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Abstract

We show how to minimize the asymptotic variance of multipower estimators

using a linear combination of optimal powers. Taking advantage of the lower vari-

ance provided by this technique allows to build superior estimators of integrated

volatility powers. In particular, we focus on a new efficient quarticity estima-

tor and we show, using simulated data, that we can drastically reduce the mean

square error of traditional estimators. The implementation on US stock prices

corroborates our theoretical findings and further shows that efficient quarticity

noticeably reduces the number of detected jumps, and improves the quality of

volatility forecasts.
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1 Motivation

A very active literature in financial econometrics focuses on the estimation of inte-

grated volatility powers. The most popular example is realized volatility, which is

an estimator of the integrated variance and attracted enormous recent interest. The

integral of squared variance, dubbed quarticity, is also quite important since it is a

necessary ingredient in relevant applications, such as estimating the confidence bands

for integrated variance estimates (see, e.g., Andersen et al., 2014), applying jump tests

(see, e.g., Dumitru and Urga, 2012 for a review), forecasting volatility (Bollerslev et al.,

2016), computing the optimal sampling frequency in the presence of market microstruc-

ture noise (see, e.g., Bandi and Russell, 2006). The integrated third volatility power

is needed, for example, to build confidence bands in the estimator developed by Reiß

(2011) to obtain efficiency in the presence of microstructure noise. Integrated volatility

powers are useful, among other things, to estimate the activity of processes modeled

via a jump-diffusion (Todorov and Tauchen, 2011).

Disentangling price volatility due to continuous movements to that due to discontinuous

movements is also of fundamental importance in a number of equally relevant applica-

tions. In this field, a primary advancement has been represented by the introduction

of multipower estimators, a tool introduced by Barndorff-Nielsen and Shephard (2004)

to reduce the bias, due to jumps, in estimating integrated volatility powers. Successful

modifications of multipower variation estimators have been proposed in Andersen et al.

(2012), and Corsi et al. (2010), among others.

Grounding on the success of this literature in estimating integrated volatility powers in

the presence of price discontinuities, this paper concentrates on efficiency, and specif-

ically on how to minimize the variance of multipower estimators. The theory is first

developed in the case without jumps. This allows to study the variance minimization

problem in the simplified case of continuous semimartingales. We provide a general

criterion to find the efficient linear combination of N multipower estimators given the

number m of multipowers employed (for example, m = 2 for bipower variation, m = 3

for tripower variation, and so on), and we present explicit solutions in relevant cases.
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We show that multipower estimators are useful even in the absence of jumps, since

their usage reduces the variance of the estimator. The (empirically compelling) case

with jumps is then recovered by applying the same logic to truncated returns, in the

spirit of Mancini (2009).

The problem of finding the efficient estimator among multipowers is trivial for integrated

variance. In this case, standard realized variance (i.e., the sum of squared returns) is

the globally efficient estimator, achieving the maximum likelihood bound. However, for

other integrated volatility powers the variance minimization problem is not so obvious.

Jacod and Rosenbaum (2013) provide an efficient estimator which requires m→∞, but

do not address the case of a fixed m. Mykland and Zhang (2009) study the fixed m case

and provide a block estimator which is more efficient than popular benchmarks, but do

not address the problem of optimization. Our contribution is to propose a methodology

to provide efficient estimation when the number of powers m is fixed. In particular, we

propose a novel quarticity estimator which has smaller variance, when m is fixed, of

both the Mykland and Zhang (2009) and the Jacod and Rosenbaum (2013) estimator,

coinciding with the latter (and thus achieving global efficiency) when m→∞.

Minimization of the variance can be readily exploited to improve the mean square error

of any multipower estimator, as well as of the “nearest neighbor” estimators of Andersen

et al. (2012), which do not require truncation. Indeed, the gain in variance as m gets

larger comes at the cost of a deterioration of the bias. However, these two effects can

be traded off to select the value of m which minimizes the mean square error, so that

the loss in terms of bias is more than compensated by the gain in terms of variance.

Thus, by construction, the resulting efficient estimator can only lower the mean square

error with respect to the original estimator. Our theoretical contribution has then the

immediate practical application of delivering superior estimates of integrated volatility

powers.

Our theoretical results are corroborated by simulated experiments and empirical ap-

plications, both focused on estimating quarticity. Using simulations, we show that

the efficient multipower estimators perform better than competing alternatives, includ-
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ing standard multipowers, nearest neighbor estimators and the Jacod and Rosenbaum

(2013) estimator. This result is robust to the presence of frictions (market microstruc-

ture noise and flat pricing) which are not dealt with by our theory but are well known

to contaminate the data.

When we apply the proposed quarticity estimator to a set of intraday prices of liquid

US stocks, we confirm that estimates obtained with efficient multipowers are less vari-

able than competing estimators, and suffer of less distortion. For example, efficient

estimated quarticities are larger than the square of integrated variance (as they are

compelled to be asymptotically, by Jensen’s inequality) only in the 13% of cases, a fig-

ure much smaller than what obtained with standard multipowers (44% with tripower,

54% with quadpower) and with standard nearest neighbor estimators (35% with min,

33% with med). Having at disposal superior quarticity estimates has relevant empiri-

cal implications. We provide two examples. The first is that the adoption of efficient

quarticity estimation for standard jump tests delivers drastically less jumps than what

obtained with standard multipowers. This finding supports the recent empirical lit-

erature (see, e.g., Christensen et al., 2014 and Bajgrowicz et al., 2015) claiming that

the number of jumps typically detected in high frequency data is spuriously excessive,

suggesting that a significant part of spuriously detected jumps could be due to ineffi-

cient quarticity estimation. In the second example, we adopt the specification proposed

by Bollerslev et al. (2016) to forecast volatility. In this setting, quarticity is used to

correct the coefficients of the HAR model of Corsi (2009). Also in this case, we show

that efficient quarticity improves the quality of realized volatility forecasts with respect

to standard quarticity measures. Both results clearly emphasize the empirical potential

of our contribution.

The paper is structured as follows. In Section 2, we describe the theoretical framework,

define the class of estimators of interest and state their asymptotic properties. Section

3 contains the theoretical result on efficient multipower estimators. Section 4 reports

the Monte Carlo study, while Section 5 reports the empirical application. Section 6

concludes.
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2 Efficient multipowers

In a filtered probability space satisfying the usual conditions, denote by Xt (e.g., the

log-price of a financial stock or a stock index) an Itō semimartingale of the form

dXt = µtdt+ σtdWt + dJt, (2.1)

where µt is predictable, σt is non-negative and cádlág, and Jt is a jump process. The

estimation target is the integrated volatility power over a finite interval,

VT (R) =

∫ T

0

(σs)
R ds,

for a given R > 0. The most important cases in practice are VT (2) (integrated variance)

and VT (4) (quarticity).

2.1 The case J = 0

We start with the case without jumps, in which the methodology can be outlined clearly.

The empirically compelling case with jumps is treated in the following Section.

Define ∆iX = XiT/n−X(i−1)T/n, for i = 1, . . . , n, and write ∆n = T/n. Multipower es-

timators (Barndorff-Nielsen and Shephard, 2004, 2006) are defined as follows. Consider

an m−valued real vector r = [r1, . . . , rm] with positive coefficients, and let

R =
m∑
i=1

rj.

We define the multipower variation estimator MPV(r) with powers r as

MPV(r) = cr ·
n−m+1∑
i=1

(
m∏
j=1

|∆i+j−1X|rj
)
, (2.2)

where the constant cr, meant to make the estimator unbiased in small samples under
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the assumption of constant volatility, is defined by

cr =
(n
T

)R
2
−1 n

n− (m− 1)

(
m∏
j=1

(µrj)
−1

)
,

where µr = E(|u|r) with u being a standard normal. Important special cases are bipower

variation, used to estimate integrated variance:

MPV([1, 1]) =
π

2

n

n− 1

n−1∑
i=1

|∆iX| |∆i+1X|

and tripower and quadpower variation, both used to estimate quarticity:

MPV ([4/3, 4/3, 4/3]) =
n

T

1

µ3
4
3

n

n− 2

n−2∑
i=1

|∆iX|
4
3 |∆i+1X|

4
3 |∆i+2X|

4
3 ,

MPV ([1, 1, 1, 1]) =
n

T

(π
2

)2 n

n− 3

n−3∑
i=1

|∆iX| |∆i+1X| |∆i+2X| |∆i+3X| .

When Jt = 0, it has been proven, see e.g. Barndorff-Nielsen et al. (2006a), that

MPV([r]) is a consistent and asymptotically normally distributed estimator, as n→∞,

of
∫ T

0
(σs)

R ds. Under mild assumptions on the model (2.1), the following stable central

limit theorem holds:√
1

∆n

(
MPV(r)−

∫ T

0

(σs)
R ds

)
⇒
n→∞

MN
(

0, Vr

∫ T

0

(σs)
2R ds

)
(2.3)

where MN denotes a standard mixed normal distribution, and

Vr =

m∏
j=1

µ2rj − (2m− 1)
m∏
j=1

µ2
rj

+ 2
m−1∑
i=1

i∏
j=1

µrj

m∏
j=m−i+1

µrj

m−i∏
j=1

µrj+rj+i

m∏
j=1

µ2
rj

, (2.4)

see Theorem 3 in Barndorff-Nielsen et al. (2006a) for details.

In the large empirical literature that uses multipower estimators, these are invariably
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implemented with equal powers: bipower variation with r = [1, 1], tripower variation

with r = [4/3, 4/3, 4/3], quadpower variation with r = [1, 1, 1, 1] and so forth. How-

ever, minimizing Vr in formula (2.4) reveals that the variance of the estimator can

be reduced considerably by changing powers. For example, while with the standard

tripower variation we have V[4/3,4/3,4/3] = 13.65, the optimal choice with three powers

would be V[3.5455,0.2182,0.2362] = 9.70, that is a gain of roughly 30% on the asymptotic

variance. This fact has also been remarked in the paper of Mancini and Calvori (2012).

As we show next, combining estimators with different powers is even more efficient.1

This also implies that it makes perfect sense to use multipower estimators even in the

absence of jumps.

We now define the class of estimators inside which we look for the efficient one. We

write a linear combination of N different MPV(r) estimators which have the maximum

number of adjacent returns equal to m as:

GMPV(N,m;σR) =
N∑
j=1

wj MPV(r(j)) (2.5)

where the weights wj, j = 1, . . . , N are such that

N∑
j=1

wj = 1

and for each j = 1, . . . , N , r(j) is a vector in Rm with non-negative components such that∑m
i=1 r

(j)
i = R. By construction, GMPV(N,m;σR) is a consistent estimator of VT (p),

that is

GMPV(N,m;σR)
p−→
∫ T

0

(σs)
R ds

as n → ∞ with fixed N and m. Our problem is to find the efficient estimator in

this class, that is the problem of finding the optimal weights wj and power vectors

r(j) delivering the minimum asymptotic variance of GMPV(N,m;σR). We denote by

GMPV∗(N,m;σR) the efficient estimator in this class for fixed N,m,R. The following

1The concept of efficiency used here corresponds to that used when estimating the parameter σR

in the model Xt = σWt with constant σ, the lower bound for Vr being fixed by maximum likelihood
at the value R2/2. The same concept of efficiency has been used by Jacod and Rosenbaum (2013).
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proposition provides the desired result.

Proposition 2.1. The efficient estimator in the class of linear combinations of multi-

power estimators is given by:

GMPV∗(N,m;σR) =
N∑
j=1

w∗j MPV(r∗(j)), (2.6)

where the efficient Rm-valued power vectors r∗(1), . . . , r∗(N) minimize the quantity

Ṽ (N,m;σR) =
1

N∑
i=1

N∑
j=1

(
C−1

)
ij

,

C−1 is the inverse of the N ×N symmetric matrix C defined as:

Cij =

(
m∏
k=1

µ
r
(i)
k
µ
r
(j)
k

)−1( m∏
k=1

µ
r
(i)
k +r

(j)
k

+
m−1∑
k=1

k∏
`=1

µ
r
(i)
`

m−k∏
`=1

µ
r
(i)
k+`+r

(j)
`

m∏
`=m−k+1

µ
r
(i)
`

+
m−1∑
k=1

k∏
`=1

µ
r
(j)
`

m−k∏
`=1

µ
r
(j)
k+`+r

(i)
`

m∏
`=m−k+1

µ
r
(j)
`
− (2m− 1)

m∏
k=1

µ
r
(i)
k
µ
r
(j)
k

)
,

(2.7)

for i, j = 1, . . . , N ; and the efficient weights coefficient w?j , j = 1, . . . , N , are given by:

w?j = Ṽ (N,m;σR)
N∑
i=1

(
C−1

)
ij
. (2.8)

For the efficient estimator it holds:√
1

∆n

(
GMPV∗(N,m;σR)−

∫ T

0

(σs)
Rds

)
⇒
n→∞

MN
(

0, Ṽ (N,m;σR)

∫ T

0

(σs)
2Rds

)
,

(2.9)

where the above convergence is stable in law.

Proof. See Appendix A.

The above proposition provides a procedure that allows to find, by numerical op-

timization, the efficient combination with given N , m and R. For example, when
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R = 3 the efficient estimator with N = 1, m = 2 is found to be GMPV∗(1, 2;σ3) =

MPV ([0.1358, 2.8642]), with Ṽ (1, 2;σ3) = 4.7947, the lower bound imposed by maxi-

mum likelihood being 4.5 in this case. Adding more estimators in a linear combination

would improve efficiency. So, when N = 2 the efficient estimator is found to be

GMPV∗(2, 2;σ3) = 0.2634 MPV ([1.5, 1.5]) + 0.7366 MPV ([3, 0]) , (2.10)

with Ṽ (2, 2;σ3) = 4.7324; while when N = 3 the efficient estimator is

GMPV∗(3, 2;σ3) =− 0.1345 MPV ([0.6868, 2.3132]) + 0.3639 MPV ([1.3020, 1.6980])

+ 0.7706 MPV ([0.0016, 2.9984]) , (2.11)

with Ṽ (3, 2;σ3) = 4.7320. It is interesting to look, always in the case R = 3, at the

efficient estimator with N = 3,m = 3, which is found to be

GMPV∗(3, 3;σ3) =0.1865 MPV ([0, 1.5, 1.5]) + 0.1865 MPV ([1.5, 0, 1.5]) (2.12)

+ 0.6270 MPV ([0, 3, 0]) , (2.13)

with Ṽ (3, 3; 3) = 4.6666. We can conjecture the emergence a clear structure for the

case N = m. We will exploit this structure in the definition of our efficient quarticity

estimator.

Tables 1 and 2 report the efficient values found when fixing m and N in the cases R = 3

and R = 4 respectively. We can see that, as m and N increase, there is convergence of

the proposed estimator to the globally efficient value R2/2.

2.2 The case J 6= 0

The case with J 6= 0 makes the analysis of the efficiency of multipower estimators more

complicated. Consistency of multipower estimators is indeed lost, in the presence of

jumps, if max{r1, . . . , rm} ≥ 2, and the asymptotic variance of the multipower estimator

also contains a part influenced by jumps if max{r1, . . . , rm} ≥ 1, see Barndorff-Nielsen
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Table 1: Reports the values of Ṽ (m,N ;σ4) for several values of m and N . The globally
efficient value is 8.

N

m 1 2 3 4 5
1 10.666
2 10.050 9.600
3 9.701 9.314 9.143
4 9.478 9.119 8.989 8.965
5 9.323 9.019 8.856 8.850 8.801

Table 2: Reports the values of Ṽ (m,N ;σ3) for several values of m and N . The globally
efficient value is 4.5.

N

m 1 2 3 4 5
1 4.891
2 4.795 4.732
3 4.745 4.693 4.667
4 4.714 4.667 4.666 4.641
5 4.693 4.653 4.643 4.629 4.620

et al. (2006a,b); Veraart (2010); Vetter (2010); Woerner (2006). Thus, the central limit

Theorem in Eq. (2.3) only holds with these two constraints.

However, a simple solution at hand is provided by applying multipower estimators to

truncated returns. Consider a positive stochastic process ϑt, which we call a threshold

(Mancini, 2009). Write ϑt = ξtΘ(∆), with Θ(∆) being a real function satisfying

lim
∆→0

Θ(∆) = 0, lim
∆→0

∆ log 1
∆

Θ(∆)
= 0, (2.14)

and ξt being a stochastic process on [0, T ] which is a.s. bounded and with a strictly

positive lower bound. Using the threshold, we define truncated equally-spaced returns,
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observed over the interval [0, T ] as

\∆iX = (∆iX) I{|∆iX|≤ϑ(i−1)T/n}, i = 1, . . . , n (2.15)

where I{A} is the indicator function of the set A. The truncation is meant to annihilate

returns larger than a given threshold, while leaving all the remaining returns unchanged.

We define the threshold multipower variation estimator TMPV(r) (Corsi et al., 2010) as

TMPV(r) = c′r ·
n−m+1∑
i=1

(
m∏
j=1

| \∆i+j−1X|rj
)
. (2.16)

where the constant c′r, meant to make the estimator unbiased in small sample under

the assumption of constant volatility, is now defined by

c′r =
(n
T

)R
2
−1 n

n− (m− 1)− nJ

(
m∏
j=1

(µrj)
−1

)
, (2.17)

where nJ is the number of terms vanishing in the sum in Eq. (2.16) because of the

indicator function. Then, under mild conditions for the process (2.1), the following

stable central limit continues to hold as n→∞:√
1

∆n

(
TMPV (r)−

∫ T

0

(σs)
R ds

)
⇒MN

(
0, Vr

∫ T

0

(σs)
2R ds

)
, (2.18)

see Theorem 2.3 in Corsi et al. (2010) for the case with finite activity jumps, and

Theorem 13.2.1 in Jacod and Protter (2012), for the general case allowing for infinite

activity jumps.

Using truncated returns, the results in Section 2.1 can be readily recovered. The disad-

vantage of the truncation is the cost of estimating an additional parameter, that is the

threshold ϑ. However, using a reasonably high threshold (in this paper, we always use 5

“local” standard deviations) will leave out very big jumps only, whose impact would be

the largest, while remaining small jumps are dealt with the multipower technique. This

double-sword feature smoothes the hurdle of having to select an additional threshold

and makes the proposed estimators virtually immune from the bias due do the presence
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of the jumps, so that we can concentrate on variance reduction.

An alternative way to avoid threshold selection has been proposed by Andersen et al.

(2012) and robustified inAndersen et al. (2014), consisting in a “comparison” method

based on the nearest neighbors. We also consider this kind of estimators in the Monte

Carlo study and empirical application, namely the minRQ estimator, defined as

minRQ =
π

3π − 8

n2

n− 1

n−1∑
i=1

min (|∆iX| , |∆i+1X|)4 , (2.19)

and the medRQ estimators, defined as

medRQ =
3π

9π + 72− 52
√

3

n2

n− 2

n−2∑
i=1

med (|∆iX| , |∆i+1X| , |∆i+2X|)4 . (2.20)

Both estimators are consistent for quarticity in the presence of jumps, allow for a central

limit theorem in the same form of Eq. (2.18) with Vr replaced by 18.54 for the minRQ

estimator, and by 14.16 for the medRQ estimator. Thus, the nonlinear structure of these

estimators implies a quite large asymptotic variance, which means that the combined

use of neighbor estimators and efficient multipowers, as suggested in Section 3.2, also

leads to improvement of the estimator in the mean square error sense. Moreover, also

nearest neighbor estimators might be truncated. Finally, changing nearest neighbor

powers could also be of help with the variance, even if this theoretical problem appears

more challenging.

In what follows, we cast the theory in the more realistic case in which Jt 6= 0 using

truncated returns, and we restrict our attention to threshold multipower estimators.

3 Estimating quarticity

In practice, two cases appear to be more relevant: the case R = 2 (integrated volatility),

and the case R = 4 (integrated quarticity).

In the case R = 2 the efficient multipower estimator, for every value of m and N , is
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simply TMPV([2]), that is the threshold realized variance proposed by Mancini (2009).

Indeed, this coincides (asymptotically) with the maximum likelihood estimator of the

parameter σ2 in the model Xt = σWt. The case with R = 2 is the unique value of R for

which the efficient estimator is the same for all m. Indeed, inspection of the proof of

Proposition 2.1 reveals that the efficiency of GTMPV(N,m;σR) can be formally related

to the efficiency of the GMM estimator with a number N of moment restrictions, where

N could diverge to infinity. The problem of efficient GMM estimator with a continuum

of moment restrictions (when N → ∞) is discussed in Carrasco and Florens (2014),

whose Proposition 4.1 shows that efficiency can be reached if the moment restrictions

span the score of the likelihood (namely, with respect to the parameter σR for the

model Xt = σWt). Since the score (the derivative of the log-likelihood with respect to

the parameter of interest) takes the form

si = 1− ( \∆iX)2(σR)−1/2, (3.1)

for i = 1, . . . , n, it is clear that efficiency can be reached only in the case R = 2, since

for different values of R the score cannot be spanned, even when we allow N to diverge.

3.1 Efficient quarticity estimation

The case R = 4 (quarticity) is more intriguing and particularly important in financial

applications: it is used, for example, in determining the optimal sampling frequency in

the presence of market microstructure noise (Bandi and Russell, 2006); in computing

jump tests; in determining the confidence intervals of realized variance; in forecasting

volatility; see, for example, the discussion in Balter (2015), who provides an estimator

based on the observation of the whole price path.

Based on the above analysis, we propose to use the quarticity estimator which we find
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to be efficient when N = m, that is2:

GTMPV∗∗(m;σ4) =
3

2m+ 1
TMPV([4]) +

2

2m+ 1

m−2∑
j=0

TMPV([2, 0, . . . , 0︸ ︷︷ ︸
j terms

, 2]), (3.2)

The weights in Eq. (3.2) sum up to 1, so that GTMPV∗∗(m;σ4) is a consistent estimator,

as n → ∞, of VT (4) for every fixed value of m. The next proposition provides the

asymptotic distribution of GTMPV∗∗(m;σ4) for a fixed m.

Proposition 3.1. As n→∞, if m is fixed,√
1

∆n

(
GTMPV∗∗(m;σ4)−

∫ T

0

σ4
sds

)
⇒MN

(
0, V ∗∗(m,σ4)

∫ T

0

σ8
sds

)
, (3.3)

where

V ∗∗(m,σ4) = 8 +
8

2m+ 1
, (3.4)

and the above convergence is stable in law.

Proof. See Appendix A.

The estimator (3.2) is asymptotically equivalent to that of Jacod and Rosenbaum

(2013), since its variance converges to 8
∫ T

0
σ8
sds when m → ∞. In small samples,

the Jacod and Rosenbaum (2013) can also be written, ignoring end-effects, as a linear

combination of multipower estimators (see the proof of Proposition 3.2, stated below).

The difference consists in the weights of the linear combination. For the estimator 3.2,

the weights are purposedly designed to be efficient for fixed m. Thus, the estimator (3.2)

has smaller variance than the Jacod and Rosenbaum (2013) estimator implemented with

the same window. As we discuss below, this fact is very important in practice. Indeed,

larger m also implies larger bias. When the objective is the minimization of a loss

function which depends on both variance and bias, as it is customary, an intermediate

value of m is optimal. Thus, minimizing the variance in the fixed m case is important.

The problem of improving efficiency when m is fixed has also been studied by Mykland

2The global efficiency of the estimator in Eq. (3.2) for fixed m is left as a theoretical conjecture.
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and Zhang (2009), who propose a block estimator for integrated volatility powers which

is UMVU in each block.3 This clearly improves the asymptotic variance, but does not

explore (as we do here) the possibility of interaction among blocks. For this reason, our

estimator is more efficient. The asymptotic variance of the Mykland and Zhang (2009)

estimator when R = 4 is indeed given, from Eq. (58) in their paper, by:

V MZ(m,σ4) = 8 + 8
m2 + 2m

m2 − 1
(3.5)

so that the relative efficiency compares favorably for GTMPV∗∗(m;σ4) since

V MZ(m,σ4)

V ∗∗(m,σ4)
=

1

2

m(2m+ 1)(m+ 2)

(m+ 1)2(m− 1)
> 1. (3.6)

Figure 1 shows the Asymptotic Relative Efficiency (ARE) of both estimators as a func-

tion of m, showing that the advantage in using the efficient multipowers estimator can

be quit large for small values of m. The figure also shows the ARE of the standard

multipower estimator TMPV([4/m, . . . , 4/m︸ ︷︷ ︸
m terms

]) with all equal powers (for m = 1 it triv-

ially coincides with the efficient estimator; for m = 2 this is bipower variation, for

m = 3 tripower variation, for m = 4 quadpower variation, and so on), which shows that

using equal powers for large m is definitively not the best option; and the ARE of the

minRQ (compared with the case m = 2) and the medRQ estimator (compared with the

case m = 3), which shows that the min-med estimators have lower relative efficiency

than traditional multipowers. For efficient multipowers and the block estimator, the

asymptotic relative efficiency increases with m, converging to 1 when m → ∞. The

convergence is faster for the efficient multipower estimator.

3.2 The choice of the optimal m: bias considerations

Achieving efficiency is clearly not the end of the story. Typically, the objective is the

minimization of a loss function which depends also on the bias, such as the mean square

3The setting of Mykland and Zhang (2009) is without jumps. It can however be reconciled with
our framework by applying their estimator to truncated returns, as we do here, instead of the original
ones.
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Figure 1: Asymptotic Relative Efficiency (with respect to the case m → ∞) for quar-
ticity estimation. Several estimators are compared: the GTMPV∗∗ efficient multipower
estimator in Eq. (3.2), the Mykland and Zhang (2009) block estimator, the standard
multipower estimator with all equal powers, and the minRQ and medRQ estimator.

error. While the variance tends to decrease with m, the bias tends to increase with m,

thus originating the usual bias-variance tradeoff.

A convenient expression of the asymptotic bias is provided by the next proposition, in

which m is allowed to diverge at a suitable rate. The result borrows from the work of

Jacod and Rosenbaum (2013).

Proposition 3.2. Assume that volatility is driven by the process

dσ2
t = µσt dt+ ΛtdWt + dJσt ,

where µt is a predictable process, Λt is cádlág and Jσt is a jump process. If n,m → ∞

in such a way that m2/n→ θ with θ > 0, we have

√
1

∆n

(
GTMPV∗∗(m;σ4)−

∫ T

0

σ4
sds

)
⇒ B1 +B2 +B3 +MN

(
0, 8

∫ T

0

σ8
sds

)
, (3.7)
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where

B1 = −θ
2

(
σ4

0 + σ4
T

)
, (3.8)

B2 = −θ
6

∫ T

0

Λ2
sds, (3.9)

B3 = −θ
6

∑(
∆σ2

s

)2
, (3.10)

and ∆σ2
s = σ2

s − σ2
s− are the jumps in the variance process.

The (asymptotic) bias thus consists of three negative terms,4 the first due to the border-

effect, and the second and the third due to the variability of volatility.

We can take advantage of the small sample approximation of the bias provided by

Proposition 3.2 with the small sample approximation of the variance provided by Propo-

sition 3.1 to get the following approximation of the mean square error:

MSE ≈ ∆n

(
8 +

8

2m+ 1

)
Q2 + ∆3

nm
4B2 (3.11)

where Q2 =
∫ T

0
σ8
sds and B = 1

2
(σ4

0 + σ4
T ) + 1

6

(∫ T
0

Λ2
sds+

∑
(∆σ2

s)
2
)

.

In principle, this MSE could be estimated from the data as a function of m, which could

then be optimized. The main problem would be to estimate the volatility of volatility

term
∫ T

0
Λ2
sds +

∑
(∆σ2

s)
2

with sufficiently low error. To gain feeling of what we can

get, we set
∫ T

0
σtdt = 1, we ignore the end-effect term 1

2
(σ4

0 + σ4
T ) since we use the

constant cr in Eq. (2.17) to compensate for it, and optimize the MSE for various values

of Λ =
(∫ T

0
Λ2
sds+

∑
(∆σ2

s)
2
)1/2

. Table 3 reports the optimal m we found for different

choices of n, and shows that the optimal m would strongly depend on the volatility-

of-volatility estimate. Given the notorious difficulty in estimating this parameter, we

propose the following alternative approach.

We assume to start from a quarticity estimator Q̂, which might not be efficient, but

which is assumed to be unbiased (for example, any multipower or nearest neighbor

4Note, that in finite samples there is another source of negative bias, due to the truncation of the
largest observations. However, it is of smaller order with respect to the other two biases, hence it is
not considered here.
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Table 3: Reports the values of mopt that optimize the mean square error (3.11) for

different values of n and Λ =
(∫ T

0
Λ2
sds+

∑
(∆σ2

s)
2
)1/2

, in the case
∫ T

0
σ8
t dt = σ0 =

σT = 1.

Λ = 0.1 Λ = 0.5 Λ = 1 Λ = 2 Λ = 3 Λ = 5

optimal m

n = 40 56 15 9 5 4 2

n = 80 73 20 12 7 5 3

n = 400 109 38 22 13 9 6

estimator). Under this assumption, we can always improve (in the mean square error

sense, or in the sense of any alternative loss function combining bias and variance) with

respect to the estimator Q̂ by choosing m∗ that minimizes the MSE:

M̃SE =
[

GTMPV∗∗(m;σ4)− Q̂
]2

+ V ar(GTMPV∗∗(m;σ4)) (3.12)

where the variance of the efficient estimator can be estimated, using the asymptotic

expression (3.3), by

V ar(GTMPV∗∗(m;σ4)) ≈
(

8 +
8

2m+ 1

)
TMPV([8/3, 8/3, 8/3]),

or replacing TMPV([8/3, 8/3, 8/3]) by another consistent estimator of
∫ T

0
σ8
sds.

5 By

construction, the efficient estimator GTMPV∗∗(m∗;σ4) will have a smaller mean square

error than the original estimator Q̂. This is the technique we use in the empirical

applications on jump testing and volatility forecasting, using Q̂ = TMPV([4]).

5Alternatively, the variance of GTMPV∗∗(m;σ4) could be estimated, in small samples, using wild
bootstrap. Our numerical experiments indicate that the two ways of estimating the variance are
equivalent, so that we suggest to use the handy asymptotic approximation.

18



4 Monte Carlo simulations

In this Section, we perform a series of Monte Carlo experiments focusing on quarticity

estimation at different frequencies. In particular, on a simulated typical trading day in

the US market of 6.5 hours, we consider n = 40, 80, 400 which roughly corresponds to

10, 5 and 1-minutes returns respectively.

In order to generate a realistic price dynamics, we simulate the jump-diffusion model:

d log pt = µ dt+ γtσtdWp,t + dJt

d log σ2
t = (α− β log σ2

t ) dt+ ηdWσ,t,
(4.1)

where Wp and Wσ are standard Brownian motions with corr (dWp, dWσ) = ρ, σt is a

stochastic volatility factor and γt is an intraday effect. We use the model parameters

estimated by Andersen et al. (2002) on S&P500 prices: µ = 0.0304, α = −0.012, β =

0.0145, η = 0.1153, ρ = −0.6127, where the parameters are expressed in daily units

and returns are in percentage, and we use:

γt,τ =
1

0.1033
(0.1271τ 2 − 0.1260τ + 0.1239),

as estimated by us on S&P500 intraday returns. We discretize model (4.1) in the

interval [0, 1] with the Euler scheme, using a discretization step of
√

1/n.

Instead of specifying the jump process as a compound Poisson process with random

jump sizes we restrict its realizations to a fixed number of jumps of a known size. In

particular, we consider the case of absence of jumps and the case of a single jump with

deterministic size equal to 3
√

1/n (small jump, notice that in the simulations σt ' 1)

and 10
√

1/n (big jump).

In order to make the Monte Carlo simulations more realistic, we further simulate ad-

ditional frictions which are not considered in the theoretical framework of this paper,

but are known to be present in the data. The frictions we consider are microstructure

noise, in the form of distortions to the price process, and flat prices, that is prices that
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do not change due, for example, to liquidity reasons.6 We thus consider three possible

scenarios:

1. The price process is observed without frictions.

2. The price process is contaminated by microstructure noise.

3. The price process is contaminated by flat prices.

In order to save space, since microstructure noise and flat pricing have the largest

impact at high frequency, we study these frictions only at n = 400.

To estimate quarticity we implement standard (non truncated) quadpower variations

MPV([1, 1, 1, 1]), threshold tripower and quadpower variations, that is TMPV([4
3
, 4

3
, 4

3
])

and TMPV([1, 1, 1, 1]) respectively; the single power TMPV([4]) estimator; and multi-

power estimators GTMPV∗∗(m) for different values of m (for simplicity, we omit the σ4

in the notation). We also implement the nearest neighbor minRQ and medRQ estima-

tors defined in Eq. (2.19) and Eq. (2.20) Finally, we consider the efficient estimator

QVeff(kn) of Jacod and Rosenbaum (2013), see Eq. (A.3), implemented with the bias

correction proposed in Jacod and Rosenbaum (2015) for different values of kn.

In order to set up the threshold for truncated multipowers, we use

ϑt = cϑ · σ̂nt (4.2)

with cϑ = 5 and and σ̂nt is an estimator of local standard deviation (that is over the

interval
√

1/n) obtained as in Corsi et al. (2010). The choice of cϑ = 5 is meant

to truncate only returns that are extremely large with respect to the estimated local

standard deviation.

On each replication we compute the generated quarticity value IQk and the estimated

quarticity value ÎQk according to different estimators (k = 1, . . . ,M). We report the

6Multipower estimators could be robustified against the presence of market microstructure noise
using pre averaging techniques, see e.g. Hautsch and Podolskij (2013). On flat pricing, a theoretical
analysis is offered by Phillips and Yu (2009) and Bandi et al. (2014).
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relative bias,

Bias =
1

M

M∑
k=1

ÎQk − IQk

IQk

,

the relative standard deviation,

Std =

√√√√ 1

M

M∑
k=1

(
ÎQk − IQk

IQk

− bias

)2

,

and the relative Root Mean Square Error:

RMSE =
√

Std2 + Bias2.

The figures are computed with M = 10, 000 replications.

4.1 Estimation without frictions

Tables 4, 5, 6 report the results in the case n = 40 (10 minutes), n = 80 (5 minutes),

n = 400 (1 minute) respectively for the competing estimators, and in three cases:

absence of jumps, presence of a single small jump and presence of a single large jump.

Generally speaking, the performance of truncated estimators is largely better than non-

truncated ones. In the case with a big jump, MPV is literally shattered: the RMSE

decreases with increasing frequency, but it is still roughly +400% at the one-minute

frequency. Basically, non-truncated estimators are severely biased. Standard threshold

multipower estimators reduce the bias considerably. For example, in the 5-minute

case in the presence of a small jump, the bias goes from the +151% of the standard

MPV([1, 1, 1, 1]) estimator to the −6% of the truncated TMPV([1, 1, 1, 1]) estimator.

However, as we discuss below, the RMSE of TMPV([1, 1, 1, 1]) (and TMPV([4
3
, 4

3
, 4

3
])) is

higher than that of the GTMPV∗∗ estimator because of the efficiency loss.

Efficient multipowers also perform better than the neighbor truncation min-med esti-

mators. At the frequency of 5 minutes (the most typical in applications) the RMSE

of min-med estimators is more than double than that of GTMPV∗∗ estimators, both in
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the case in which there are small or large jumps, and still roughly 50% higher on paths

without jumps, which again reflects the efficiency loss of these estimators.

Regarding the GTMPV∗∗(m) estimators, we can see that they generally display a small

negative bias, which is consistent with the theory. Using the efficient estimator, we

obtain a gain in terms of relative RMSE, with respect to the standard multipower

estimators TMPV([1, 1, 1, 1]) and TMPV([4
3
, 4

3
, 4

3
]), of roughly 20% at 10 minutes (from

60% to 40%), of 13% at 5 minutes (from 43% to 30%) and of 5% at 1 minute (from

20% to 15%). Thus, the gain is substantial and is entirely due to the smaller variance

of the efficient estimators, which more than offsets the loss in bias due to the higher

value of m employed.

The performance of the efficient estimators of Jacod and Rosenbaum (2013) reflects

its asymptotic nature: it improves with large kn. In order to compare it with the

GTMPV∗∗(m; 4), we fix kn = m+ 1 and compute the two estimators for various m. The

relative RMSE for the three different frequencies used in the simulation study in the case

without jumps is shown in Figure 2. It is clear that using the estimator GTMPV∗∗(m; 4),

which has a lower variance than the Jacod and Rosenbaum estimator for fixed m, can

obtain a better result with respect to an estimator which is designed to have the lowest

possible variance when m (that is, kn− 1) diverges to +∞. Again, this is important in

practice, since the number of multipowers (or the window used for preliminary estimates

of spot variance) is actually fixed. The performance of the two estimators tend to be

similar when m is large, since the two estimators coincide (excluding finite sample bias

corrections) for large m. The Jacod and Rosenbaum estimator is also better when n is

large (at the 1-minute frequency) for intermediate values of m.

Summarizing, the Monte Carlo experiments in this section show that i) truncating

returns is essential to get reasonable quarticity estimates in the presence of jumps; ii)

standard multipower estimators, including the min-med estimator, suffer substantial

efficiency loss with respect to the efficient multipower estimators, which results in a

deteriorated estimate in terms of the mean square error; iii) an efficient estimator

designed for fixed m can be beneficial, in terms of mean square error, with respect to
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Figure 2: Relative RMSE obtained on simulations for the GTMPV∗∗(m) and QVeff, the
Jacod and Rosenbaum estimator with kn = m + 1 for different values of m, at three
different sampling frequencies.
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Table 4: Quarticity estimators. The table reports the relative RMSE, standard de-
viation and bias computed with M = 10, 000 replications of n = 40 intraday returns
generated by model (4.1). The threshold is set as in Eq. (4.2) with cϑ = 5.

no jumps small jump big jump
RMSE Std Bias RMSE Std Bias RMSE Std Bias

MPV([1, 1, 1, 1]) 0.6036 0.5998 -0.0674 3.6144 3.0225 1.9820 11.9077 9.6054 7.0378
TMPV([4]) 0.5353 0.5353 -0.0007 0.5286 0.5277 -0.0306 0.5388 0.5379 -0.0320

TMPV([ 43 ,
4
3 ,

4
3 ]) 0.5914 0.5898 -0.0441 0.5652 0.5520 -0.1218 0.5864 0.5747 -0.1167

TMPV([1, 1, 1, 1]) 0.6041 0.6002 -0.0686 0.5758 0.5519 -0.1641 0.5946 0.5738 -0.1558
minRQ 0.7094 0.7092 -0.0166 1.1396 1.1123 0.2478 1.0556 1.0307 0.2278
medRQ 0.6053 0.6042 -0.0359 0.9878 0.9566 0.2461 0.9228 0.8931 0.2326

GTMPV∗∗(4) 0.4751 0.4743 -0.0272 0.4719 0.4695 -0.0478 0.4878 0.4855 -0.0480
GTMPV∗∗(8) 0.4432 0.4392 -0.0594 0.4405 0.4330 -0.0810 0.4546 0.4475 -0.0801

GTMPV∗∗(12) 0.4278 0.4202 -0.0803 0.4299 0.4178 -0.1010 0.4385 0.4265 -0.1021
GTMPV∗∗(16) 0.4220 0.4121 -0.0912 0.4253 0.4106 -0.1109 0.4326 0.4180 -0.1115
GTMPV∗∗(20) 0.4198 0.4095 -0.0924 0.4249 0.4105 -0.1094 0.4328 0.4187 -0.1099
GTMPV∗∗(24) 0.4213 0.4132 -0.0820 0.4259 0.4149 -0.0961 0.4344 0.4236 -0.0963

QVeff(4) 0.4785 0.4708 -0.0857 0.4727 0.4556 -0.1261 0.4894 0.4732 -0.1250
QVeff(8) 0.4777 0.4773 -0.0192 0.4636 0.4592 -0.0636 0.4799 0.4756 -0.0635

QVeff(12) 0.4557 0.4546 -0.0325 0.4460 0.4389 -0.0790 0.4566 0.4495 -0.0802
QVeff(16) 0.4376 0.4339 -0.0567 0.4310 0.4180 -0.1052 0.4387 0.4258 -0.1056
QVeff(20) 0.4268 0.4188 -0.0821 0.4256 0.4061 -0.1275 0.4319 0.4126 -0.1278
QVeff(24) 0.4266 0.4157 -0.0957 0.4267 0.4024 -0.1418 0.4325 0.4087 -0.1412

an efficient estimator designed for diverging m.

4.2 Estimation in the presence of microstructure noise

The first type of friction we introduce in simulated experiments is microstructure noise

in the form of autocorrelated price distortion. The observed prices, Xj, are generated

as follows:

Xj = X∗j + εj, (4.3)

where X∗j is simulated as in the previous section, and

εj = ρεεj−1 + ε∗j , ε∗j ∼ N (0, σ2
ε ). (4.4)

We consider a persistent noise process (ρε = 0.5). The microstructure noise is virtually

not present at moderate frequencies, hence we do not consider the 5- and 10-minute
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Table 5: Quarticity estimators. The table reports the relative RMSE, standard de-
viation and bias computed with M = 10, 000 replications of n = 80 intraday returns
generated by model (4.1). The threshold is set as in Eq. (4.2) with cϑ = 5.

no jumps small jump big jump
RMSE Std Bias RMSE Std Bias RMSE Std Bias

MPV([1, 1, 1, 1]) 0.4376 0.4362 -0.0356 2.7541 2.3016 1.5124 9.1583 7.4072 5.3860
TMPV([4]) 0.3761 0.3759 -0.0130 0.3806 0.3802 -0.0174 0.3805 0.3801 -0.0161

TMPV([ 43 ,
4
3 ,

4
3 ]) 0.4248 0.4240 -0.0263 0.4263 0.4209 -0.0676 0.4247 0.4202 -0.0620

TMPV([1, 1, 1, 1]) 0.4380 0.4364 -0.0366 0.4413 0.4319 -0.0905 0.4342 0.4257 -0.0854
minRQ 0.5051 0.5049 -0.0153 0.6991 0.6877 0.1255 0.6497 0.6376 0.1246
medRQ 0.4362 0.4354 -0.0259 0.5935 0.5799 0.1265 0.5781 0.5629 0.1317

GTMPV∗∗(5) 0.3361 0.3350 -0.0278 0.3406 0.3389 -0.0342 0.3391 0.3377 -0.0306
GTMPV∗∗(10) 0.3208 0.3167 -0.0510 0.3221 0.3167 -0.0591 0.3217 0.3169 -0.0551
GTMPV∗∗(15) 0.3138 0.3060 -0.0696 0.3136 0.3037 -0.0781 0.3134 0.3043 -0.0748
GTMPV∗∗(20) 0.3091 0.2973 -0.0845 0.3100 0.2958 -0.0930 0.3090 0.2957 -0.0898
GTMPV∗∗(30) 0.3065 0.2890 -0.1020 0.3081 0.2879 -0.1098 0.3070 0.2878 -0.1068
GTMPV∗∗(40) 0.3072 0.2894 -0.1030 0.3078 0.2877 -0.1094 0.3070 0.2878 -0.1069

QVeff(5) 0.3427 0.3338 -0.0776 0.3461 0.3332 -0.0935 0.3460 0.3343 -0.0889
QVeff(10) 0.3419 0.3414 -0.0192 0.3411 0.3389 -0.0389 0.3414 0.3397 -0.0346
QVeff(15) 0.3349 0.3341 -0.0231 0.3315 0.3286 -0.0438 0.3320 0.3296 -0.0399
QVeff(20) 0.3261 0.3237 -0.0388 0.3215 0.3159 -0.0599 0.3219 0.3168 -0.0569
QVeff(30) 0.3117 0.3023 -0.0762 0.3126 0.2971 -0.0973 0.3111 0.2962 -0.0951
QVeff(40) 0.3095 0.2900 -0.1081 0.3118 0.2838 -0.1291 0.3102 0.2827 -0.1276

Table 6: Quarticity estimators. The table reports the relative RMSE, standard devi-
ation and bias computed with M = 10, 000 replications of n = 400 intraday returns
generated by model (4.1). The threshold is set as in Eq. (4.2) with cϑ = 5.

no jumps small jump big jump
RMSE Std Bias RMSE Std Bias RMSE Std Bias

MPV([1, 1, 1, 1]) 0.2094 0.2092 -0.0096 1.2485 1.0169 0.7245 4.1396 3.3419 2.4431
TMPV([4]) 0.1772 0.1772 -0.0019 0.1748 0.1746 -0.0068 0.1749 0.1748 -0.0062

TMPV([ 43 ,
4
3 ,

4
3 ]) 0.2017 0.2016 -0.0069 0.1953 0.1948 -0.0148 0.1986 0.1981 -0.0141

TMPV([1, 1, 1, 1]) 0.2094 0.2092 -0.0099 0.2034 0.2024 -0.0199 0.2069 0.2060 -0.0188
minRQ 0.2373 0.2373 -0.0015 0.2449 0.2437 0.0243 0.2501 0.2490 0.0236
medRQ 0.2046 0.2046 -0.0049 0.2158 0.2144 0.0243 0.2198 0.2185 0.0238

GTMPV∗∗(20) 0.1516 0.1499 -0.0229 0.1505 0.1482 -0.0260 0.1506 0.1483 -0.0261
GTMPV∗∗(30) 0.1501 0.1462 -0.0337 0.1493 0.1447 -0.0367 0.1493 0.1447 -0.0369
GTMPV∗∗(40) 0.1497 0.1432 -0.0436 0.1491 0.1417 -0.0463 0.1493 0.1418 -0.0468
GTMPV∗∗(50) 0.1504 0.1409 -0.0527 0.1499 0.1393 -0.0554 0.1499 0.1392 -0.0558

QVeff(20) 0.1582 0.1581 -0.0044 0.1558 0.1554 -0.0104 0.1568 0.1565 -0.0099
QVeff(30) 0.1569 0.1569 -0.0042 0.1547 0.1544 -0.0105 0.1549 0.1546 -0.0099
QVeff(40) 0.1549 0.1547 -0.0083 0.1534 0.1528 -0.0141 0.1537 0.1530 -0.0141
QVeff(50) 0.1534 0.1528 -0.0139 0.1522 0.1510 -0.0192 0.1521 0.1509 -0.0198
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frequencies in the present subsection. For n = 400 (1-minute), as in the simulation

design of Podolskij and Vetter (2009), we set σ2
ε = 0.0005IVt, with IVt denoting the

daily integrated variance.

Results, shown in Table 7, show that microstructure noise induces a strong distortion

in all estimates, in form of an upper bias of roughly +50% which is very similar across

all considered estimators. Still, the observed variance of efficient multipowers is the

lowest among competitors.

Even if the magnitude of the bias due to microstructure noise could vary given a different

data generating process for the price dynamics and the noise itself, these results suggest

that the impact of the noise is anyway translated into an upper bias which affects

the competing estimators very similarly, suggesting that it would still be beneficial to

concentrate on variance reduction even in the presence of this kind of friction.

4.3 Estimation in the presence of flat prices

We finally consider a form of friction which we document to be present at the highest

frequencies, that is flat pricing. Flat pricing consists in the observation of spurious zero

returns, which might be due to lack of liquidity in the market or asymmetric information

(see the discussion in Bandi et al., 2014). In our simulation setting, we assume that the

generated returns are given by:

∆jX = ∆jX
∗ · ψj, (4.5)

where X∗ is the process generated without frictions, and

ψj =

0, with probability pψ

1, with probability (1− pψ)
(4.6)

We set pψ = 0.3 and, as before, we consider only the case n = 400 (1-minute data).

This choice is motivated by data analysis, since the phenomenon of flat prices tends
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Table 7: Quarticity estimators. The table reports the relative RMSE, standard devi-
ation and bias computed with M = 10, 000 replications of n = 400 intraday returns
generated by model (4.3), which includes microstructure noise. The threshold is set
as in Eq. (4.2) with cϑ = 5. The autocorrelation of the noise process is ρε = 0.5.

no jumps small jump big jump
RMSE Std Bias RMSE Std Bias RMSE Std Bias

MPV([1, 1, 1, 1]) 0.6615 0.3249 0.5762 2.1188 1.3929 1.5966 5.9511 4.4924 3.9030
TMPV([4]) 0.6352 0.2703 0.5748 0.6358 0.2646 0.5781 0.6251 0.2588 0.5690

TMPV([ 43 ,
4
3 ,

4
3 ]) 0.6546 0.3116 0.5756 0.6529 0.3144 0.5722 0.6366 0.3009 0.5610

TMPV([1, 1, 1, 1]) 0.6612 0.3253 0.5756 0.6555 0.3329 0.5647 0.6381 0.3204 0.5518
minRQ 0.6912 0.3640 0.5876 0.7336 0.3839 0.6251 0.7388 0.3802 0.6335
medRQ 0.6705 0.3225 0.5878 0.7060 0.3354 0.6212 0.7040 0.3257 0.6242

GTMPV∗∗(30) 0.5889 0.2298 0.5422 0.5812 0.2252 0.5358 0.5718 0.2201 0.5277
GTMPV∗∗(40) 0.5765 0.2262 0.5303 0.5688 0.2207 0.5243 0.5596 0.2173 0.5157
GTMPV∗∗(50) 0.5654 0.2245 0.5190 0.5567 0.2166 0.5128 0.5493 0.2152 0.5054

QVeff(30) 0.6287 0.2430 0.5798 0.6155 0.2388 0.5673 0.6076 0.2320 0.5616
QVeff(40) 0.6233 0.2393 0.5755 0.6113 0.2349 0.5644 0.6036 0.2302 0.5579
QVeff(50) 0.6141 0.2339 0.5678 0.6056 0.2342 0.5585 0.5960 0.2282 0.5506

to fade away, for the stocks we consider in the empirical application, at the 5-minutes

frequency. Results are show in Table 8.

Even if the probability of flat trading we use in the simulated experiments is quite high

with respect to the observed values (reported in Table 9), the impact on final estimates

is quite small. For efficient multipowers, the relative RMSE increases from about 15%

to 17% only. This is basically due to increased estimator variance, in line with the

theoretical predictions of Phillips and Yu (2009) for realized variance. In this sense,

microstructure noise and flat trading have an impact which is completely different on

estimators, the first kind of friction mostly affecting the estimator bias, whereas the

second kind of friction mostly affecting the estimator variance.

Interestingly, efficient multipowers are much more robust than competing estimators to

this form of friction. Indeed, the relative RMSE standard TMPV estimators increases

from roughly 20% to 45% for tripower and 60% for quadpower; for minRQ it increases

from 23% to 30%; and for medRQ it increases from 20% to 23%. The gap between

efficient multipowers and competing estimator becomes then wider in the presence of

flat trading.
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Table 8: Quarticity estimators. The table reports the relative RMSE, standard devi-
ation and bias computed with M = 10, 000 replications of n = 400 intraday returns
generated by model (4.5), which includes flat pricing. The threshold is set as in Eq.
(4.2) with cϑ = 5. The probability of observing a zero return is pε = 0.3.

no jumps small jump big jump
RMSE Std Bias RMSE Std Bias RMSE Std Bias

MPV([1, 1, 1, 1]) 0.5742 0.1347 -0.5582 0.7554 0.6872 -0.3135 2.1987 2.1738 0.3301
TMPV([4]) 0.3895 0.2752 0.2757 0.4212 0.2868 0.3085 0.4084 0.2875 0.2900

TMPV([ 43 ,
4
3 ,

4
3 ]) 0.4301 0.1555 -0.4010 0.4916 0.1465 -0.4692 0.4672 0.1470 -0.4435

TMPV([1, 1, 1, 1]) 0.5760 0.1347 -0.5600 0.6283 0.1265 -0.6154 0.6465 0.1142 -0.6363
minRQ 0.3009 0.2286 -0.1957 0.3318 0.2575 -0.2093 0.3139 0.2627 -0.1719
medRQ 0.2337 0.2183 -0.0834 0.2596 0.2531 -0.0577 0.2575 0.2527 -0.0495

GTMPV∗∗(30) 0.1737 0.1694 -0.0384 0.1793 0.1736 -0.0449 0.1780 0.1725 -0.0442
GTMPV∗∗(40) 0.1731 0.1652 -0.0518 0.1789 0.1694 -0.0574 0.1777 0.1682 -0.0573
GTMPV∗∗(50) 0.1736 0.1622 -0.0618 0.1795 0.1654 -0.0696 0.1781 0.1648 -0.0677

QVeff(30) 0.1833 0.1833 -0.0018 0.1880 0.1879 -0.0050 0.1862 0.1860 -0.0096
QVeff(40) 0.1801 0.1799 -0.0092 0.1866 0.1861 -0.0148 0.1834 0.1825 -0.0178
QVeff(50) 0.1790 0.1781 -0.0181 0.1835 0.1815 -0.0271 0.1817 0.1792 -0.0301

5 Empirical Application

The purpose of the empirical application is to apply the efficient multipower estimator

of quarticity to real data from the financial market, to compare its performance with

respect to competing estimators, and to evaluate the advantage in using efficient esti-

mators in relevant applications, namely jump testing and volatility forecasting. As in

the Monte Carlo section, we restrict our attention to the GTMPV∗∗(m∗) estimator in

Eq. (3.2) (we omit the σ4 in the notation for simplicity). By m∗ we indicate the value

that minimizes the MSE in Eq. (3.12), using Q̂ = TMPV([4]).

The data set we use is the collection of sixteen blue chip stocks quoted on the New

York Stock Exchange. The stocks are all very liquid and they are listed, together

with their corresponding ticker, in Table 9. One-minute prices were recovered from

the TickData One Minute Equity Data (OMED) dataset, from 3 January 2007 to 29

June 2012, for a total of 1, 385 trading days. Our sample then lies in the middle of the

credit crunch crisis, characterized by very high volatility levels and a supposedly high

number of jumps. The data went trough a standard filtering procedure. TickData one-

minute equity data are adjusted for corporate actions such as mergers and acquisitions
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Table 9: Reports the list of the sixteen blue chip stocks used in the empirical application,
their ticker and the percentage of zero-returns at one and five minutes.

Company Ticker 1-minute zero re-
turns (%)

5-minute zero re-
turns (%)

Bank of America BAC 9.46 4.71
Citigroup Inc. C 12.51 7.77
JPMorgan Chase & Co. JPM 6.24 2.76
Wells Fargo & Company WFC 6.24 2.76
Boeing BA 5.60 2.39
Caterpillar Inc. CAT 4.45 1.90
FedEx Corporation FDX 4.93 2.05
Honeywell International Inc. HON 7.96 3.41
Hewlett-Packard Company HPQ 8.65 3.75
International Business Machines Corp. IBM 4.02 1.83
AT&T Inc. T 9.55 4.44
Texas Instruments Incorporated TXN 12.94 6.09
Kraft Foods Inc. KFT 13.33 6.32
PepsiCo, Inc. PEP 8.19 3.61
The Procter & Gamble Company PG 7.94 3.54
Time Warner Inc. TWX 10.72 4.70

or symbol changes. Moreover, the underlying tick data used to build 1-minute time

series are first controlled for cancelled trades, or records not temporally aligned with

previous/subsequent data; then filtered to identify bad ticks which are corrected using

validation with third-party sources. All the measures reported here are for daily units

and percentage returns.

Table 9 also shows the percentage of zero returns at 1 minute and 5 minutes. We can see

that the impact of flat trading at 1 minute is substantial in all stocks, while it is much

less impactful at 5 minutes. On each day in the sample, we compute the same quarticity

estimators used in the Monte Carlo section. The 1-minute frequency corresponds to

n = 390; the 5-minutes frequency to n = 78, and the 10-minutes frequency to n = 39.
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5.1 Quarticity: efficient versus non-efficient estimation

Table 10 reports summary statistics on pooled daily quarticity estimates (ÎQ) and the

ratio

√
ÎQ/ÎV , where we use TRV([2]) as an estimator ÎV of integrated volatility.

Asymptotically, we expect this ratio to be always greater than 1, by Jensen inequality.

However, since we are using estimated quantities, the ratio could be less than one.

Using the same normalization for all measures allows the comparison of different days

and different stocks. We apply the estimators at three sampling frequencies: 1, 5 and

10 minutes. In Table 10, we exclude the Flash Crash day (May 6, 2010) since the

difference between truncated and non-truncated estimators in this specific day is many

orders of magnitudes away than what observed in the other days.

We observe a large difference between mean and median quarticity estimates at all the

considered frequencies, indicating a very skewed distribution. The difference is less pro-

nounced for the ratios. We start the discussion with the five-minute frequency. Here, we

can see that the efficient multipower estimator GTMPV∗∗(m∗) has the lowest in-sample

standard deviation, both in terms of average estimates and ratios. The median (data-

driven) m∗ used in these computation is 5. To gain insight, we also report efficient

multipowers at several values of m, and compare them with the Jacod-Rosembaum

estimator QVeff(m). We can see that, as m increases, the in-sample standard deviation

and average of both estimators decreases, with the efficient multipower being less vari-

able at all fixed frequencies. The choice of m∗ balances the bias and the variance. All

these results are in line with the theory.

Figure 3 shows the estimated probability density functions of the ratio

√
ÎQ/ÎV for

pooled daily quarticity estimates, for different quarticity estimators: TMPV([4
3
, 4

3
, 4

3
])

(labelled threshold tripower), TMPV([1, 1, 1, 1]) (threshold quadpower), minRV, medRV,

GTMPV∗∗(m∗). We use 5-minute returns. The Figure shows clearly the empirical poten-

tial of the theory. The efficient quarticity estimator delivers a much more concentrated

ratio, with considerably thinner tails, as shown by the drop in the sample kurtosis in

Table 10. The estimated ratio is spuriously less then one for 54.17% of estimates us-

ing threshold quadpower, 43.92% using threshold tripower, 35.55% using minRV and
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Table 10: Summary statistics of pooled quarticity estimators ÎQ and the ratios√
ÎQ/ÎV , where ÎV is threshold realized variance (TRV([2])). The Flash Crash day is

excluded.

ÎQ

√
ÎQ/ÎV

1-minute frequency
mean median std mean median std kurtosis

MPV([ 4
3
, 4
3
, 4
3

]) 316.7 3.5 9314.0 1.578 1.366 1.005 570.7
MPV([1, 1, 1, 1]) 343.5 4.0 9852.4 1.721 1.463 1.227 526.5

minRQ 512.3 4.4 19736.3 1.895 1.530 3.477 12383.1
medRQ 464.7 4.4 17007.9 1.838 1.522 2.467 8600.2

TMPV([4]) 337.7 4.6 9290.8 1.769 1.582 0.810 54.3
TMPV([ 4

3
, 4
3
, 4
3

]) 310.3 3.6 8677.6 1.576 1.394 0.782 81.0
TMPV([1, 1, 1, 1]) 293.7 3.1 8601.8 1.480 1.310 0.744 99.0
GTMPV∗∗(m∗) 331.3 4.5 9219.9 1.750 1.564 0.798 54.9

(m∗) (5.7) (3.0) (7.2)

5-minute frequency
mean median std mean median std kurtosis

MPV([ 4
3
, 4
3
, 4
3

]) 207.3 1.9 7595.9 1.104 1.018 0.502 427.7
MPV([1, 1, 1, 1]) 238.6 2.2 7893.6 1.203 1.081 0.765 2801.0

minRQ 315.9 2.3 10433.0 1.275 1.114 1.119 2102.6
medRQ 249.0 2.3 7799.7 1.236 1.103 0.957 2771.3

TMPV([4]) 209.8 2.5 6418.3 1.219 1.179 0.204 4.3
TMPV([ 4

3
, 4
3
, 4
3

]) 194.2 1.9 7490.8 1.075 1.033 0.265 5.7
TMPV([1, 1, 1, 1]) 177.9 1.7 7377.2 1.015 0.975 0.269 5.8
GTMPV∗∗(m∗) 203.2 2.5 6296.7 1.203 1.160 0.201 4.6

(m∗) (8.1) (5.0) (8.2)

GTMPV∗∗(5) 189.9 2.3 6228.4 1.144 1.109 0.150 5.0
GTMPV∗∗(10) 165.1 2.0 5530.0 1.081 1.054 0.112 4.6
GTMPV∗∗(20) 141.1 1.7 4621.9 1.005 0.990 0.070 5.5
GTMPV∗∗(30) 125.0 1.6 3868.2 0.962 0.957 0.054 1.7
GTMPV∗∗(35) 120.0 1.5 3634.4 0.948 0.947 0.052 7.0

QVeff(5) 191.0 2.3 6364.7 1.149 1.108 0.179 5.2
QVeff(10) 181.4 2.2 6236.2 1.129 1.096 0.144 5.0
QVeff(20) 162.3 1.9 5759.2 1.049 1.030 0.096 4.5
QVeff(30) 137.1 1.7 4539.8 0.982 0.973 0.069 5.0
QVeff(35) 128.6 1.6 4125.7 0.955 0.948 0.063 3.1

10-minute frequency
mean median std mean median std kurtosis

MPV([ 4
3
, 4
3
, 4
3

]) 134.0 1.2 5062.8 0.914 0.836 0.484 1305.1
MPV([1, 1, 1, 1]) 154.4 1.5 5477.1 1.009 0.906 0.601 836.2

minRQ 180.6 1.6 5316.7 1.075 0.929 0.788 756.2
medRQ 159.6 1.6 5372.0 1.043 0.936 0.706 1545.6

TMPV([4]) 165.4 1.7 7657.7 1.043 0.991 0.377 9.0
TMPV([ 4

3
, 4
3
, 4
3

]) 123.7 1.2 4565.5 0.891 0.839 0.363 7.3
TMPV([1, 1, 1, 1]) 111.8 1.0 4473.8 0.830 0.783 0.348 6.7
GTMPV∗∗(m∗) 158.3 1.7 6959.0 1.036 0.985 0.369 9.3

(m∗) (5.2) (5.0) (3.4)
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Figure 3: Estimated probability density functions of pooled daily ratios

√
ÎQ/ÎV ,

where ÎQ are different quarticity estimators and ÎV is threshold realized variance
(TRV([2])). Estimates are obtained at the 5-minute frequency.

33.37% using medRV; the violation is instead observed only in 12.95% of cases with the

efficient estimator.7

At 1 minute and 10 minutes, results are qualitatively the same. At 1 minute, where the

impact of market microstructure noise and flat trading is likely to be higher, standard

multipowers display a smaller variability and a smaller average than efficient multipow-

ers. At 10 minutes, where the bias is relatively higher since the number of observations

is smaller, we observe the same phenomenon. Again, the efficient multipower estimator

is implemented here to balance bias and variance in an optimal way. Finally, notice

that, at all frequencies, the difference in the kurtosis between non-truncated and trun-

cated ratios is particularly pronounced, indicating that truncated estimator have much

thinner tails.

7We are taking advantage here also of the fact that TMPV[4] delivers, by construction, a ratio
greater than one, and is also used to compute the bias when optimizing m∗.
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5.2 Impact on jump testing

A popular way for testing for jumps is to take the difference between realized variance

(which is impacted by jumps) and bipower variation (which is not), and standardize

this with the standard deviation of the difference. The technique has been basically laid

out in Barndorff-Nielsen and Shephard (2006), see also Huang and Tauchen (2005), and

is largely used in empirical work. We follow this empirical strategy using the version of

the test proposed by Corsi et al. (2010), namely:

CTz(QV ) =
1

n1/2

RV−C TMPV([1,1])
RV√

θ̃max
(

QV
(C TMPV([1,1])2

, 1
) , (5.1)

where θ̃ = (π2/4+π−5). In the definition (5.1), QV is a consistent quarticity estimator.

Consistently with their proposed estimators, Corsi et al. (2010) suggest to use standard

multipowers TMPV([4/3, 4/3, 4/3]) or TMPV([1, 1, 1, 1]) to estimate quarticity. In what

follows, we study the sensitivity of the test to different quarticity estimators. In total

we have 2392× 16 ≈ 40 000 tests in our sample.

Table 11 reports the number of detected jumps when standard (threshold tripower, and

threshold quadpower) and efficient (GTMPV∗∗(m∗)) multipower estimators are used.

At all confidence intervals, at all sampling frequencies, the number of detected jumps

is significantly larger than what predicted by the confidence interval, as exhaustively

reported by the empirical literature. However, when using efficient multipower, the

percentage of detected jumps reduces drastically, reducing the number of detection of

roughly a half.

This empirical finding might help in explaining why, in the literature, it appears that

“too many” jumps are detected, as documented in Christensen et al. (2014) using ultra-

high frequency data, and by Bajgrowicz et al. (2015). We suggest, indeed, that most

of the jumps are spurious artifact of inefficient quarticity measurements. Our results

show also that the impact of such spurious detections can be substantially reduced by

employing an efficient quarticity estimator.
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Table 11: Reports the percentage of detected jumps in our sample for three confidence
intervals (99%,99.9%,99.99%); for three different quarticity estimators (the standard
threshold tripower and quadpower variation, and the efficient multipower variation);
and for three different sampling frequencies (1, 5, 10 minutes). Results indicate a
drastic reduction of detected jumps when the efficient multipower estimator is used.

c.i. standard quarticity estimation efficient quarticity estimation

TMPV([4
3 ,

4
3 ,

4
3 ]) TMPV([1, 1, 1, 1]) GTMPV∗∗(m∗)

1 minute frequency - percentage of detected jumps

99% 45.12 48.11 35.22
99.9% 31.29 34.66 20.31
99.99% 22.77 26.22 13.68

5 minutes frequency - percentage of detected jumps

99% 20.56 21.65 12.30
99.9% 12.84 13.56 8.23
99.99% 8.69 9.14 5.68

10 minutes frequency - percentage of detected jumps

99% 18.31 18.96 11.92
99.9% 10.38 10.72 6.99
99.99% 6.06 6.26 3.92

5.3 Impact on volatility forecasting

As suggested by Bollerslev et al. (2016), quarticity estimation can assist volatility

forecasting. Denote by ÎV t at day t an integrated variance estimator, and define

ÎV t−j|t−h = 1
h

∑h
i=j ÎV t−j. One of the most popular model for forecasting daily in-

tegrated variance is the Heterogeneous Autoregression (HAR) model of Corsi (2009):

ÎV t = β0 + β1ÎV 1 + β2ÎV t−1|t−5 + β3ÎV t−1|t−22 + ut, (5.2)
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where ut is a stationary error process. It is well known that the β coefficients estimated

with the HAR model are affected by measurement errors in the realized volatilities. In

order to account for the presence of the measurement errors, Bollerslev et al. (2015)

introduce the idea of “dynamic attenuation” with the HARQ model, whose specification

is:

ÎV t = β0 +
(
β1 + β1,QÎQ

1/2

t−1

)
ÎV 1 + β2ÎV t−1|t−5 + β3ÎV t−1|t−22 + ut, (5.3)

where ÎQt−1 is an integrated quarticity estimator at day t. We then study the sensitivity

of the results obtained with model (5.3) to different quarticity estimator.

The variable to be forecasted in our exercise is ÎV = TRV, that is threshold realized

variance. The different quarticity estimators are those examined so far. Our exercise is

fully out-of-sample. We obtain the forecast of ÎV t at time t forecast using estimation of

model (5.3) on the past year till day t− 1, so that estimates are performed on a rolling

window. As the loss function, we use the traditional Root Mean Square (relative) Error.

Table 12 shows the RMSE of the HARQ model corresponding to different quarticity

estimates, standardized by RMSE obtained with the HAR model, a value less than one

meaning that the forecasting performance of the proposed specification is better than

the HAR model.

We confirm and corroborate the empirical evidence of Bollerslev et al. (2016): The

HARQ model provides superior forecasts with respect to the HAR model, since the

ratio is generally less than one, with rare exceptions, for all stocks and all quarticity

estimators. When it comes to the choice of the quarticity estimator, efficient quarticity

achieves the best value of the loss function quite often, and is also the best estimator

on average, indicating a clear advantage in using our efficient estimator. The second-

best estimator is TMPV([4]), which is also an efficient estimator (with m = 1), and

which has been indicated by Bollerslev et al. (2016) as their best-performing quarticity

estimator. Again, this is an indication that an estimator built to be more precise can

yield substantial improvement also in terms of volatility forecasting.
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Table 12: Reports the out-of-sample forecast relative RMSE of HARQ model for TRV
with different quarticity estimators, standardized by the relative RMSE of the HAR
model, so that a value less than 1 indicates superiority with respect to the HAR model.
In bold, we indicate the estimator with the best performance for the given stock.

Quarticity estimators

Ticker minRQ medRQ TMPV([4
3 ,

4
3 ,

4
3 ]) TMPV([1, 1, 1, 1]) TMPV([4]) GTMPV∗∗(m∗)

BAC 0.8584 0.8504 0.8704 0.8767 0.7439 0.7425
C 0.7600 0.7584 0.7842 0.7853 0.7958 0.7948

JPM 0.9008 0.9156 0.9125 0.9433 0.8610 0.8619
WFC 0.9565 0.9517 0.9539 0.9651 0.9332 0.9329
BA 0.9654 0.9602 0.9519 0.9570 0.9630 0.9641

CAT 0.9348 0.9405 0.9385 0.9342 0.9328 0.9318
FDX 0.9754 0.9607 0.9608 0.9696 0.9458 0.9460
HON 0.8769 0.8721 0.8707 0.8785 0.8672 0.8681
IBM 0.9267 0.9194 0.9182 0.9167 0.9131 0.9100
HPQ 0.8918 0.8932 0.9139 0.9345 0.9263 0.9273
TXN 0.9903 0.9812 0.9686 0.9574 0.9642 0.9640

T 0.9978 0.9153 0.9245 0.9311 0.9023 0.9020
KFT 1.0094 1.0078 0.9888 0.9858 0.9799 0.9798
PEP 0.9646 0.9653 0.9497 0.9549 0.9541 0.9541
PG 0.8581 0.8559 0.8610 0.8628 0.8620 0.8627

TWX 0.9663 0.9533 0.9545 0.9503 0.9614 0.9607

average 0.9271 0.9188 0.9201 0.9252 0.9066 0.9064

6 Conclusions

We provided methods to find efficient estimators in the class of linear combinations of

multipower estimators. In particular, we propose a specific quarticity estimator which

is more efficient than estimators in the literature in the case in which the numbers of

multipowers employed is fixed. This result can be employed to obtain, by construction,

superior estimators (in the mean square error sense) with respect to any unbiased

estimator.

Based on these results, we show, on simulated data, that efficient multipowers outper-
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form benchmark estimators in terms of mean square error. With respect to the Jacod

and Rosenbaum (2013) quarticity estimator, we improve in the fact that the estimator

we propose has a smaller variance when m, the number of multipowers employed, is

fixed; while the Jacod and Rosenbaum estimator is the globally efficient when m→∞.

We use our theoretical results to implement a data-driven selection of m. Our empirical

application confirms that estimation methods based on truncation provide quite differ-

ent estimates (typically less variable) than what provided by traditional multipowers.

Moreover, they help in delivering substantially less jumps than what previously found

with high-frequency data, and in improving the quality of realized volatility forecasts.

We thus conclude that efficient multipower estimators could replace existing alternatives

for empirical work.
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A Proofs

Proof of Proposition 2.1. First notice we can consider the case Xt = σWt with constant σ,

and set ϑt = +∞, T = 1, without loss of generality, see Theorem 11.2.1 in Jacod and Protter

(2012). In this case, the parameter to be estimated is σR. Define:

hj(∆1X, . . . ,∆mX;σR) = cr
n−m+ 1

n
·
m∏
k=1

|∆kX|r
(j)
k − σR (A.1)

for j = 1, . . . , N . By construction, we have E
[
hj(∆1X, . . . ,∆mX;σR)

]
= 0, which can be

interpreted as a set of N moment restrictions in a GMM setting. The empirical moment

vector is h =
[

1
n−m+1

∑n−m+1
i=1 hj

(
∆iX, . . . ,∆i+m−1X;σR

)]
j=1,...,N

, which is proportional to

the vector TMPV(r(j)) − σR for j = 1, . . . , N . This shows that our estimation problem is

equivalent to GMM. The GMM estimator of σR is then given by

σ̂R = arg min
σR

h′W−1h,

for a suitable weighting matrix W . It is well known that the minimum variance is achieved for

W = C, where C is the covariance matrix of the vector of moment restrictions hj as n→∞.

Direct calculations, as in Barndorff-Nielsen et al. (2006a), show that C is given by formula

(2.7).

The efficient estimator corresponds to the minimum of the quadratic form h′C−1h. The first

order condition is:

C−1h = C−1(h + iN σ̂R)− C−1iN σ̂R = 0, (A.2)

where iN is the N × 1 vector of ones, 0 is a vector of zeros, and the vector T =
(
h + iN σ̂R

)
,

which has coefficients TMPV(r(j)) for j = 1, . . . , N , does not depend on σ̂R. Multiplying Eq.

(A.2) by i′N from the right we deduce that the efficient GMM estimator of σR takes the form:

σ̂R =
i′NC

−1T(
i′NC

−1iN
)−1 .

In other words, the efficient estimator of σR is the weighted average of TMPV(r(j)) with the

optimal weights given Eq. (2.8). Straightforward computations show that, for a fixed set of
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powers, the minimum variance is indeed given by

Ṽ =
1

i′NC
−1iN

.

Proof of Proposition 3.1. Without loss of generality, we can restrict to the model Xt = σWt

with constant σ, and set ϑt = +∞, T = 1. The proof of Eq. (3.3) and (3.4) is then straight-

forward.

Proof of Proposition 3.2. The Jacod and Rosenbaum (2013) estimator takes the form:

QVeff(kn) =
T

n

(
1− 2

kn

) n−kn+1∑
i=1

(
ĉni

)2
. (A.3)

Write:

QVeff(kn) =
T

n

(
1− 2

kn

) n−kn+1∑
i=1

n

T

1

kn

kn−1∑
j=0

( \∆i+jX)2

2

=
n

T

(
1− 2

kn

)
1

k2
n

n−kn+1∑
i=1

kn−1∑
j=0

( \∆i+jX)2

2

=
n

T

(
1− 2

kn

)
1

k2
n

kn−1∑
j=0

n−kn+1∑
i=1

( \∆i+jX)4 + 2

kn−1∑
j1=0

kn−1∑
j2=j1+1

n−kn+1∑
i=1

( \∆i+j1X)2 ( \∆i+j2X)2


Now, for all j = 0, . . . , kn − 1 we have:

1

3

n

T

n−kn+1∑
i=1

( \∆i+jX)4 = TMPV([4]) +Op(kn/n),

and, for all j1 = 0, . . . , kn − 1 and j2 = j1 + 1, . . . , kn − 1 we have

n

T

n−kn+1∑
i=1

( \∆i+j1X)2 ( \∆i+j2X)2 = TMPV([2, 0, . . . , 0︸ ︷︷ ︸
j2−j1−1 terms

, 2]) +Op(kn/n)

This proves that the QVeff estimator can be written in a generalized form of the GTMPV∗∗(kn−

1, σ4) estimator, since it is a linear combination of the kn−1 estimators TMPV([4]), TMPV([2, 2]),
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TMPV([2, 0, 2]), TMPV([2, 0, 0, 2]), . . . , TMPV([2, 0, . . . , 0︸ ︷︷ ︸
kn−2 terms

, 2]) plus end-effects which are of

order k2
n/n (since there are kn − 1 terms which are Op(kn/n)). The generalization is in the

fact that the sum of the weights in the linear combination is not necessarily 1; but it has to

converge to 1, as n, kn →∞, since the two quantities converge to the same object.

Now, when k2
n/n → θ, Theorem 2.2 and 2.5 in Jacod and Rosenbaum (2015) provides the

asymptotic bias for the GTMPV∗∗ estimator.

43



Working Papers in Statistics  2016
LUND UNIVERSITY
SCHOOL OF ECONOMICS AND MANAGEMENT
Department of Statistics
Box 743
220 07 Lund, Sweden

http://journals.lub.lu.se/stat


	Mall A4 - Preprints in Statistics2016nr2KR
	Publication22016KR
	Page2tom
	KolokolovReno Efficient Multipowers
	Mall StatistikLastPage2016




