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1 Introduction  

When evaluating whether the effect of one treatment is larger than that of another 

the first step in the comparison is to decide what should be understood by the 

statement that one patient has achieved a greater effect than has another patient.  

When the outcome variable is quantitative, measured on a ratio scale, absolute or 

relative effects are the most commonly used effect measures; however, such effects 

are usually not meaningful for ordinal outcome variables. In order to answer the 

question whether one of two treatments acts more effectively on one of two outcome 

variables and the other treatment more efficiently on the other we shall present a 

method of comparing the treatment effects of patients that is based on pair-wise 

comparisons between patients in analogy with many non-parametrical methods. These 

comparisons use only the ordinal properties of the outcome variables. We shall even 

define a measure of the difference between the treatment effects and demonstrate how 

confidence intervals can be constructed. 

 

2 Two patients, two time points, just one outcome variable 

  Although our aim is to relate changes in one variable, x, to those in another, y, we shall 

in this section consider just one single variable, say x.  

      Since the magnitude of a change in an ordinal variable is usually undefined, special 

care is necessary when we want to give the verdict "one drop is larger than another". 

________________________________ 
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      Let us consider two individuals, pat1 and pat2, and two time points, t' and t" (>t'), 

giving rise to the set of observations  

 {x1', x1", x2', x2"}. 

      The changes from one time point to the other will be considered in terms of drops. 

With definitions given below we shall use the notation 

 x1 D x2 

(D for "drop") to indicate that the drop in the x-variable from t' to t" is greater for pat1 

than for pat2, and  

 x1 d x2 

to indicate that the drop is smaller for pat1, or, equivalently, that the drop is greater for 

pat2. Furthermore 

  x1 E x2 

(E for "equal") indicates that the change is the same for the two patients. Finally for all 

remaining situations, we use the notation 

 x1 N x2 

(N for "nothing"). 

      The case x1 D x2 will be said to occur if either  

(Dt)  x1'  x2' & x1"  x2"  with at least one strict inequality 

(t for "within timepoint") or 

(Dp) x1'  x1" & x2'  x2"  with at least one strict inequality 

(p for "within patient"). (Dt) will thus occur if at t' the value of x is larger for pat1 than 

for pat2 but at t" the reverse inequality holds. (Dp) occurs when the changes in x are in 

opposite directions for the two individuals and pat1 is the one who experiences a 

decrease. Note that (Dp) and (Dt) can occur at the same time.  

      Analogously, cases x1 d x2, where pat1 has a smaller decrease in x than pat2, are said 

to occur when 
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(dt) x1'  x2' & x1"  x2"  with at least one strict inequality 

or  

(dp) x1'  x1" & x2'  x2"  with at least one strict inequality. 

Again, (dt) and (dp) can occur at the same time. 

      Finally, we use x1 E x2 to denote that either  

(Et) x1' = x2' & x1" = x2" 

or 

(Ep) x1' = x1" & x2' = x2". 

Thus (Et) happens when the patients have identical values at start and at also the end 

while (Ep) happens when there is no change in the x-variable for any of the patients.  

      The remaining cases, denoted by x1 N x2, are those where we do not find it 

possible to present a convincing argument why one of the two decreases should be 

considered larger than the other, neither do we want to consider the changes identical. 

      Let us consider e.g. the relation D more closely. If x1 D x2 then the drop in x1 is 

greater than that in x2 in a very strong sense indeed.   In particular it is easy to check 

that if x happens to be a ratio-scale variable then, whenever we have x1 D x2, it also 

holds that x1 has had a greater drop than x2 both in the absolute and relative sense. On 

the other hand, one can find examples showing that the fact that x1 has had a greater 

drop than x2, be it absolute or relative or even both, does not imply that x1 D x2. Also 

the relation x1 E x2 implies that x1 and x2, considered as variables on an appropriate 

scale, have shown the same change, whether in the absolute or relative sense. 

      We have defined four relations between two patients: 

 x1 D x2  ;   x1 d x2  ;   x1 E x2  ;   x1 N x2. 

From the definition of the last of these four, it is clear that always at least one of them 

holds. Now we want to show that always exactly one of them holds; it is then 

sufficient to demonstrate that it can never happen that two of them are fulfilled 

simultaneously. Again, it is clear that N is incompatible with each of D, d and E. 
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What remains to be shown thus is that no two of D, d and E can happen at the same 

time. 

      First, suppose that x1 D x2 occurs and that it is (Dt) that holds. Obviously, neither 

(dt) nor (Et) can then occur; it remains to verify the same for (dp) and (Ep). If both 

(Dt) and (dp) hold, then 

 x1'  x2' & x1"  x2"  and  x1'  x1" & x2'  x2"   

and hence 

 x1'  x1"  x2"  x2'  x1' , 

that is all four values must be equal, which contradicts both (Dt) and (dp). In the same 

way, the joint occurrence of (Dt) and (Ep) would give a contradiction.  

      If instead it was (Dp) that holds then trivially neither (dp) nor (Ep) could hold and, 

in the same way as above, both (dt) and (Et) can be shown to be impossible. 

      Just by reversing the roles of  x1 and x2 one can see that (d) is incompatible not 

only with (D), which we already know, but also with (E), and hence we have 

completed the proof that always exactly one of D, d, E and N holds. 

      The first two of our four relations, 

 x1 D x2  ;   x1 d x2  ;   x1 E x2  ;   x1 N x2 , 

when described verbally, give the impression of being order relations while the third 

has the flavour of an equivalence relation. These impressions are correct; formal 

proofs of these statements are straightforward, although very tedious. 

 

3 Two patients, two time points, two outcome variables  

Although our final aim is to compare two groups of persons in terms of their changes 

in two variables, we shall, in this section, consider just two persons, still called pat1 

and pat2. What is new is that now we have two variables, x and y. 

      Of course it would be absurd to compare one value of x with one of y: the two 

variables may well relate to quite different types of quantity. For the same reason, a 
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within-person comparison between the change in x and that in y would be 

meaningless. What we want is to identify cases where, compared with pat2, pat1 has a 

greater drop in one variable but a smaller drop in the other.  

      For one variable, x, we have classified the relation between the changes for two 

individuals, pat1 and pat2, into four categories 

 x1 D x2 ,   x1 d x2 ,   x1 E x2   and   x1 N x2.  

For a second outcome variable, y, we similarly have  

 y1 D y2 ,   y1 d y2,   y1 E y2   and   y1 N y2.  

If x1 D x2 and y1 D y2 happen at the same time, the conclusion to be drawn is that pat1 

drops more than pat2 in both x and y; this clearly tells us something about pat1 versus 

pat2 but nothing of interest concerning x versus y. Similarly the combination x1 d x2 & 

y1 d y2 is uninformative about the relation of x to y, and so is x1 E x2 & y1 E y2. 

      However, for a situation with x1 D x2 & y1 d y2 the conclusion is that, compared 

with pat2, pat1 has a larger drop in x and a smaller drop in y, a statement that concerns 

the changes of the outcomes x and y. This situation is thus an example of those cases 

we wanted to identify. The situation x1 D x2 & y1 E y2 shows that pat1 has a larger 

drop in x and an equal drop in y, and when x1 E x2 & y1 d y2 holds, pat1 has the same 

drop in x and a smaller in y. These last two situations lead to the conclusion that the 

drop in x for pat1 is at least not smaller than that for pat2, while the drop in y is at least 

not larger than the drop for pat2, and the two drops are not equal. Thus, the difference 

in the effects on x and y is perhaps slightly less convincingly established in the last 

two cases. 

      For the situations x1 d x2 & y1 D y2, x1 E x2 & y1 D y2, and x1 d x2 & y1 E y2 there 

are equivalent conclusions to be drawn. Finally, the cases with either x1 N x2 or y1 N 

y2 will be inconclusive.  

      All the 16 cases are described below; as is seen, six of them tell us something that 

is of interest in the present context, two of them (x1 D x2 & y1 d y2 ; x1 d x2  & y1 D y2 ) 

perhaps more strongly than the other four. 
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Drop for pat1, relative to pat2:  

 

    y1 D y2    y1 d y2    y1 E y2    y1 N y2 

x1 D x2       larger x-drop, 

smaller y -drop 

larger x-drop, 

equal y -drop 

     

x1 d x2 smaller x-drop, 

larger y-drop 

      smaller x-drop, 

equal y -drop 

     

x1 E x2 equal x-drop, 

larger y -drop 

equal x-drop, 

smaller y -drop 

           

x1 N x2      

 

               

 

 

4 Two treatments, two time points, two outcome variables  

Now we turn to the main theme of the present paper: how to compare the effects of 

two treatments, let them be denoted by A and B, both known to be effective in 

reducing the outcome variables x and y. The question to be investigated is whether 

one of the treatments has a greater effect on one of the two outcome variables, while 

the second treatment has a greater effect on the other.  

      Suppose there are nA patients assigned to treatment A and nB to B and assume 

that pat1,…,patnA are those given treatment A and patnA+1, …, patnA+nB are those given 

B. For 1  i  nA < j  nA+nB consider pati (given treatment A) and patj (given 

treatment B). Depending on which of the 16 cases in the table in Section 3 that 

applies, we define a score uij in the following way: if one of the cases 

(4.1) (xi D xj & yi d yj),  (xi D xj & yi E yj),  (xi E xj & yi d yj)       

occurs we consider it as an indication that treatment A acts stronger on the outcome x 

and B stronger on y; in that case we define uij = 1. On the other hand, the cases  

(4.2) (xi d xj & yi D yj),  (xi d xj & yi E yj),  (xi E xj & yi D yj)   
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give the opposite indication; for each of these cases we define uij = -1. For the 

remaining ten cases we define uij = 0. 

      Let T+ and T- denote the number of positive and negative uij, respectively:

 
1 1

( 1)
A A B

A

n n n

ij

i j n

T u




  

   ,   





  

   
1 1

( 1)
BA A

A

n n n

ij
i j n

T u .  

Clearly, if T+ is considerably much larger than T  our data suggest that A reduces x 

and B reduces y, while the opposite information is obtained if T  is the larger 

quantity. Hence it is informative to consider the difference T = T + - T  which we can 

write 

 (4.3) 



  

 
1 1

BA A

A

n n n

ij
i j n

T u .     

 

4.1 Significance testing 

If, in an actual case, we have e.g. T > 0, the question arises how to assess the 

statistical significance of that result. The null hypothesis that we want to consider can 

be expressed in words so: if pati belongs to the A group and patj to the B group and if 

we are in one of the six cases in (4.1) and (4.2), then the probability is 1/2 that we are 

in (4.1), i.e. 

 H0: P[uij = 1 | uij   0] = 1/2.   

A one-sided alternative can then be  

(4.4) H1: P[uij=1 | uij   0] >1/2,     

indicating that A acts stronger on the outcome x and B stronger on y; the other one-

sided alternative would be 

(4.5) H1: P[uij=1 | uij   0] <1/2.     

 Finally we of course have the two-sided alternative 

(4.6) H1: P[uij=1 | uij   0] 1/2.     
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      As test quantity we utilize T. Under the null hypothesis T will be symmetrically 

distributed around zero, with possible values ranging from –nA  nB to nA  nB; 

furthermore, we shall expect a rather large number of uij to be zero. 

      In order to obtain an estimate of the null distribution of T we propose the 

following procedure: keep all the x and y data but randomly permute the A and B 

labels among the patients; then redo the whole computation of uij (where i and j now 

range over the indices of those patients who, after the random permutation, are 

attached to A and B, respectively) and finally compute T. Repeat this procedure R 

times so that we have one authentic and R pseudo-T values. 

      If T(0) denotes the value of T for the authentic data and T(1), ..., T(R) are the values 

obtained for the randomly permuted data, then an estimated p-value for a test of H0 

against the one-sided alternative (4.4) is 

(0) ( )

1

1
(  )

R
r

r

T T
R 

 ,  

and of course a corresponding formula applies when testing against (4.5). Finally, an 

estimated p-value for testing H0 against (4.6) is given by 

 


 (0) ( )

1

1
(| | | |)

R
r

r

T T
R

. 

 

 

 

Computations related to significance testing 

 

In the text above the score uij was defined for comparison between one patient given 

treatment A and one given B. It is, however, straightforward to define uij in the same 

way also for two patients belonging to the same treatment group; the reason for doing 

so will be clear in a while. Obviously we will then have 

 uji = -uij   



9 

 

 

and in particular uii = 0. Thus for the intra-A sum we have 

 
1 1

0
A A

n n

ij
i j

u
 

 
 

 

and our test quantity T, defined in (4.3) as 

 



  

 
1 1

BA A

A

n n n

ij
i j n

T u  

can also be computed as 

(4.7) 
1 1

;
BA A

n n n

ij
i j

T u



 

   

observe that here j starts at 1. 

      For the estimation of the null distribution of T we proposed to redo the 

computation of first uij and then T after a random permutation of the A and B labels 

among the patients in order to obtain pseudo-T values. However, if we compute T 

according to (4.7), it is in fact not necessary to redo all the computations, and that is 

why it is useful to define uij for all i and j. 

To see that, introduce 

 






1

n

i ij
j

u u  

where n=nA+nB. Then each patient has a ui of his or her own, and this ui does not 

depend on the distribution of A and B among the patients. Clearly T is the sum of the 

ui of the patients in the A group while a pseudo-T equals the sum of the ui 

corresponding to nA patients drawn with simple random sampling without 

replacement from the n patients.  

      It is easy to see that the extra cost of computing uij for n(n -1)/2 pairs (i, j) -- 

remember that the uij are skew-symmetric -- is amply compensated for by our having 

to do it just once, not once for each permutation. 
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4.2 Interval estimation 

Now we consider the problem of obtaining a measure of the difference of the effects 

that treatments A and B have on x and y. Among the cases where one of the 

treatments favours x, the other y, the proportion of cases where it is A that favours x 

and B that favours y is   

  ˆ /T T T     ,  

which is a point estimate of  

  = P[uij = 1 | uij   0]. 

The distance of   from 1/2 can clearly be used as a measure of the size of the 

difference between the treatments A and B.  

      In order to obtain a confidence interval for   we use the bootstrap method. The 

main idea here is to sample independently and with replacement nA and nB 

observations, respectively, from the original sets of observations, that is, from the two 

empirical distribution functions, and thus another estimate of , say ̂ *,  can be 

obtained. By repeating this sampling a large number, say B, of times, the distribution 

of  ̂  is estimated. A 1-2 confidence interval can be taken as the Percentile 

Confidence interval  

 (̂ *((B+1)), ̂ *((B+1)(1-)))  

where the interval endpoints are order statistics among the ̂ * values obtained during 

the bootstrap procedure; for technical reasons it is advantageous to choose B in such a 

way that (B+1) is an integer.  

      Another possibility is to use what is called the Bootstrap Basic Confidence 

interval, which gives  

 (2̂  - ̂ *((B+1)(1-)), 2̂  - ̂ *((B+1))). 

      A further possibility is to compute the basic interval after a suitable transformation 

of the original value and the bootstrapped ones. In this case it seems reasonable to 

consider  = g() where 
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 g() = log( /(1-)) 

so that the inverse is  

  = g-1() = 1/(1+exp(-)). 

Using the notation ̂  = g(̂ ) we obtain the interval 

 (g-1(2̂  - ̂ *((B+1)(1-))), g
-1(2̂  - ̂ *((B+1)))). 

 

 

5 Application to authentic data  

In this section we apply our technique to data from a clinical trial, The Nordic 

Diltiazem (NORDIL) study, which was performed in order to compare a new 

antihypertensive agent, the calcium antagonist diltiazem, with "conventional 

treatment", viz. diuretics, beta-blockers, or a combination of these two. The outcome 

variable was occurrence of certain clinical events (Hansson et al., 2000). The 

allocation to the two groups, "new" and "conventional", was randomized, while, in the 

latter group, the choice between diuretics, beta-blockers, or both, was up to the 

treating physician. The study had a fairly long recruitment period; the follow-up 

lasted between 3 and 7 years, the mean being 4.5 years. The patients were regularly 

checked up every six months; at such visits dose escalation as well as addition and/or 

change of medication could be performed according to rules laid down in the study 

protocol. However, our goal is not to compare how the treatments affect clinical 

events; instead we want to investigate whether they differ in terms of which blood 

pressure, systolic (SBP) or diastolic (DBP), that they are most efficient at reducing. 

To that end decided to use data only for those patients who started on monotherapy 

and did not change treatment during the period we considered. For practical reasons 

we restricted attention to each patient's first six months in the study. This provided us 

with 723 patients given diuretics, 2329 given beta-blockers, and 3711 given the 

calcium antagonist, assessed at baseline and after six months.  
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We shall consider only the comparison between the effects of diuretics and the 

calcium antagonist, where we get the following numbers of informative pairs: 

 T+ = 122,483,  T  = 40,916  

where T+ is the number of pairs where diuretics give a larger SBP drop and a smaller 

DBP drop. The test quantity is 

 T = T+ - T  = 81,567. 

      As described in Section 4.1, the data were permuted 10000 times and the pseudo 

test quantities calculated. None of the randomly obtained test quantities was 

numerically larger than the observed one and hence the two-sided p-value is less than 

0.0001. There is thus a strongly statistically significant difference in how the two 

treatments affect the two blood pressures: diuretics reduce SBP to a greater extent 

while the calcium antagonist is more efficient at reducing DBP.  

      The effect measure ̂ , the proportion among informative cases where diuretics 

reduce SBP more and the calcium antagonist reduce DBP more, becomes 

122,483/(122,483+40,916)=0.750, and the three 95 % confidence intervals for the 

effect measure  are 

 (0.697, 0.796),  (0.703, 0.802),  (0.697, 0.796). 

 

 

6 Discussion  

The application of a technique for ordinal variables on variables that are manifestly 

quantitative, in fact on a ratio scale, may perhaps at first sight seem a bit strange; a natural 

objection might be that one should use the full scale properties of the variables. However, in 

many cases it is not obvious whether changes in such variables are most appropriately 

calculated as absolute or relative ones; one can easily give examples where neither of the two 

statements “pat1 has a greater absolute reduction than pat2” and “pat1 has a greater relative 

reduction than pat2” implies the other. With the method developed here there is no such 

dilemma.  
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If one decided to define “pat1 has a greater reduction than pat2” if that statement is true 

both absolutely and relatively, it is easy to check that this would be a less strict definition than 

the one presented here, i.e. our definition gives a smaller number of informative pairs. Tests 

performed with the both-absolute-and-relative definition and in the same manner as above 

would probably give results that were more statistically significant. However, the point is not 

to achieve higher significance but rather to make meaningful inference. 

As mentioned in Section 3, comparisons of patients where one of these has a greater 

reduction in both outcome variables were considered uninformative for the present purpose, 

the reasonable explanation being that the doses of the treatments given to the two patients 

were not comparable. Thus, when comparing patients that are given different treatments, there 

will be fewer informative pairs when the doses of treatments are not adjusted to being similar 

in their ability to reduce the outcomes. However, the actual level of the doses given will be of 

no importance in our way of comparing the particular effects of the treatments. In fact, we 

consider it a strength of our technique that any result obtained cannot be attributed to the 

choice of doses given. 

Furthermore, it might be feared that a huge amount of information is wasted when 

disregarding all non-informative comparisons. However, in the study presented here 

information is ignored only from very few patients. In fact, less than 1 % of the patients were 

not involved in any informative comparison; furthermore, about one half of these patients 

reacted adversely to the treatments with increases in both variables. 
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