context. The joint statistical distributions of these wave char-
acteristics are expressed in the terms of a directional power spectrum. The proposed approach allows
for investigation of the influence of spectral shape and directionality on the joint distributions of the
size characteristics. The method is validated by comparing numerical evaluations of the distributions
with the observed frequencies extracted from simulations of sea surface. The comparisons demonstrate
high accuracy of the obtained distributions.
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1 Introduction

In oceanography and marine technology the sea elevation seen as a three dimensional moving surface
is perceived as propagating trains of apparent waves. Determination of statistical properties of three
dimensional wave sizes is of great importance in ocean-engineering applications such as a design of
mechanical structures that have dimensions of the same order of magnitude as the wave, e.g., oil plat-
forms, wave energy harvesters, or even floating airports, bridges, large ships and piers. However, while
for waves measured along univariate directions the methodology is well-developed, see for example
[22], [18], among many others, the fully three dimensional approach is rarely tackled. The lack of
proper and operational definitions of three dimensional apparent waves and their dimensional charac-
teristics should be mostly blamed for this state of affairs. The importance of developing methodology
to address this problem lies in the fact that the impact of a wave on a structure depends on the wave
shape in space. Currently, this shape is often characterized by the wave-length and the crest height (or
amplitude) and the wave-length distribution became important information for the design of structures.
The problem with this approach is in its restriction to the sea surface observed along a line. Hence
it does not fully describe the size of a wave in space except for a long-crested sea. In this paper we
introduce an extended approach that captures better three-dimensional spatial waves. This approach
is based on new definitions of wave sizes and on the Rice’s formula that facilitates derivation of their
statistical distributions.

Through deriving the statistical distribution of large spatial waves one can help determine their
damaging long-term effect on a structure. However truly large wave are rare and hence special care
have to be taken to obtain frequencies of their appearances. Typically, the so called long-term (most
often yearly) distribution of wave characteristics describing wave variability during decades is of the
main interest. The wave climate in the region can be used to deduce the long-term distribution at a given
location of interest. Unfortunately, only temporal measurements at a location are most often available
which requires transforming temporal wave characteristics, e.g. crest height and period, into spatial
ones may lead to inadequate results, see [17]. This is due to the fact that from temporal records one
can estimate the spectrum but not the directional spectrum which influences the distributions of spatial
wave characteristics. This can be also seen in examples at the end of the paper. To improve accuracy
one can use wave climate models and/or directional buoys measurements [4], that may provide with
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spectral characterization of sea spatial conditions.
More specifically, for a fixed directional spectrum one could use Fourier transform and apply the

dispersion relation on a per sine wave component basis, as shown in [21], to derive spatial (or spatio-
temporal) sea elevation surfaces W (x, y, t) and then estimate the distribution of wave characteristics
of interest associated with the particular spectrum, see [10] for introduction the probabilistic sea state
modeling. This spectrum however is changing over longer periods although at a much slower rate than
the variability of waves. To account for such a slow long term variability of spectra, one can introduce
varying parameters in the spectra. Eventually the long-term distribution is obtained in two steps. First
deriving the distributions for a stationary sea state corresponding to a short-term wave climate condi-
tion. Then averaging these distributions over the climate, i.e. over the long-term distribution of the
spectra parameters.

This estimation of the stationary state distribution can be based on simulations of large number of
fields, using a directional spectrum associate with the instantaneous (short term) wave climate at the
location. Then the long-term distributions of some wave characteristics from those simulations are
obtained by averaging simulation for various spectra related to the wave climate variability. However
the computation cost of such a procedure would be prohibitive, especially if one wants good accuracy
for high - and thus rare - crests. In this paper we demonstrate a method of direct estimation of the
short-term distributions using the probabilistic model of W for a given directional spectrum. Through
this we avoid simulations of large fields that are required to statistically capture rare extreme events.

The paper is organized as follows. Section 2 contains introductory material: notation, definitions of
wave characteristics in one dimensional records, and a short review of distributions of wave character-
istics in Gaussian seas. The new findings, definitions of wave characteristics of waves in sea surface,
are given in Section 3. This section concludes with Subsection 3.3, which contains a short discussion
of methods that are used for evaluation of statistical distribution of the proposed waves characteristics.
It serves as an introduction to the results given in Appendix II, where a number of mathematical formu-
las for wave characteristics distributions are given. Validation of the proposed methodology and some
examples are presented in the two final sections: Section 4 is dealing with a spectrum correspond-
ing to a long-crested sea and Section 5 where a spectrum typifying a confused (short-crested) sea is
used. Conclusions and an extensive list of references follows. The two appendices that close the paper
provide material that makes the presentation self-contained. In the first appendix the Gaussian sea is
defined while the second one contains formulas for various wave characteristics distributions derived
using Rice’s formula for the intensity of marked zeros of random processes.

2 Distributions of waves characteristics along one dimension

Sea surface elevation is often measured at a fixed location and saved in the form of a time series. Here,
we use time context although the measurements can be made linearly in the space as well in which
the case some obvious modification of terminology is needed. The so called zero-crossing wave is
used to define apparent waves. In this approach wave is a part of a record between two consecutive
zero-upcrossings of the mean sea level. For simplicity it is assumed that the latter, also called the still
water level, is set to zero. Important wave characteristics are crest height Ac and crest duration (half
period of a wave) T c, see Figure 1(Left). The crest Ac of a wave is the maximum value between a zero-
upcrossing and the following zero-downcrossing. Similarly, the crest duration T c is the time distance
between a zero-upcrossing and the following downcrossing.

Since spatial records are seldom available the spatial wave characteristics relays on mathematical
modeling of sea surface dynamics. A simple model, that is used here, assumes that each sinus wave
component travel independently at its own celerity. It can be shown that it results in a probabilistic
assumption that states that W (x, y, t) is a Gaussian field, see [10] for details. For a long-crested sea
for which W (x, y, t) ≈ W (x, t) one often assumes that sinus waves travels with negative velocity and
hence a zero upcrossings is chosen to mark the front of an apparent wave.

Space wave characteristics are defined in spatial signalsW (x) = W (x, 0, 0) andW (y) = W (0, y, 0).
In the signals, for example W (x), one can identify the spatial apparent waves which are characterized
by its crest Acx and crest length Lcx which is the distance between upcrossing and the following down-
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Figure 1: Left: The definition of wave wave crest Ac (crest amplitude) and half period (crest length)
T c. Right: The distribution of crest amplitude and length computed based on the Rice formula and the
actual values observed in records of 534 temporal waves at shallow water of the coast of Africa.

crossings of the zero level. The characteristics Acy , Lcy are defined in a similar way for waves in the
spatial signal W (y). In the following for simplicity of notation we will write A, Lx and Ly for crest
height and crest lengths in x, y, directions, respectively.

Short term distributions describe variability of the observed waves during stationary sea conditions.
These are understood as limits of histograms, empirical cumulative distributions etc of wave character-
istics, as observation time/region grow without bounds. The limiting distributions can depend on the
considered populations of waves, i.e. the way waves are collected (counted) and on particular defini-
tion of an apparent wave characteristics. Consequently, when presenting a distribution of, for example,
wave crest A, it is important to clearly specify how waves are counted and how the wave crest height is
defined.

In some applications one may count waves in temporal records. However it is important to be aware
that their characteristics are describing both time and spatial properties of a wave. Take, for an instance,
a structure exposed to wave loads. Responses of the structure are related to the crests in the time history
that pass by exactly at the structure position and spatial size of a wave. In such situation one is counting
waves in time while L is the most important wave characteristics, see [27]. Another examples of studies
of some space-time aspects of apparent waves can be found in [28], where joint distribution of T c, Lx
has been studied, and in [1], [2] where distributions for encountered waves overtaking a vessel were
discussed. (The distributions were used in evaluations of risks for capsizing due to broaching in [14].)
However those wave characteristics were treated in the one dimensional manner, i.e. spatial-temporal
distributions discussed above were derived using univariate random processes – no random fields were
directly needed. Our approach differs in this important aspect as it truly involves the field W (x, y)
already at the characteristic definition level. In Section 3 two methods of counting waves in W (x, y)
and defining their characteristics will be discussed.

Finding simultaneous distribution of A, T c, Lx, Ly for a Gaussian sea is a challenging problem.
Means to evaluate two-dimensional pdf ofA, T c andA,Lx for Gaussian wave models were extensively
studied in literature. Here we mention only two works [15], [22] were different approaches were
compared. MATLAB toolbox WAFO [9] makes the methods practically available. These three articles
contain a more complete list of work in the area. Despite the diversity of definitions of the wave
populations and, consequently, of their wave characteristics, the generalized Rice’s formula [23], [24],
[29] can be used to evaluate the probability density functions (pdf) of the latter. In Figure 1(Right),
we have illustrated the approach by showing the isolines of the distribution for the crest amplitude and
length computed used the JONSWAP spectrum (a popular class of spectra in ocean engineering) with
the parameters fit to the empirical records. This distribution is compared with empirical distribution of
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Figure 2: The directional spectra used in the examples. Left: Symmetric spectrum. Right: Asymmetric
spectrum made of two wave systems propagating in different dirrections.

the amplitudes and lengths observed in the data (dots). One can notice that among 534 waves used in
this example only very few are observed in the area of the extreme crest amplitudes and lengths. In
contrast, the distribution based on Rice formula provides quite accurate density of the distribution also
in regions with very few observations. This data set and the numerical routines for obtaining the figure
can be found conveniently in the WAFO toolbox, [9]. See Appendix II for more examples.

3 Geometry of waves in space

In this section, two methods of counting waves are introduced and then used to define waves character-
istics for the sea surface W (x, y) that is located in three dimensions. The first one is a generalization of
the zero-crossing waves, shown in Figure 1(Left), while the second is inspired by approach presented
in [27] where a concept of “acting wave crest” was introduced. The approaches coincide with one di-
mensional counterparts for long-crested sea, e.g. when all cosine waves are traveling mostly along the
x axis. We remark here that the approach extends also to one more dimension – time. However, this
important extension is not investigated in the presented work and is left for future studies.

A stationary Gaussian sea is fully characterized by a directional spectrum S(ω, α) which describe
energy of waves moving along a line having angle α with x axis. The frequency ω is observed in the
time records and is carried out to the spatial records through the dispersion relation. In some maritime
applications the direction α is essential for safety/risk evaluations. For example, for some structures
rate of fatigue accumulation process depends on the angle α, see e.g. [11]. The methodology will by
illustrated for waves defined in Gaussian seaW (x, y) having directional power spectrum shown in Fig-
ure 2 (Left). The spectrum has following parameters; significant wave height hs = 7 [m], average crest
length in x and y directions E[Lx], E[Ly], defined in (3), equal to 21π [m] and 58π [m], respectively.
In fact, the spectrum is a directional spread of a member from the JONSWAP parametric family of sea
spectra with the half-time period equal to E[T c] = 4.7[s].

3.1 Defining waves in space

We turn now to the first method of counting waves. Suppose one has chosen a fixed location, i.e. a po-
sition of a platform or a buoy. Let attach the coordinate system to the position. Consequently it can be
of interest to study variability of apparent waves characteristics in space seen from this fixed position,

4



Figure 3: Illustrations of wave definitions given in Definition 1 (left plot) and in Definition 2 (right
plot). The dark cross in the left hand side graph marks the origin while the crosses on the right sand
one mark the local maxima.

i.e. from the orign. The following definition of a wave front (related to the the platform position), the
crest height and length mathematically describes the wave for this reference point.

Definition 1. A point q = (x, y) is a front of a wave if the sea is at the zero level at it and the direction
to this point from the origin coincides with the direction of the gradient ofW at q. Formally,W (q) = 0
and for a positive constant λ

q = −λ (Wx(q),Wy(q)) (1)

where (Wx(q), Wy(q)) are the partial derivatives ofW at q, see Figure 3 (left plot) for an illustration.
Let D be the largest disk such that the front wave q is in D and that W is positive in the interior of

the disk. The radius R of the disk defines the half length of waves crest while the height of the crest is
defined as A = maxq∈DW (q).

We turn now to the second, “global” and homogeneous method of counting waves, referred to in
such a manner because our reference point is no longer associated with the origin but with any positive
local maximum of sea surface wave.

Definition 2. Point p is a center of a wave if W (p) > 0 and W has local maximum at p. The crest
height of the wave is defined as A = W (p).

LetD be the largest disk centered at p such thatW (q) > 0 for all q lying in the interior of the disk,
see Figure 3 (right plot) for illustration. Then the radius R of D defines the half-length of the crest,
while point q where the disk D is tangential to the zero level is a front of the wave. Further the angle
Θ such that q = p +R(cos Θ, sin Θ) will be called the direction of the front of the wave (with respect
to the location of the crest).

Important difference between the definitions is that the first one is local in the sense that one is
selecting waves that could be relevant for an observer located on a platform. It seams that characteristics
of the closest wave to the origin (observer) could be the most interesting one. Waves with fronts far
away from an observer will change its shape (or even disappear) before reaching the observer. The
distribution of the distance to the closest wave front will be considered in this paper. In contrast to
the first definition, the second one, applied to a stationary sea, would locate waves homogeneously on
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Figure 4: Size of waves in W (x, y) by applying Definition 1 (left plot) and defined in Definition 2
(right plot) to the normalized field W̃ (x, y).

(x, y)-plane. This is convenient when statistical properties of waves observed over a large area are of
interest.

3.2 Size of a wave

The sizes of disks D, given in Definitions 1 and 2, could serve as a proxy of the spacial spread of
an apparent wave. However real waves are seldom isotropic, see Figure 3, and hence disk maybe
inadequately describe the spread of a wave. Instead, we propose to use appropriate ellipses instead of
circles and to introduce them we need to define the normalized sea surface.

3.2.1 The normalized sea surface

Consider a stationary sea with directional spectrum S(ω, α), see Appendix I for details. The normalized
sea surface W̃ is obtained from W by scaling it in both arguments and in value so that W̃ has variance
and variances of its partial derivatives equal to one. This scaling has natural interpretation in terms of
the normalized directional wave lengths as discussed next. It is defined using spectral moments λij that
are given by

λij =

∫ 2π

0

∫ +∞

0

S(ω, α)

(
ω2

g

)i+j
(cosα)i(sinα)j dω dα. (2)

The significant wave height is then hs = 4
√
λ00 while

E[Lx] = π
√
λ00/λ20 E[Ly] = π

√
λ00/λ02 (3)

are the average half wavelengths in x, y directions, respectively. With this notation and terminology the
normalized field can be written explicitely

W̃ (x, y) = W
(
xE[Lx]/π, yE[Ly]/π

)
/
√
λ00. (4)

Thus the normalized sea has the half-lengths of the zero crossings waves both in the direction x and the
direction y equal to π.
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3.2.2 Size of a wave - area enclosed by an ellipse

Suppose that, for a sea state, the directional spectrum is known. In such a case for a given sea sur-
face W (x, y) one can rescale it to obtain the normalized field W̃ (x, y), defined in (4). Now using
Definitions 1 or 2 one can identify waves in W̃ . The crest position and half-length of the ith wave is
denoted by p̃i, R̃i, respectively. The circles with centers at p̃i and radius R̃i become ellipses in the
original (x, y) coordinates, see Figure 4 for illustration. The size of ith wave can be gauged by the area
enclosed by the ith ellipse, viz.

Si = π Lx LyR̃i
2
. (5)

3.3 Intensity of waves

In evaluation of safety of maritime operation, “dangerous” (potentially harmful) events are often defined
using wave characteristics, e.g crest height, period (length), wave steepness etc. Estimates of risks
involves computations of frequency of the so identified “dangerous” waves. In what follows we define
precisely what is meant by frequencies of the waves. We start with some necessary notation.

Let consider stationary (homogeneous) sea which will be observed in a region Λ, say. In the region
one will count waves. Denote by NΛ number of waves found in Λ and let the number of waves for
which an event B happens be denoted by NΛ(B). Waves and “dangerous” waves (as described by an
occurrence ofB for such a wave) are most often spread homogeneously over the surface. Consequently
there is a constant µ(B), called intensity, such that the expected number of “dangerous” waves in Λ is
equal the intensity of waves times size of Λ, viz.

E[NΛ(B)] = µ(B) · ‖Λ‖,

where ‖Λ‖ is the size of Λ (length, area, volume, etc.). Obviously the intensity of waves µ, say, is equal
to µ(B) for an event B which is always true. Finally, the probability of B is defined by

P (B) = µ(B)/µ. (6)

The probability can be formally interpreted, for the ergodic seas, as a limit of an empirical frequency
NΛ(B)/NΛ as the size ‖Λ‖ increases without bound.

For a given sea state intensity of waves µ is easy to estimate and is often included as one of sea state
parameters. Hence, by (6), quantities µ(B) and P (B) could be equivalently used. However if estimates
of µ and P (B) are taken from different sources one has to be cautious that the same definitions of waves
were used when estimating the parameters.

In many applications intensities µ(B) of interest are very small comparing to the duration of a
sea state. Consequently the intensities have to be extrapolated from the available data. Statistics and
probability theory are a natural frameworks for such extrapolations. Another approach is to assume a
stochastic model for sea surface variability and then compute the intensities using suitable probabilistic
tools. One is often using a Gaussian model for the sea, see Appendix I for definition. In such a case
the power spectral density (psd) of a sea state defines the model and one can (at least in principle)
evaluate distributions of various wave characteristics and use those to estimate µ(B). In particular
Rice’s formula [12], [23] and [24] and its generalizations, see e.g. in [29], [5] and references therein,
are very useful tools to evaluate µ(B).

In Appendix II, an introduction to Rice’s method to compute intensities of waves µ and µ(B) is
given. Dynamics of waves will not be considered here and we refer to [18] and [6] where the dynamics
of sea wave was statistically described, e.g. a probability distribution of velocities of wave crests in
W (x, y, t) were presented.

4 Wave sizes distributions for a long-crested spectrum

In this section we illustrate the proposed characteristics of waves in space by presenting the probability
density functions (marginal and joint) for; crest height A, crest half-length R, direction of wave front
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Figure 5: Distributions of size characteristics for waves that are closest to a fixed location (Definition 1)
in the symmetric spectrum case presented in Figure 2 (Left). Left: Joint probability density of R0,Θ0

plotted in the polar coordinates. The pdfs of Θ0 (Center) and ofR0 (Right), both obtained by integration
from the joint pdf given in the left graph. They are compared with the histograms based on simulations.

Θ and the wave size S, for waves in a Gaussian sea having directional power spectrum shown in
Figure 2 (Left). The spectrum is defined by the following parameters; significant wave height hs = 7
[m], average crest length in x and y directions E[Lx], E[Ly], defined in (3), equal to 21π [m] and 58π
[m], respectively. The formulas for wave intensities and probabilities or probability density functions
(pdf) for various wave characteristics are given in Appendix II.

The presentation of the results is organized as follows. In the Section 4.1, the pdf for the location of
the wave front, see Definition 1, that is closest to the observer, i.e. to the orign. The location is given in
the polar coordinates (R0,Θ0), i.e. the wave front is located at (R0 cos Θ0, R0 sin Θ0) in the Cartesian
system. Next in Section 4.2, the pdf of (R,Θ), defined according to Definition 2, is computed. Note
that the point (R cos Θ, R sin Θ) is the location of a crest front when the orign of the coordinate system
is placed at the location of a wave crest. In other words R is the distance to the closest wave front
from a wave crest while R0 was the distance to the closest wave front from a fixed point. Further in
Section 4.3 computation of the probability that wave crest exceeds a fixed threshold is discussed. Then
the joint pdf of (A,R,Θ), for waves defined in Definition 2, is presented in Section 4.4. Finally in
Section 4.5 we show the pdf of size S of a wave.

4.1 Joint density of R0,Θ0.

Suppose that an observer is located at the origin, then a point q = R0(cos Θ0, sin Θ0) is the position
of the crest front closest to the observer. (Here wave front is defined according to Definition 1.) The
formula (29) gives the pdf of R0,Θ0 in form of a high dimensional integral. Combining (29) and
a suitable numerical integration algorithm allows for evaluation of the joint pdf of (R0,Θ0). For the
directional spectrum, shown in the Figure 2 (Left), the approximated density ofR0,Θ0 has been derived
and presented in Figure 5 (Left). The polar coordinates have been used. The accuracy of the estimated
is verified by using the marginal densities of R0 and Θ0, which are evaluated by means of a numerical
integration of the joint density. The derived densities are shown in Figure 5 (Center) – R0 and (Right)
– Θ0. The densities are compared with the normalized histograms of R0 and Θ0, respectively, found
in simulated surfaces W (x, y). One can see that histograms and pdfs fR0

(r), fΘ0
(θ) agrees very well.

This illustrates the numerical accuracy of the WAFO software used to evaluate the pdf of R0,Θ0 given
by (29).

4.2 Joint probability density of R,Θ

For comparison with the previous distribution we present the joint pdf of the (R,Θ) as described in
Definition 2, i.e. when the reference point is located at the local maximum rather than at a fixed
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Figure 6: The analogous results to the ones presented in Figure 5 but for the case of wave size charac-
teristics taken with the respect local maxima (Definition 2). Left: The joint pdf of R,Θ. Center: the
pdf of Θ, compared with the normalized histogram. Right: the pdf of R. The marginal distribution are
compared with the normalized histogram obtained from simulations.

location. The pdf is given by formula (28), which utilized the generalized Rice formula that takes into
accounts the effect of randomly sampled local maxima. The wave characteristics (R,Θ) have been
called the half-length of the crest and the direction of the wave front, respectively. The probability
distribution of (R,Θ) has the following interpretation. Let place position of a randomly chosen wave
crest at origin (0, 0) and find the position q of the front of the wave. Then q = R(cos Θ, sin Θ).

The joint pdf of R,Θ is presented in Figure 6 (Left) in the polar coordinate system. The marginal
pdfs of R, Θ are derived by means of numerical integration of the joint pdf and presented in Fig-
ure 6 (Center)– the azimuth Θ and in (Right) – the distance R. Both are compared for the accuracy
check with the normalized histograms of R and Θ, respectively, found in simulated surfaces W (x, y).
One can see that histograms and pdfs fR(r), fΘ(θ) agree very well.

By examining Figure 5 and Figure 6, we may notice the main differences in the distributions of
R0,Θ0 and R,Θ. Although both the wave characteristics describe distribution of the random location
of the wave front: R0 is the distance from an observer to the closest wave front while R is the distance
from the crest of a wave to its wave front, we can see, as expected, that R0 is more spread than R. This
dependence is easily seen in the degenerated case when the sea surface consists of a single sine wave
having wavelength L. In this case R0 is uniformly distributed on [−L/2, L/2] whileR will be constant
equal to L/4. This illustrates the intuitive fact that by locating the observation at a local maximum wave
elevation is strongly correlated to maximum height. Moreover the angle Θ0 varies much more than the
angle Θ, while both have the mode at 0, π since the x axis is the main direction of wave propagation
for the directional spectrum shown in Figure 2 (Left). It shows that a level crossing contour at the front
of a wave, when seen from the maximum is flatter in comparison with the one seen from the origin. It
agrees with intuition in particularly for nearly long-crested seas.

4.3 Intensity of waves with crest exceeding a threshold

The intensity of waves in space can be measured in a variety of ways. One natural approach is through
the intensity µ of the positive local maxima. The formula for this intensity is given in (23). For
example, a Gaussian surface having spectrum given in Figure 2 (Left) has the (approximate) wave
intensity µ = 0.85 10−4 [m−2], ca. 1 [ha−1], This approximation has been obtained by numerical
evaluation of (23), while in see Figure 7 positive local maxima marked as white dots and their observed
intensity per area unit represent empirical estimate of this intensity.

Often for practical reasons, the large crests are of principal interest and their intensity is represented
by the intensity of crests exceeding h, µ(A > h), which is also given in (23). Estimates of µ(A > h)
are often needed in evaluation of safety of maritime operations. There are possible some approaches
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Figure 7: Simulation of a Gaussian sea having directional spectrum presented in Figure 2 (Left). Inten-
sity of waves tops is represented by positions of crests (positive local maximums) that are marked as
white dots.

to get a more explicit although approximate form of the intensity. Here, we present an alternative
approximation of the intensity employing (6), i.e. that µ(A > h) = µ · P (A > h). Since µ is already
known, one needs only approximate P (A > h). One can utilized for this purpose the distribution of
Ac along linear record, defined in Figure 1 (Left).

One could try to approximate the distribution of the crest heightAc, by means of the Rayleigh distri-
bution that is applicable to the case when the sea is observed along the line. Then approximation states
that P (Ac > h) ≈ exp(−8 (h/hs)

2). Actually, for Gaussian sea W (x) (or W (t)) the approximation
is always conservative, see [26].

The logarithm of the intensity is shown in Figure 8 as solid lines. In this figure, the dashed lines are
the approximation

µ(A > h) ≈ µ exp

(
−8

h2

h2
s

)
. (7)

Although the Rayleigh bound was established for one dimensional record, it appears to work quite
well even for the crest height distribution in W (x, y) having the symmetric spectrum shown in Fig-
ure 2 (Left). The error is less than 20 cm.

In [7] more detailed comparisons of extreme crest heights intensities for waves observed in time,
space and in moving sea surfaces were presented, see also [5] and [19]. Among the results, a higher or-
der approximation for the asymptotic distributions of the large wave heights in space has been presented
that leads to the following approximation

µ(A > h) ≈ µ
(

1 +
h

hs

)
exp

(
−8

h2

h2
s

)
, (8)

that is valid for high h values. The approximation is shown in Figure 8 (Right) as the dashed dotted line.
One can see that for the considered spectrum, and h > 0.5hs, the accuracy of this spatial approximation
is improved.
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Figure 8: The logarithm of the intensity of waves in W (x, y) with crest above h, µ(A > h). Left: log-
arithm of the intensity of waves in solid line, compared with the approximation based on the Rayleigh
distribution given (7) in dashed line. Right: The enlarged left plot and with the added higher order
asymptotic approximation (8) – dashed dotted line. The spectrum shown in Figure 2 (Left) is used for
which the significant wave height is hs = 7 [m].

4.4 The joint pdf of A,R and Θ.

We turn now to the joint density of crest height A, the distance to zero level contour R, and the angle
Θ. We have chosen the region of high waves such that the crest hight A exceeds 0.5hs = 3.5 meter.
The level 0.5hs is chosen to be moderately high in order to allow comparisons with values of A,R,Θ
obtained from simulated records. Using the solid lines given in Figure 8, one can roughly estimate
that P (A > 3.5) = 0.16/0.94, which means that 17% of waves have crest exceeding 0.5hs = 3.5[m],
which is sufficiently high to be see frequently in the records. As we mentioned before, for a long-crested
sea instead of computed distribution, one can use the Rayleigh upper bound to assess how many wave is
above the particular height. Namely, the probability that a crest exceeds h is bounded by the Rayleigh
probability exp(−8(h/hs)

2). Consequently, one concludes that in a long-crested sea, the fraction of
wave crests above the threshold 0.5hs is less than 13.5%.

In Figure 9, the marginal densities of R,A (left plot) and Θ, R (right plot) given that A > 0.5hs,
are presented. The densities are integrals of the joint pdf of A,R,Θ normalized by the probability
P (A > 0.5hs). The levels of plotted contour lines are relative so that regions enclosed by the contour
lines contain specified fractions of the total probability mass. Such a choice of level lines helps in
visual evaluations of the accuracy of estimated joint pdf. More precisely, it enables comparisons with
observed values of A,R,Θ shown as dots in the plots, since one can count fractions of dots included in
the contours and compare those with the contour level defining fractions.

In order to check the accuracy of the numerical integrations involved in the computations of the
densities shown in Figure 9, one thousand of waves were extracted (at random) from simulated sur-
faces W (x, y). Since the probability that a crest is higher than 0.5hs is 0.17 one expects to have 170
waves satisfying the condition A > 0.5hs. Actually, there were 183 such waves with crest above the
threshold. This exceeds the expected value 170 by about one standard deviation thus the difference is
not significant.

For the extracted waves one has evaluated values of h, r and θ. The pairs (r, θ) were plotted as
dots in the left plot and similarly pairs (θ, r) are shown as dots in the right plot. The isolines of the
conditional pdfs are selected so that in the average there should be 180·x% dots included in the contour.
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Figure 9: Conditional distributions given that crest is higher than 0.5hs (hs = 7 [m]). Left: The
conditional joint pdf of the crest height A and the crest half-length R. Right: The conditional pdf of
R and Θ. In the left plot contour lines contain 30%. 50%, 70% , 90%, 95%, 99%, 99.9% of the total
probability while the contour lines in the right plot have the corresponding percentage set to 10%, 30%.
50%, 70% , 90%, 95%.

Fractions x% are specified in the figure. It is easier to count the point outside a contour line. This yields
0.001 · 170 = 0.17, 1.7, 8.5, 17, 51, 85, . . . expected dots outside the respective contour lines. In the
left plot of Figure 9, one finds 0, 1, 9, 21, 61, 91, . . . dots. Similarly in the right plot one expects to
have 1.7, 8.5, 17, . . . points outside the isolines while in the right plot 4, 8, 22, . . . are counted. This
confirms that the accuracy of the estimated densities is quite good.

Finally, we note that as the height of crest A is getting higher, the evaluation of the joint pdf of
A,R and Θ by means of (26) is getting easier (and faster) since the indicator 1B in the formula can be
replaced by one, due to the asymptotic properties of the Gaussian fields. This is in contrast to using the
simulation approach to approximate the pdfs involving A by counting frequencies – very high crests
occur very seldom, see Figure 8, and computational cost of simulations increases.

4.5 Size of waves S

In Figure 6 (Right), the pdf of the crest half-length R is shown. Variable R, defined in Definition 2, is
the radius of the disk centered at a wave crest and underneath of the sea surface, see Figure 3 (Right).
Thus, the distribution of the disk’s area D could be used to describe the spatial size of waves. The
density of D = π R2 is given by

fD(s) =
1

2
√
π s

fR

(√
s/π
)
. (9)

For the considered symmetric directional spectrum, the pdf of D (9) is shown in Figure 10 (Left). The
pdf is compared with the normalized histogram ofD values extracted from simulations of fieldW . The
plot demonstrates again very good accuracy of computed R-pdf.

It was mentioned in Section 3.2 that the area enclosed by ellipse S, defined in (5), could be a more
adequate proxy describing waves geometry rather than the area of the disk D. In order to find the
distribution of S, one can first to evaluate the pdf of crest lengths R̃ evaluated in the standardized sea
surface W̃ (x, y) defined in (4). The density of S can be then computed by rescaling the disks by the
mean half-wave lengths in the directions of the x and y axes via

fS(s) =
1

2
√
πLxLy s

fR̃

(√
s/πLxLy

)
. (10)
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Figure 10: Left: Probability density of D [ha] (9) compared with the normalized histogram based
on simulations. Right: Comparison of probability densities of S [ha], see (10), with the normalized
histogram. The dashed line represents the conditional pdf of S given that the crest height exceeds
0.5hs.

The probability density of S is shown in Figure 10 (Right). Comparison of the pdf with the normal-
ized histogram of S confirms good accuracy of evaluated pdf of R̃. From the plots given in Figure 10
one can conclude that the areas for ellipse S are statistically larger than the areas of disc D. Finally
in Figure 10 (Right) the dashed line is the conditional pdf of S given that the crest height A exceeds
0.5hs. Not surprisingly one can observe that high waves also have large sizes.

5 Distributions of wave sizes for a confused sea

In this section we carry out similar computations to these presented in the previous section but this
time for waves in a Gaussian sea having the directional power spectrum shown in Figure 2 (Right).
We limit ourselves to characteristics defined by the local maxima, i.e. according to Definition 2. The
distributions of the crest half-length R, the direction of wave front Θ and the wave size S have been
evaluated using the formula from Appendix II. We summarize our findings in Figure 11, where the
pdfs (marginal and joint) analogous to the ones computed for the symmetric spectrum are presented.
The spectrum similarly as before has the significant wave height hs = 7 [m]. However, this time it is
composed of two wave systems traveling in the x and y direction, respectively. The average crest length
in the x and y directions E[Lx], E[Ly], defined in (3), equal to 26π [m] and 31π [m], respectively.
This results in short crested waves as seen in Figure 11 (Top-Left). When comparing with the sea
surface simulation shown in Figure 7, one can see that a superposition of waves coming from different
directions leads to very irregular sea with many crests. Such a state of the sea is often referred to as
a confused sea and our spectrum exemplifies such a state. The spectrum does not represent a realistic
model of a sea spectrum and is chosen to illustrate the dependence of the wave characteristic on the
spectrum shape. However, such compound sea spectra are of interest in reliability analysis of offshore
structures, see e.g. [11]. The two wave system spectra are often occurring in the western Africa region
when swells from southern and northern hemispheres storms meet, see [20].

As already mentioned, the discussed spectrum produces more crests. This can be validated by
evaluating the crest intensity, which for the sea with asymmetric spectrum is 1.2 per hectare. This
significantly larger than intensity 0.85 per hectare computed for waves with the symmetric spectrum
shown in Figure 2 (Left).

The joint density ofR,Θ is shown in Figure 11 (Top-Right). This distribution is also much different
from the one shown in Figure 6 (Left) – in the current case the front waves are seen from all directions.
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Figure 11: Results for the asymmetric spectrum example. Top-Left: Simulation of a Gaussian sea
having the directional spectrum from Figure 2 (Right). Positions of crests (positive local maxima) are
marked as white dots. Top-Right: The joint probability density of R,Θ plotted in the polar coordinates,
for waves defined in Definition 2. Middle-Left: The pdf of D [ha], see (9). Middle-Right: The pdf of S
[ha], see (10). Bottom: The integrated pdfs from the joint pdf given in the top-right graph for Θ (left)
and R (right). The bottom and middle rows are also showing the corresponding histograms extracted
from a simulated field.
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Moreover, since E[Lx] ≈ E[Ly], then also the pdf of areas enclosed by the ellipses describing size
of the waves, see Figure 11 (Middle-Right), is now close to the distribution of disks areas D shown in
Figure 11 (Middle-Left).

Finally the marginal pdfs ofR and Θ are evaluated by numerical integration of the joint pdf. In Fig-
ure 11 (Bottom the marginal pdf of R (Right) and the pdf of Θ (Left) are compared with the normalized
histograms of R and Θ, respectively, found in simulated surfaces W (x, y). One can see again that the
histograms and pdfs fR(r), fΘ(θ) agrees very well showing the accuracy of the approach. Note that
pdfs of Θ shown in Figures 6 (Center) and 11 (Bottom-Left) differ considerably. This illustrates the
influence of the spectrum shape on the wave geometry in space.

Conclusions

A new method to measure size of waves in spatial sea surface records is presented. It is shown that the
generalized Rice’s formula can be used to evaluate the probability density functions of wave sizes in a
Gaussian sea including the joint probability density of the crest height and the length of waves. The pdfs
are given by explicit formulas but involving multidimensional Gaussian integrals. It is demonstrated
that numerical integrations, using the methods available in MATLAB toolbox WAFO, give accurate
approximations of the pdfs.
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Appendix I: Gaussian sea

A zero mean Gaussian sea having directional spectrum S(ω, α) can be approximated (with arbitrary
accuracy) by a sum of independent cosine waves with Rayleigh distributed amplitudes and uniformly
distributed phases. For the directional spectrum let Sjk = S(ωk, αj) and define the field

W (x, y, t) ≈
∑

αj∈[0,2π],ωk>0

√
SjkRjk cos

(
t ωk −

ω2
k

g
(x cosαj + y sinαj) + φjk

)√
dωkdαj ,

(11)
whereRjk are independent standard Rayleigh variables, φjk are independent uniformly distributed over
[0, 2π) phases that are also independent of Rjk, and (dωk, dαj) are infinitesimally small increments of
the rectangular grid over arguments of the spectrum (the accuracy of approximation depends on how
fine is the grid).

For p = (x1, y1, t1) and q = (x2, y2, t2), the covariance function is approximated by

C(W (p),W (q)) =

∫ 2π

0

∫ +∞

0

S(ω, α) cos

(
tω − ω2

g
x cosα+ y sinα

)
dω dα

≈
∑

αj∈[0,2π],ωk>0

Sjk cos

(
t ωk −

ω2
k

g
(x cosαj + y sinαj)

)
dωkdαj ,

(12)

x = x2 − x1, y = y2 − y1 and t = t2 − t1.

Appendix II: Distribution of wave characteristics - Rice’s method

For completeness we present expressions for the distributions of some wave characteristics obtained
by means of various generalizations of Rice formula. The classical form of the latter yields an ex-
plicit form for the intensity of zeros in Gaussian process W (t) having power spectral density S(ω) =∫
S(ω, α) dα. If we restrict only to the upcrossings of the zero level, the average intensity (the average

number of the uppcrossings per the time unit) is given by

µ =
1

2π

√
λ2/λ0. (13)

Here λi’s are spectral moments of S(ω). The formula can be reinterpreted as the intensity of waves
defined by the zero upcrossing method. Despite that (13) is well known, let us mention a slightly
more general version that extends its validity beyond the Gaussian case, i.e. one considers a zero mean
stationary process W (t) for which the expected number of times W (t) = u in a region Λ, NΛ(u), say,
is given by

E[NΛ(u)] = ‖Λ‖
∫
|z|fẆ (0),W (0)(z, u) dz. (14)

Clearly, for the Gaussian case and due to independence between Ẇ (0) and W (0), it turns to the classi-
cal Rice’s formula originally presented in [12], [23] and [24]:

E[NΛ(u)] =
‖Λ‖
π

√
λ2

λ0
e−u

2/2λ0 . (15)

Hence 1
π

√
λ2

λ0
is the intensity of zeros, i.e. solutions of W (t) = 0. Since there are two zeros per wave

yielding the formula for the intensity of waves (13). In what follows we present integral formulas used
to approximate the quantities presented in Section 4. We comment on the principles used to derive the
formula but we avoid mathematical technicalities and refer to other work for details.

We will start in Section AII.1 with the simplest problem of finding the intensity of waves in the time
signal W (t). The classical formula (15) will be used. Then we formulate a more general version of the
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formula (18) and use it to obtain, in (21), a formula for the tail probability for the wave half-periods
(lengths): P (T c > r).

In Section AII.2 Rice’s formula (18) is extended to the sea surface W (x, y) case, see (22), and then
used to estimate for: the intensity of waves µ; the intensity that crest height exceeds h µ(A > h), see
(23); and the intensity µ(A > h,R > r), see (25).

Derivations of formulas for joint probability densities of A,R,Θ require further generalizations of
Rice’s formula. We will not present those in this paper but in Section AII.3 we give the final results,
the formulas for the pdf of (R,Θ) (28), (A,R,Θ) (26) and of (R0,Θ0) (29).

A II.1 Counting marked waves along lines

As mentioned above a “global” property that each second zero of W (t) is an zero-upcrossing which
marks front of a wave combined with Rice’s formula gave the intensity of wave in (13). Finding
distributions of wave characteristics is a harder problem since it requires accounting for some suitable
local properties of W (t) around a time t such that W (t) = 0. We will illustrate this “local” approach
by providing a simple direct argument for the intensity of waves µ given (13).

Following the definition of waves presented in Figure 1, any zero upcrossing is a front of a wave.
Obviously, if W (t) = 0 and

B = “derivative Ẇ (t) is positive” (16)

is true, then at location t is a front of a wave. Another (more complex) example of local properties of
W (t) is

Br = “derivative Ẇ (t) is positive and for all s ∈ [0, r], W (t+ s) ≥ 0”. (17)

Again, if W (t) = 0 and Br is true, then location t is a front of a wave having half-period longer than
r. The expected values of zeros of W such that a condition "B" (or "Br") holds can be computed using
the following version of Rice’s formula

Generalized Rice Formula: If for a stationary Gaussian process W its marked zeros, i.e. times
W (t) = 0 such that condition B holds, are homogeneously spread in time, then the expected num-
ber of marked zeros in Λ, NΛ(B) is given by

E[NΛ(B)] = ‖Λ‖
∫
P (B|Ẇ (0) = z,W (0) = 0) |z|fẆ (0),W (0)(z, 0) dz, (18)

see Lemma 7.5.2 in [13] for more details.

Combining (18) with (16-17) one obtains formulas for intensity of waves µ and intensity of waves
with half-period exceeding r, µ(T c ≥ r), respectively, viz.

µ =

∫
P (B|Ẇ (0) = z,W (0) = 0))|z|fẆ (0),W (0)(z, 0) dz

=

∫ +∞

0

zfẆ (0),W (0)(z, 0) dz =
1

2π

√
λ2/λ0 (19)

µ(T c ≥ r) =

∫
P (Br|Ẇ (0) = z,W (0) = 0))|z|fẆ (0),W (0)(z, 0) dz, (20)

and hence, by (6),

P (T c ≥ r) = 2π
√
λ0/λ2

∫
P (Br|Ẇ (0) = z,W (0) = 0))|z|fẆ (0),W (0)(z, 0) dz. (21)

Note that derivation of (19) requires some simple calculus and employing property thatW (0) and Ẇ (0)
are independent. (One also uses assumption that sea has zero mean.) Intensity µ(T c ≥ r) in (20) has
to be evaluated using numerical integration. A function RIND from toolbox WAFO could be used for
this purpose.
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A II.2 Counting waves at a sea surface

In this section will consider similar problems as in Section AII.1 although this time a sea surface
W (x, y) will be considered instead of a recordW (t) in time or along a line. First formulas for intensity
of waves µ, i.e. intensity of positive local maximums, and intensity of waves having crest A higher
than h, i.e. µ(A > h), will be given. Both the problems were first studied by Longuet-Higgins in [18].

By Definition 2, a wave crest located at p = (x, y) exceeds level h (A > h) if for the sea surface
gradient

(Wx(p),Wy(p)) = (0, 0),

and the statement
B = “matrix Ẅ (p) is negative definite and W (p) > h”

is true. The intensity µ(A > h) can be evaluated using the following version of Rice’s formula.

Multivalued Rice Formula: Consider a multivalued random functions X(p) : Rn → Rn such that
at the point p a statement B about X, its derivatives or any other random process is true. If zeros
satisfying condition B are spread homogeneously in space then, under some conditions see e.g. [29],
[3], [5], the following equation holds

µ(B) =

∫
P (B|Ẋ(0) = ẋ,X(0) = 0)|det ẋ|fẊ(0),X(0)(ẋ,0) dẋ. (22)

In order to utilize (22) for derivation the intensity of waves with crest above h, let us define X(p) =
(Wx(p),Wy(p)) then

µ(A > h) =

∫
ẋ is neg. def.

P (W (0) > h|Ẋ(0) = ẋ,X(0) = 0)|det ẋ|fẊ(0),X(0)(ẋ,0)dẋ. (23)

The so expressed intensity µ(A > h) has to be computed numerically and no explicit algebraic formula
has been found yet. Even a formula for intensity of local maximums in W (x, y), derived first in [18],
is expressed using the Legendre elliptic integrals of the first and second kinds.

A II.2.1 Distribution and density of crest height A

By (6) the probability that wave crest observed at the sea exceeds h is given by

P (A > h) = µ(A > h)/µ(A > 0).

Differentiating (23) on h gives the pdf of A viz.

fA(h) = c

∫
ẋ is neg. definite

|det ẋ|fẊ(0),X(0),W (0))(ẋ,0,h)dẋ, (24)

where c = 1/µ(A > 0) is the normalization constant. The integral in (24) has to be computed numeri-
cally however for high values of h, which is often of the main interest, asymptotic formulas for fA(h)
can be given, see [7], [5] and [19].

A II.2.2 Joint distribution of crest height and length A,R.

In this section we give formula for intensity of waves having crest height exceeding h and crest half-
length longer than r, i.e. µ(A > h,R > r). Since for stationary sea surface W (x, y) = W (p) waves
having crest and length exceeding some fixed thresholds are homogeneously spread in space formula
one can use (22) to evaluate µ(A > h,R > r), viz.

µ(A > h,R > r) =

∫
ẋ is neg. def.

P (B|Ẋ(0) = ẋ,X(0) = 0)|det ẋ|fẊ(0),X(0)(ẋ,0)dẋ, (25)
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where
B = “W (0) > h and for all p ∈ Dr, W (p) > 0”.

Here Dr is a disk centered at 0 having radius r. The integral in (25) has to be computed numerically.
This is not an easy task since B is a function of infinitely many variables W (p), p ∈ Dr such that
W (p) > 0, and thus it has to be approximated by suitable discretization. For example, since a sea
surface is often observed on a grid pi, say, then in practice the following is a natural approximation

B ≈ “W (0) > h and for all pi ∈ Dr, W (pi) > 0”.

Using the approximative definition of B, the integral in (25) becomes finite dimensional. Methods to
evaluate numerically (22) have been discussed in several papers, see e.g. [16], [8]. The program RIND
in WAFO [9] can be used to evaluate (23). Alternatively, one can use MC simulations (for example,
Fourier snapshots methods are presented in [27]) to approximate the conditional probabilities P (B|·)
and then numerically integrate the integrals in (22).

A II.2.3 Joint probability density of A,R,Θ

Derivation of the formula for joint pdf of A,R is quite complex. It involves generalizations of Rice’s
formula for non-homogeneously spread zeros of multivalued function X(p). In fact, it helps to in-
troduce an additional variable Θ and derive a formula for the joint density of A,R,Θ, where Θ is a
direction from the crest to the nearest point on the zero level contour. Here we give only the formulas
without their derivations for the joint probability densities used to plot figures in Section 4.

It is convenient to consider the polar coordinates

p = (r cos θ, r sin θ)

so that W (r, θ) is identified with W (p). Next let us define an event

B = “Wxx(0) < Wxy(0)2/Wyy(0), Wyy(0) < 0 and for all q ∈ Dr, W (q) ≥ 0”.

where Dr is the disk centered at 0 having radius r. Finally let 1B be an indicator function of B equal
one if B is true and zero otherwise. Then with

X(0,p) =
(
Wx(0),Wy(0),Wθ(p),W (p)

)
,

the joint pdf of A,R,Θ is given by

f(h, r, θ) =
1

µ(A > 0)
E
[
J(r, θ)1B

∣∣X(0,p) = 0,W (0) = h
]
fX(0,p),W (0)(0, h), (26)

for the Jacobian

J(r, θ) = Wyy(0)
(
W 2
xy(0)−Wxx(0)

)
/Wyy(0)

∣∣Wθθ(r, θ)Wr(r, θ)
∣∣, (27)

whereWθθ(r, θ),Wr(r, θ) are partial derivatives ofW (r, θ). Clearly, µ(A > 0) is equal to the intensity
of waves given in (23). A special case of (26) is the joint pdf of R and Θ, viz.

f(r, θ) =
1

µ(A > 0)
E
[
J(r, θ)1B

∣∣X(0,p) = 0
]
fX(0,p)(0), (28)

where this time

B = “W (0) > 0, Wxx(0) < Wxy(0)2/Wyy(0), Wyy(0) < 0 and for all q ∈ Dr, W (q) ≥ 0”.
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A II.2.4 Joint density of R0,Θ0

In this section, for comparison, we give formula for the pdf of R0,Θ0, i.e. the location, in the polar
coordinates, of crest front closest to the origin as defined in Definition 1. The density is obtained using
a generalization of the Durbin’s formula for the first passage density for a process, see [25].

Let us define an event
B = “for all q ∈ Dr, W (q) ≥ 0”.

where Dr is the disk centered at 0 having radius r. Then with

X(p) =
(
Wθ(p),W (p)

)
,

the joint pdf of R0,Θ0 is given by

f(r, θ) = 2E
[
J(r, θ)1B

∣∣X(p) = 0
]
fX(p)(0), (29)

where p = (r cos θ, r sin θ) and the Jacobian is given, with the same notation as in (27), by

J(r, θ) =
∣∣Wθθ(r, θ)Wr(r, θ)

∣∣. (30)

The formula presented in the last two subsections have been used in Figure 5, where for our example,
the pdf of (R0,Θ0) computed using (29) (left plot) is compared with the pdf of (R,Θ) computed using
(26) (right plot).
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