
 

Sequential Search Algorithm                  
for Estimation  of the Number of Classes     
in a Given Population    

MICHAEL J. KLASS, UNIVERSITY OF CALIFORNIA, BERKELEY

KRZYSZTOF NOWICKI, LUND UNIVERSITY

Working Papers in Statistics
No 2016:1
Department of Statistics
School of Economics and Management
Lund University



 



Sequential Search Algorithm

for Estimation of the Number of Classes

in a Given Population

Michael J. Klass

University of California, Berkeley

and

Krzysztof Nowicki

Lund University, Sweden

Abstract

Let N be the number of classes in a population to be estimated. Fix

any preassigned error probability 0 < ε < exp(−2) (roughly). We

present a sequential search algorithm to estimate the exact value of

N , with an error probability of at most ε, regardless of the value of N .

Key words and phrases: Unobserved species, estimation of popu-
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1 Introduction

Historically many people consider the classic "species problem", that of esti-
mating the number N of categories in a given population based on a random
sample, �rst introduced by Fisher et al (1943) and widely studied in ecology
and later extended to many other applications: see, for instance, Thisted and
Efron (1987) and Mao and Lindsay (2007). Bunge and Fitzpatrick (1993)
provide a review of various statistical methods to estimate the number of
unseen species.
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2 THE SEARCH ALGORITHM 2

The estimation of the number of unseen species is a question closely
related to the problem of estimating the expected number of new species
that will be seen if we take an additional sample of any given size, see Good
and Toulmin (1956), Efron and Thisted (1976), Boneh et al (1998).

Several authors proposed estimation methods of the number of classes uti-
lizing sequential random sampling with various stopping rules, see Goodman
(1953), Samuel (1968, 1969), Holst (1971) and Nayak and Kundu (2007). In
the algorithm we propose the stopping rule is connected to a preassigned
error probability P (N 6= N̂) where N̂ is our estimate of N .

The problem addressed in this paper can be formalized as follows. Let N
be a �xed but unknown positive integer. Let X1, X2, ... be i.i.d. random vari-
ables which take values in {1, 2, ..., N}, each of the N outcomes being equally
likely. Fix any preassigned error probability 0 < ε < exp(−2) (roughly). We
want to estimate the exact value of N , with an error probability of at most
ε, regardless of the value of N .

2 The search algorithm

To teach ourselves how to proceed, suppose we begin by asking: When might
one decide it would no longer be advantageous to continue searching/
sampling (gathering observations) for items yet unseen?

Given that j di�erent objects have already been recorded, letWj+1 denote
the random waiting time describing the number of additional observations
that happen to be needed until the (j + 1)st item surfaced, with Wj+1 = ∞
if there are only j items. Formally, de�ne T1 = W1 = 1 and, having de�ned
Wj for 1 ≤ j ≤ k, let Tj = W1 + ...+Wj and de�ne

Wj+1 =

{
1st i ≥ 1 : Xi+Tj

/∈ {X1, .., XTj
}

∞ if no such i exists.
(1)

and Tj+1 = W1 + ...+Wj+1.
Suppose N = n for some integer n > 0. For each n we use notation

Wn,j+1 and Tn,j+1. Imagine that we have found j di�erent objects already
and have conducted another s observations without �nding anything new.
What information does this provide?

P (Wn,j+1 > s) = (
j

n
)s, for 1 ≤ j ≤ n− 1. (2)
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Suppose our search has currently found j objects and then Wj+1 exceeds
dA(j + k)e where k is to be determined. Let

t = 1st j ≥ 1 : Wj+1 > dA(j + k)e (3)

We stop at such time t and declare that N̂ , our best guess as to the value of
N , is t. At that point we have conducted

Q ≡ 1 +W2 + ·+Wt + dA(t+ k)e (4)

searches. What is the maximum error probability incurred by this rule over
all possible values of N ≥ 1?
Let N̂ be the integer which our procedure guesses. If n = 1 ,N̂ is always 1.
For N = n ≥ 2

P (N̂ 6= n) = P (
n−1⋃
j=1

{Wn,j+1 > dA(j + k)e}). (5)

To upper-bound this expression we introduce the following lemma.

Lemma 2.1 Let Ej+1, 1 ≤ j ≤ n − 1 be a set of independent events and

let E∗j+1, 1 ≤ j ≤ n− 1 be a set of independent events such that P (Ej+1) ≤
P (E∗j+1) for 1 ≤ j ≤ n− 1. Then

P (
n−1⋃
j=1

Ej+1)) ≤
n−1∑
j=1

P (E∗j+1)− P (E∗n)P (E∗n−1). (6)

Proof: First observe that

P (
n−1⋃
j=1

Ej+1) = 1− P (
n−1⋂
j=1

Ec
j+1)

= 1−
n−1⋂
j=1

P (Ec
j+1) (by independence)

≤ 1−
n−1⋂
j=1

P ((E∗j+1)
c) (by the assumption)

= P (
n−1⋃
j=1

E∗j+1).

(7)
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Moreover, by Boole's inequality

P (
n−1⋃
j=1

E∗j+1) ≤ P (E∗n ∪ E∗n−1) +
n−2∑
j=1

P (E∗j+1) (8)

and by independence P (E∗n ∪ E∗n−1) = P (E∗n) + P (E∗n−1) − P (E∗n)P (E∗n−1)
from which (6) follows.

�

For 1 ≤ j ≤ n− 1, A > 0 and �xed k ≥ 1 let

En,j+1 = {Wn,j+1 > dA(j + k)e} (9)

and

P (E∗n,j+1) = (
j

n
)A(j+k). (10)

Clearly, P (En,j+1) ≤ P (E∗n,j). Using Lemma 2.1, (5) can be upper-bounded
by

P (
n−1⋃
j=1

En,j+1) ≤ P (
n−1⋃
j=1

E∗n,j+1) ≤
n−1∑
j=1

P (E∗n,j+1)− P (E∗n,n)P (E∗n,n−1). (11)

Next we introduce upper-bounds for terms in (11).

Lemma 2.2 For 1 ≤ j ≤ 2k and n ≥ j + 1

P (E∗n,n−j+1) ≤ exp(−Aj). (12)

Proof: For k ≥ 1, 1 ≤ j ≤ n− 1, A > 0,

P (Wn,j+1 > dA(j + k)e) =
( j
n

)dA(j+k)e
(by de�nition of Wn,j+1)

≤
( j
n

)A(j+k)

= exp(−A(j + k) ln(
n

j
)) ≡ P (E∗n,j+1).

(13)

Replacing j by n− j and n by x, for x ≥ j + 1 let

f(x) = −(x− j + k) ln(
x

x− j
). (14)
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Notice that P (E∗n,n−j+1) = exp(Af(n)). Then

f ′(x) = − ln(
x

x− j
)− (x− j + k)(

1

x
− 1

x− j
)

= − ln(
x

x− j
)− k − j

x
+

k

x− j

(15)

and

f ′′(x) = −1

x
+

1

x− j
+
k − j
x2
− k

(x− j)2

=
j

x(x− j)
+

(k − j)(x− j)2 − kx2

x2(x− j)2

=
jx2 − j2x− jx2 − 2j(k − j)x+ j2(k − j)

x2(x− j)2

=
j(j − 2k)x+ j2(k − j)

x2(x− j)2

≤ 0
(
for k ≤ j ≤ 2k or if 1 ≤ j ≤ k − 1 since (2k − j)x ≥ (k − j)j

)
.

(16)

Therefore f(x) is concave. Notice that limx→∞ f
′(x)→ 0. Therefore f ′(x) >

0 for all x > j + 1. Consequently

sup
x≥j+1

f(x) = lim
x→∞

f(x).

= lim
x→∞

x ln(1− j

x
)

= −j.

(17)

Hence

sup
n≥j+1

P (E∗n,n−j+1) = lim
n→∞

P (E∗n,n−j+1) = lim
n→∞

exp(Af(n)) = exp(−Aj).

(18)
�

Theorem 2.1 For all n ≥ 2, A ≥ 2, k = 4

P (
n−1⋃
j=1

E∗n,j+1) < exp(−A) + exp(−2A) + exp(−3A). (19)
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Proof: We treat various n separately.

For n = 1 the error probability is zero.

Case 1: 2 ≤ n ≤ 4 Inequality (12) combined with Boole's inequality yields

P (
n−1⋃
j=1

E∗n,j+1) ≤ exp(−A) + exp(−2A) + exp(−3A) (20)

Cases n ≥ 5
Invoking (11) and (12), for n ≥ 5

P (
n−1⋃
j=1

E∗n,j+1) < exp(−A) + exp(−2A) + exp(−3A)− P (E∗n,n)P (E∗n,n−1)

+
n−4∑
j=1

P (E∗n,j+1).

(21)

Case n = 5

Since
P (E∗5,2) = exp(−5A ln(5)), (22)

P (E∗5,5)P (E∗5,4) = exp(−(Γ5,5 + Γ5,4)A)

> exp(−5.4A) (by (36) and (37) below)

> exp(−5A ln(5))

= P (E∗5,2)

(23)

so by (21) Theorem 1.1 holds for n = 5.

Case n = 6

Applying (21) for n = 6 we need to verify the inequality

P (E∗6,2) + P (E6,3) ≤ P (E∗6,6)P (E∗6,5). (24)
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Since Γn,n and Γn,n−1 decrease in n,

P (E∗6,6)P (E∗6,5) = exp(−A(Γ6,6 + Γ6,5))

> exp(−A(Γ5,5 + Γ5,4)

> exp(−5.4A)

> exp(−5A ln(6)) + exp(−6A ln(3))

= P (E∗6,2)P (E∗6,3),

(25)

which con�rms Theorem 1.1 for n = 6.

Case n = 7

Since Γn,n and Γn,n−1 decrease in n,

P (E∗7,7)P (E∗7,6) > P (E∗5,5)P (E∗5,4) > exp(−5.4A)

> exp(−5A ln(7)) + exp(−6A ln(
7

2
)) + exp(−7A ln(

7

3
))

= P (E∗7,2) + P (E∗7,3) + P (E∗7,4) (for A ≥ 2),

(26)

whence Theorem 1.1 holds for n = 7.

Case n ≥ 8

We begin by considering
∑n−4

j=1 P (E∗n,j+1). Splitting this sum into three parts,

n−4∑
j=1

P (E∗n,j+1) = P (E∗n,2) +
∑

2≤j<n
e

P (E∗n,j+1) +
∑

n
e
<j≤n−4

P (E∗n,j+1). (27)

We will treat each of the sums separately. First,

∑
2≤j<n

e

P (E∗n,j+1) =

dn
e
e∑

j=2

exp(−A(j + 4) ln(
n

j
))

≤ exp(−6A)

1− exp(−A)
(since

n

j
≥ 1).

(28)
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Second,∑
n
e
<j≤n−4

P (E∗n,j+1) =
∑

n
e
<j≤n−4

exp(−A(j + 4) ln(
n

j
))

=
∑

n
e
<n−j≤n−4

exp(−A(n− j + 4) ln(
n

n− j
))

≤
∑

1≤i<n−dn
e
e−3

exp(2 ln(i)− A(n+ 1− i) ln( n
n−i−3)))

i2

≤ max
1≤i≤n−dn

e
e−3

exp(2 ln(i)− A(n+ 1− i) ln(
n

n− i− 3
))
∞∑
j=1

1

j2

≤ π2

6
exp

(
− An ln(

n

n− 4
)
)

(by Lemma 3.2 if k = 4).

(29)

Hence,

n−4∑
j=1

P (E∗n,j+1) ≤ exp(−5A ln 8) +
exp(−6A)

1− exp(−A)
+
π2

6
exp

(
− An ln(

n

n− 4
)
)

= exp(−5A ln 8) +
exp(−6A)

1− exp(−A)
+
π2

6
P (E∗n,n−3).

(30)

Next we show

exp(−5A ln(8)) +
exp(−6A)

1− exp(−A)
≤ P (E∗n,n)P (E∗n,n−1)−

π2

6
P (E∗n,n−3). (31)

For n ≥ 8, A ≥ 2

P (E∗n,n)P (E∗n,n−1)−
π2

6
P (E∗n,n−3) ≥ exp(−4.5A)− π2

6
exp(−5A)

= exp(−4.5A)(1− π2

6
exp(−0.5A) ≥ exp(−4.5A)(1− π2

6
exp(−1))

> exp(−5A ln(8)) +
exp(−6A)

1− exp(−A)

(32)

whence (31) holds for n ≥ 8 and A ≥ 2.
�
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Remark 2.1 Notice that for all j ≥ 1

lim
n→∞

P (En,n−j+1) = lim
n→∞

exp(−dA(n− j + 4)e ln(
n

n− j
)) = exp(−Aj). (33)

Hence as the number N = n of objects to be found tends to in�nity the

probability that we fail to guess their exact number tends to

lim
n→∞

P (
n−1⋃
j=1

En,j+1) = lim
n→∞

(1− P (
n−1⋂
j=1

Ec
n,j+1))

= lim
n→∞

(1−
n−1∏
j=1

(1− P (En,n−j+1))

= 1−
∞∏
j=1

(1− exp(−Aj)).

(34)

An alternative expression for this limit may be obtained by writing

∞∏
j=1

(1− exp(−Aj)) = exp(
∞∑
j=1

ln(1− exp(−Aj)))

= exp(−
∞∑
j=1

∞∑
k=1

exp(−jkA)

k
)

= exp(−
∞∑
k=1

exp(−kA)

k(1− exp(−kA))
).

(35)

3 Appendix

We lower- and upper-bound P (E∗n,k) for k = n, n− 1, and n− 3.

Lemma 3.1 Let Γn,k = − 1
A

ln(P (E∗n,k)). For A ≥ 2 and n ≥ 2,

exp(−A(1 +
7

2n
+

11

6n2
+

5

4n2(n− 1)
)) ≤ P (E∗n,n) ≤ exp(−A(1 +

7

2n
)) (36)

P (−A(2 +
6

n
+

20

3n2
+

28

3n2(n− 2)
)) ≤ P (E∗n,n−1) ≤ exp(−A(2 +

6

n
)) (37)

and

exp(−A(4 +
8

n
+

64

3n2
+

64

n2(n− 4)
)) ≤ P (E∗n,n−3) ≤ exp(−A(4 +

8

n
)). (38)
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Proof: We derive upper- and lower- bounds of P (E∗n,k) by bounding Γn,k for
k = n, k = n− 1 and k = n− 3.
First,

Γn,n = (n+ 3) ln(
n

n− 1
) = −(n+ 3) ln(1− 1

n
)

=
∞∑
j=1

1

jnj−1 +
∞∑
j=1

3

jnj

= 1 +
∞∑
j=1

(
1

j + 1
+

3

j
)

1

nj

(39)

Clearly,

Γn,n ≥ 1 +
7

2n
(40)

and

Γn,n = 1 +
7

2n
+

11

6n2
+
∞∑
j=3

4j + 3

(j + 1)j

1

nj

≤ 1 +
7

2n
+

11

6n2
+

5

4

∞∑
j=3

1

nj

= 1 +
7

2n
+

11

6n2
+

5

4n2(n− 1)

(41)

which gives (36). Second,

Γn,n−1 = (n+ 2) ln(
n

n− 2
) = −(n+ 2) ln(1− 2

n
)

= 2 +
∞∑
j=1

2j

nj
(

2

j + 1
+

2

j
)

(42)
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which gives (37) by calculations similar to those used in (40) and (41). Third,
we lower-bound P (E∗n,n−3) = exp(−AΓn,n−3) by upper-bounding

Γn,n−3 = n ln(
n

n− 4
) = −n ln(1− 4

n
)

= 4 +
∞∑
j=1

4j+1

(j + 1)nj

= 4 +
8

n
+

64

3n2
+
∞∑
j=3

4

j + 1
(
4

n
)j

≤ 4 +
8

n
+

64

3n2
+
∞∑
j=3

(
4

n
)j

= 4 +
8

n
+

64

3n2
+

64

n2(n− 4)

(43)

which gives (38).
�

Lemma 3.2 Let A ≥ 2, k ≥ 1, B = n− k + 1, n > k and

g(x) = 2 ln(B − x)− A(x+ k) ln(
n

x
) (44)

Then

sup
n
e
≤x≤B−1

g(x) = g(B − 1) = −An ln(
n

n− k
). (45)

Proof: Toward this end,

g′(x) = − 2

B − x
− A ln(

n

x
) + A+

Ak

x

= − 2

B − x
+ A ln(

ex

n
) +

Ak

x

≥ − 2

B − x
+ 2 ln(

ex

n
) +

2k

x

≡ 2h(x).

(46)

For x = n
e
we have ln( ex

n
) = 0. Hence

g′(x) ≥ 2

x(B − x)
(Bk − (k + 1)x) ≥ 0 (47)
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for n
e
≤ x ≤ Bk

k+1
. We need to prove that g′(x) ≥ 0 for Bk

k+1
≤ x ≤ B − 1.

Consider

h′(x) = − 1

(B − x)2
+

1

x
− k

x2
(48)

For Bk
k+1
≤ x < B

h′′(x) = − 2

(B − x)3
− 1

x2
+

2k

x3

< −2(k + 1)3

B3
+

2(k + 1)3

B3k2

≤ 0 for k ≥ 1.

(49)

Hence h(x) is concave on Bk
k+1
≤ x ≤ B − 1. Therefore

inf
Bk
k+1
≤x≤B−1

= min{h(
Bk

k + 1
), h(B − 1)} ≥ 0 i� h(B − 1) ≥ 0 (50)

h(B − 1) = −1 + ln(
e(n− k)

n
) +

k

n− k
≡ q(n) (51)

q′(n) =
1

n− k
− 1

n
− k

(n− k)2

=
k

n(n− k)
− k

(n− k)2

=
k(n− k)− nk
n(n− k)2

< 0.

(52)

Thus q(n) ↘ limn→∞ q(n) = 0 whence h(B − 1) > 0 and so g(B − 1) =
supn

e
≤x≤B−1 g(x).

�
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