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Abstract: Gaussian models are frequently used for road profiles. However, these
models are often only valid for short sections of the road. Here we present a com-
prehensive approach to describe various aspects of road surface/elevation by using
extensions of Gaussian models arising from random gamma distributed variances.
These random variances result in the Laplace distribution and thus we refer to the
so defined models as Laplace models. The approach is shown to perform well in
modelling road topography, road roughness and multi-valued responses of forces
and bending moments containing transients. The different Laplace models are pre-
sented together with numerical examples and Matlab code for simulation.
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1 Introduction

Durability assessment of vehicle components often requires a customer or market
specific load description. It is therefore desirable to have a model of the load envi-
ronment that is vehicle independent and which may include many factors: encoun-
tered road roughness, topographic characteristics such as hilliness and curvature,
cargo loading, driver behaviour and legislation, see for example (Edlund & Fryk,
2004), for a description of the Global Transport Application (GTA). In the trans-
portation engineering research, the road elevation variability is divided into three
distinct components: topography, roughness and texture. Texture is made of the
high frequency components responsible for noise, skid-resistance and tyre wear.
Roughness is the road unevenness, containing wavelengths from about 0.1 m to
50 m, and cause vibration responses in the vehicle structure and components which
may lead to fatigue problems. A continuous stochastic process modelling rough-
ness is typically utilized to evaluate risks of fatigue failures. Topography is the
low frequency part of the elevation, corresponding to landscape variability, and is
one of the most important factors in fuel consumption of vehicles, as well as an
important load input for fatigue assessment of transmission components.

Traditionally, road profiles on different scales have been modelled by using
Gaussian processes; see e.g. (Dodds & Robson, 1973; ISO 8608, 1995; Andrén,
2006). However, it is well known that measured road profiles contain shorter seg-
ments with above average irregularity — the property that Gaussian distribution
based models have difficulty to account for. Several approaches has been sug-
gested to extend Gaussian modelling in order to capture this particular behaviour,
see e.g. (Bogsjo, 2007b; Charles, 1993; Bruscella et al., 1999; Rouillard, 2004,
2009) and the references therein. The road topography modelling is closely related
to simulation of vehicle missions and definition of stochastic drive cycle profiles
for evaluation of fuel consumption, see e.g. (Souffran et al., 2012; Schwarzer et
al., 2010). In this work, we discuss a novel approach, based on the Laplace dis-
tribution, to model roughness and topography of road profiles. We do not discuss
texture modelling as the potential of our approach for this purpose is yet to be
investigated.

In simple terms, the proposed modelling is a modification of Gaussian mod-
elling in which variances are becoming random. For example, for a Gaussian
time series Xy one can introduce a simple extension by scaling it independently
of X}, by gamma distributed random scaling factors /Rj. A new time series
Y, = /RpX}, which is Laplace distributed, shows entirely new qualities not
observed in its Gaussian counterpart. Its distinctive properties have been proven



useful in many areas in engineering, ecology, and finance, see (Kotz et al., 2001;
Kozubowski et al., 2013) for a theoretical background. Here we demonstrate the
applicability of this approach to road surface modelling. Both time series and con-
tinuous process signals are considered for topography and roughness, respectively.
Our study shows that the Laplace model has the flexibility in describing both con-
tinuous and discrete time data, extensions to multivariate tracks, and easiness of
fitting to the real data. Most importantly and in contrast to the Gaussian case, it has
the ability to account for transients and other sudden road irregularities, which is
often observed in road surface data and thus is essential for fatigue assessment.

Topography

Road topography is often described using slopes of hills observed in the records,
which are discrete time series. In the measured topography data, it is often ob-
served that variability of the slopes appears to be local, i.e. periods of high vari-
ability are followed by the ones with much smaller variability. This brings the
model of the form Y}, = /R, X, for the slopes as a natural candidate to capture
the locality of variance. The model has two additional parameters in order to de-
scribe local variability of variance. Once the model is fitted to the data it can be
utilized in dedicated programs to simulate fuel consumption of vehicles as well as
to estimate energy losses. In fact, the presented study was initiated by investiga-
tions of efficiency of different technical solutions to harvest energy from breaking
and driving downhills of utility vehicles in mines, see (Johannesson et al., 2015b).
The empirical example that is used in this paper to illustrate the proposed model is
based on topography records from a road surface segment in a mine.

Roughness

We consider modelling of the road surface roughness with focus on durability ap-
plications. The most desired properties of the models are robustness and simplicity,
so that only a small number of parameters need to be used to describe and classify
homogeneous parts of the road. It is also of interest to reconstruct road profiles
based on roughness measurements, e.g. the so-called International Roughness In-
dex (IRI), which is often available from road administration databases.
Traditionally, roughness data are modelled by a Gaussian moving average, i.e.
filtered (smoothed) Gaussian noise Xj. In (Bogsjo et al., 2012) it was shown
that replacing Gaussian noise by Laplace noise /R X}, produces a more accurate
model of roughness. In this paper we summarize principles of Laplace distribution
modelling that arise from work in (Aberg et al., 2009; Bogsjo et al., 2012) and
its extensions and applications presented in (Johannesson & Rychlik, 2013, 2014;
Kvanstrom et al., 2013; Johannesson et al., 2015a; Kozubowski et al., 2013).



Multi-dimensional loads

Considering just a single path along the road may be not sufficient for some appli-
cations, as any four-wheeled vehicle is subjected to excitations due to road rough-
ness in the left as well as the right wheel paths. Clearly, two-tracks data are strongly
correlated, particularly in the regions of high roughness of the roads. Here we give
extensions of the Laplace models to multiple correlated signals to cover the case
of road profiles along parallel tracks, see (Kozubowski et al., 2013; Johannesson et
al., 2015a).

Multivariate Laplace model are also used in situation in which one has to ac-
count in multivariate signals for transients that have a common origin, for example,
vibrations that can be caused by large obstacles encountered by a vehicle driving
into potholes. Here we illustrate it to model forces and bending moment in a culti-
vator frame, see (Kvanstrom et al., 2013).

Structure of paper

The paper is organized as follows. Road topography modelling is discussed in
Section 2. In Section 3, the road roughness model is presented, while Section 4 is
devoted to multivariate extensions. The paper closes with conclusions that address
specifically each of the three main sections, acknowledgments, references and four
appendixes. In the first appendix some details on simulation of the AR(1) Laplace
model for topography are given, in the second one means to simulate Laplace
roughness models are presented, an algorithm and MATLAB code to simulate the
Laplace model for parallel road profiles are given in the third appendix. Finally,
in the fourth appendix an algorithm to simulate the multi-valued Laplace load is
presented.

2 Road topography modelling

The task has been to develop a stochastic model for the topography to be used for
fuel consumption evaluation and for life prediction of e.g. transmission compo-
nents. The topography is the slope encountered by a vehicle due to the landscape
variability. The encountered topography can be obtained from map and/or satel-
lite data or by measurement systems on vehicles. For vehicle manufacturers it is
desirable to be able to calculate the topography and its model parameters based
on data available from the on-board logging system. In such a case, the extracted
topography parameters could be stored on-board the vehicle in a compact format,
which enables to collect statistics from a large fleet of vehicles. Therefore, it is of
interest that the models are as simple as possible, but still being able to capture the
main features of the topography.



2.1 Example of topography data

The data of encountered topography has been obtained using the on-board logging
system of the articulated hauler. More precisely, the slope has been calculated
based on the measured vehicle inclination which is corrected for the vehicle accel-
erations. The topography is usually defined as wavelengths of 50 metres and above,
whereas wavelengths from 10 cm up to 50 metres are classified as road roughness.
Therefore, in order to get the topography, the average value of the slope for each
25 metre segment is calculated. This will act as a low pass filter of the signal. The
result is the *measured’ topography signal y(z), as function of the distance z, with
sampling distance of Ly = 25 metres, see Figure 1. The topography signal can be
converted to the altitude, z(z), as function of distance.
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Figure 1: Measured slope and calculated topography for sampling distance of Ly =
25 metres.

2.2 The Gaussian model of topography

The aim now is to find a simple but still useful model for the topography signal,
Yk, here sampled with sampling distance L = 25 m. We propose to model the
topography Y} by an autoregressive model, namely an AR(1)-model with only one
regression parameter a, mean m and scale parameter o, defined as

Y =0y Xi. +m, D

where X, is a standardized Gaussian AR(1)-process, namely

Xp=aXp1+V1—a?ey, (2)

where ey, is modelled as independent normal random variables with expectation
zero and variance one. The mean m is assumed to be zero unless otherwise stated.
Note that the parameter o, is the standard deviation of the topography, i.e. a mea-
sure of the severity of the topography, whereas the regression parameter a is the



one-step correlation that indicates how fast the topography changes; a value close
to one indicates a slowly varying topography, while a lower value indicates a faster
varying topography with more smaller hills up and down. In fact, the mean length
of a hill can be calculated from a

1

Lhin = v—5———=— " Ls 3
1" 91 arcsin a

giving 700 metres for a = 0.9 and 340 metres for a = 0.6.

2.3 Estimation

There are different methods to estimate the parameters of AR-processes. Here,
we present the standard correlation method and an alternative approach called the
zero-crossing method.

Correlation method

The parameter a is easily estimated, as well as the variance 022/. The correlation
method, which is the same as the Yule-Walker method, preserves the observed
variance and one-step correlation of the signal. The parameters are then estimated
as

/70 “)
= 70 %)
where r( is the sample variance and r; the sample one-step covariance. The esti-

mated AR-parameters for the measured topography can be used to characterize the
topography of the measurement; for the signal we get (a = 0.734, 0, = 3.71).

N

N V=Y

Zero-crossing method

Another way to estimate the correlation a is to utilize an important characteristic
of the time series of slopes - the frequency of encountered hills f (in the sampling
frequency unit), defined as follows. The number of encountered hills is the number
of times that the slope signal up-crosses level zero. Thus, the frequency of hills is
equal to the frequency of zero upcrossings in the Gaussian time-series X;. Now,
for a zero mean stationary and ergodic Gaussian time series, the frequency of zero
upcrossings is given by

f=P(X1<0,Xy>0)= 1 ialrcsina. 6)

4 27

By counting the number of upcrossings in the topography signal, the observed
frequency f can be used to estimate the correlation parameter, namely

— —sin(2(f — 1/4)) )
= 70 (®)
and for the example signal we get (a = 0.755, 0, = 3.71).
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Figure 2: Above: Measured slope and calculated topography for sampling distance
of Ly = 25 metres. Below: Estimated AR-parameters for 5 km sections.

Splitting into section

For long measurements, the characteristics of the topography are expected to change
over time. Therefore, having the same AR-parameters for the complete measure-
ment may not be appropriate. One approach is then to split the measurement into
sections of, say, 5 km, and estimate AR-parameters (&, &,)) for each 5 km section
of the measured topography y;. The topography of the measurement is then char-
acterized by a sequence of AR-parameters. This is shown in the Figure 2, where
we can observe that the AR-parameters are varying, with the fourth section having
smaller o, and the a-parameter varying from 0.6 to 0.8.

2.4 The Laplace autoregressive model for topography

We have previously proposed to model the topography yi by a Gaussian autore-
gressive model. However, the distribution of the topography does not always agree
very well with the Gaussian one, see Figure 3. We will here describe how the Gaus-
sian AR-model can be extended, by constructing a so-called Laplace AR-process.
We will illustrate it with a measurement from Jaro, see Figure 1. The complete
measurement of 33 km will be modelled as a stationary signal, which looks rea-
sonable in this case.
A Laplace random variable can be constructed as the product

Y = ay\/ﬁX +m, 9)



Probability density of slopes
T T T

0.25 T T T T

= = = Gaussian
Laplace
Measured

02

PDF

0.1

0.05

-20 -15 15 20

slope / %

Figure 3: Normalized histogram of measured topography compared with Gaussian
(dashed line) and Laplace (red solid line) distributions.

where X is normally distributed with mean zero and variance one, and R is gamma
distributed with mean one and variance v, having the following probability density
function

f(r) = WTl/Vl exp(—r/v), (10)
where I'(+) is the gamma function. Note that if the parameter v = 0, ¥ becomes
the Gaussian case. The standard deviation o, is estimated from the signal, and
the parameter v is estimated through the kurtosis « of the signal, v = (k — 3)/3.
The estimated parameters for the 33 km long Jaro signal are oy, = 3.71 and v =
1.11. In Figure 3 the normalized histogram of observed data is compared to the
estimated PDFs of Gaussian and Laplace distributions. We observe that the Laplace
distribution gives a much better fit compared to the Gaussian one.

We will now describe how the Gaussian AR-model can be extended, by con-
structing the so-called Laplace AR-process as an amplitude-modulated Gaussian
AR-process

Yi = oy/ Ry Xi +m (11)

where X}’s follow the Gaussian AR(1), see Eq. (2), while Ry’s are gamma ran-
dom variables with mean one and variance v, independent of Xj’s. A simulation
example with independent gamma variables is shown in Figure 4, with parameters
a = 0.734, 0, = 3.71 and v = 1.11 corresponding to the Jaro signal. The up-
per graph shows the Gaussian AR-process, the middle one the square root of the
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Figure 4: Simulated Laplace AR-process with independent gamma variables.

gamma variables, and the lower one the Laplace AR-process.

Laplace model with correlated variances

In this section we present a model for correlated factors Ry. The simplest Laplace
model is obtained by assuming that the factors Ry, are independent. Then, the
Laplace AR-model can be described by one extra parameter v, compared to the
Gaussian AR-model. It seems reasonable to believe that the variance of the to-
pography varies slowly, and hence the factors Rj are likely dependent between
themselves. The degree of dependence is a function of the chosen length of the
constant variance segments (here 25 metres). In (Johannesson et al., 2015b) an
autoregressive model for the normalized variances Ry, was suggested. The model
has one regression parameter a,, and it can been shown that it has exponentially
decaying autocorrelation a®, k& = 0,1,..., see (Sim, 1971), where the gamma
autoregressive model has been introduced, or (Kozubowski & Podgdrski, 2008),
where a historical overview and further properties of this model are presented.
More details on the gamma AR(1) model is presented in Appendix A.1 together
with Matlab code for simulation of a Laplace AR-model. A simulation example
with correlated gamma variables is shown in Figure 5, where the parameters cor-
respond to the Jaro signal; a = 0.734, 0, = 3.71, v = 1.11 and a, = 0.84.
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Figure 5: Simulated Laplace AR-process with correlated gamma variables.

2.5 Validation with respect to fuel consumption

Evaluation of fuel efficiency is important and needs to be understood in early
project phases, since it is an important part of the total cost of ownership. Thus,
the variability of the operating environment needs to be characterized, as well as
the variation between customers. One of the most important sources of variation in
fuel consumption is topography.

The task here is to study the variation in the fuel consumption for stochastically
generated topographies. The fuel consumption is simulated with a vehicle simu-
lation model of a construction machine implemented in Simulink. With a given
topography, the model simulates driving the vehicle using a detailed model of the
engine and transmission. Both the measured topography and generated ones using
the autoregressive modelling technique have been used as input to the simulation
model. Here measurements from the Jaro site are analysed. The topography that
is measured originates from a track that starts and ends at the same point (conse-
quently also at the same height). Despite this, the measured topographies feature
a steady descent giving a difference between the start and end heights, implicat-
ing that there is a bias in the measurements. This is amended by a correction that
subtracts the average slope from the measured topography to form a corrected to-
pography with zero accumulated height change. The simulated accumulated fuel
consumptions as function of distance for these topographies are shown in Fig-
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ure 6(left).

Fuel consumptions are also presented for five topographies generated using the
AR model with parameters estimated from the measured topography (the measured
and corrected topographies give equal estimation of parameters). The variant of the
AR modelling used for generating the topographies is of the Gaussian type. An al-
ternative variant, the Laplace type which is not shown here, gives quantitatively
similar results. In Figure 6(right) the total consumed fuel at the end of the track is
given for 25 generated topographies, together with their estimated mean and one-
standard-deviations. The total consumed fuel for the measured and corrected to-
pographies are also given. It is seen that the measured original topology gives 20%
lower fuel consumptions compared to the corrected one, which is a consequence
of the artificial downhill slope due to the bias. The corrected measured topography
instead comes very close to the mean of the generated topographies, indicating that
the generated topographies are good descriptions for evaluating simulated fuel con-
sumption. The relative standard deviation in the simulated fuel consumption, due
to stochastically generated topographies, is about 5%. Most of this variation is due
to difference in start and end altitude. If the generated topographies are adjusted to
have the same start end altitude, the variation in fuel consumption drops to about
1%.
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Figure 6: (left) Used fuel along the track for generated and measured topographies.
(right) Total used fuel at end of track for 25 generated topographies and measured
topographies.

3 Road roughness modelling

Modelling of road profiles is an important area of transportation engineering as
durability studies of vehicle components often require a customer or market spe-
cific load description. Desired properties of the models are robustness and sim-
plicity, so that only a small number of parameters need to be used to describe and
classify homogeneous parts of the road. It is also of interest to reconstruct road pro-
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files based on roughness measurements, e.g. the so-called International Roughness
Index (IRI), which is often available from road administration databases.

Stationary Gaussian loads have been extensively studied in the literature and
used as models for road roughness. Early applications of bivariate Gaussian pro-
cesses to model road surface roughness can be found in (Dodds & Robson, 1973).
Direct Gaussian models are convenient since linear filter responses are Gaussian
processes as well. Although models based on Gaussian distributions are standard
in the field, see, for example, (Sun et al., 2001; Mucka, 2004) for some recent stud-
ies, most experts of vehicle engineering agree that road surfaces are not, in fact, ac-
curately represented by a Gaussian distribution, see (Dodds & Robson, 1973). One
reason for this is that the actual roads contain short sections with above-average
irregularity. As shown in (Bogsjo, 2007b), such irregularities cause most of the
vehicle fatigue damage. Therefore, several extensions of the Gaussian model has
been proposed.

In (Charles, 1993), a non-stationary model is proposed that is constructed as
a sequence of independent Gaussian processes of varying variances but with the
same standardized spectrum. This approach was further developed in (Bruscella
et al., 1999; Rouillard, 2004, 2009). The variability of variances was modelled by
a discrete distribution taking a few values. In (Rouillard, 2004) random lengths
of constant variance sections were also considered. In those papers the problem
of connecting the segments with constant variances into one signal was not ad-
dressed and thus the response was modelled as a sequence of stationary Gaussian
processes, i.e. by a process of the same type as the model of road surface. Another
approach has been proposed in (Bogsjo, 2007a) where a bivariate road model was
constructed based on a Gaussian process with added random irregularities.

In (Bogsjo et al., 2012) a new class of random processes, namely Laplace pro-
cesses, has been proposed for modelling road profiles. Simply speaking it is Gaus-
sian processes where the variance is randomly changing. In the current paper we
present Laplace modelling based on (Bogsjo et al., 2012; Johannesson & Rychlik,
2014) and its extensions and applications presented in (Johannesson & Rychlik,
2013; Kvanstrom et al., 2013; Johannesson et al., 2015a; Kozubowski et al., 2013).

In the case when only IRI data are available, a simple enough model is required
in order to be able to estimate the model parameters. Therefore, we will use the
non-stationary Laplace model presented in (Bogsjo et al., 2012; Johannesson &
Rychlik, 2014), together with the standardized spectrum according to (ISO 8608,
1995), which gives a Laplace model with only two parameters to estimate, where
the first parameter describes the mean roughness, while the second parameter de-
scribes the variability of the variance which is gamma distributed. In this Laplace
model the variance is constant for short segments of fixed length, typically one or
some hundred metres. By using IRI data from the Finnish road network, we will
demonstrate how to efficiently estimate the Laplace parameters, and evaluate their
dependency on the type of road. Further, we will employ a simple but accurate ap-
proximation of the fatigue damage due to Laplace roads. Extensions of the Laplace
model to parallel tracks and to multi-dimensional loads are also presented.
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3.1 Road spectra and roughness coefficient

For stationary loads, power spectra are often used to describe the frequency content
of a signal. The vertical road variability consists of the slowly changing landscape
(topography), the road surface unevenness (road roughness), and the high variabil-
ity components (road texture). For durability applications, the road roughness is
the relevant part of the spectrum. Often one assumes that the energy for frequen-
cies < 0.01 m~—! (wavelengths above 100 metres) represents landscape variability,
which does not affect the vehicle dynamics and hence can be removed from the
spectrum. Similarly high frequencies > 10 m~! (wavelengths below 10 cm) are
filtered out by the tire and thus are not included in the spectrum.

Following the ISO 8608 standard (ISO 8608, 1995), let us introduce the limits
on the spectrum band of interest, viz.

Qr, = 27/90 rad/m, Qr = 27/0.35 rad/m. (12)

Further, the ISO standard uses a two parameter spectrum to describe the road pro-
file Z(z)

—w

S(Q)=C <f§220> ., Qp <Q<Qpg, and zero otherwise, (13)
where (2 is the spatial angular frequency, and 9 = 1rad/m. The spectrum is
parameterized by the degree of unevenness C, here called the roughness coeffi-
cient, and the waviness w. The ISO spectrum is often used for quite short road
sections (in the order of 100 metres). For road classification the ISO standard uses
a fixed waviness w = 2. This simplified ISO spectrum has only one parameter, the
roughness coefficient C'. The ISO standard and classification of roads have been
discussed by many authors, e.g. recently in (Gonzdlez et al., 2008; Ngwangwa et
al., 2010). The choice of the ISO spectra is motivated by its simplicity, as it de-
pends on only one parameter that can be related to IRI, as will be explained below.

The simplicity of the ISO spectrum makes it attractive to use in vehicle de-
velopment. However, often the spectrum parameterized as in ISO 8608 does not
provide an accurate description of real road spectra, and therefore many different
parameterizations have been proposed, see e.g. (Andrén, 2006) where several spec-
tral densities S(£2) for modelling road profiles were compared. Further, in a study
of roads in the USA, see (Kropd¢ & Micka, 2008), estimated waviness values be-
tween 1 and 4 were found, with an average of w = 2.5. A typical waviness value
of about 2.5 has also been reported by others, see e.g. (Andrén, 2006) for a study
of Swedish roads and (Braun & Hellenbroich, 1991) for German roads. Therefore,
two values of waviness will be used in this work, namely w = 2 and w = 2.5.

We will also use an alternative parametrization of the ISO spectrum by intro-
ducing the normalized ISO spectrum

S(Q) =Co(/)™, Gl =(Qp Y=z ") /(w=1) (14
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Figure 7: Simulations of road profiles; Laplace processes with different kurtosis,
k = 3,6,12; k = 3(v + 1). (Note that Laplace with k = 3 gives the stationary
Gaussian process).

such that [ S(Q)dQ = 1. Here Cy = 0.0694 m*/rad if waviness w = 2, and
Co = 0.0273 m3/rad if w = 2.5. Then 02 = (C/Cj is the variance of the road
profile Z(z), and the ISO spectrum can be written as

S(Q) =2 5(Q). (15)

3.2 Laplace modelling of road profiles

Stationary Gaussian loads have been extensively studied in literature and applied as
models for road roughness, see e.g. (Dodds & Robson, 1973) for an early applica-
tion. However, the authors of that paper were aware that Gaussian processes cannot
"exactly reproduce the profile of a real road". In (Charles, 1993) a non-stationary
model was proposed, constructed as a sequence of independent Gaussian processes
of varying standard deviations but the same standardized spectrum. Knowing du-
rations and sizes of standard deviations the model is a non-stationary Gaussian
process. Similar approaches were used in (Bruscella et al., 1999), and (Rouillard,
2004, 2009). The variability of the standard deviation was modelled by a discrete
distribution taking a few number of values. In (Rouillard, 2009) random lengths of
constant variance sections were also considered.
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To summarize, the Gaussian model is frequently used for modelling road pro-
files. However, the Gaussian model is often only valid for short sections, say 100
m, whereas longer sections of roads, say 10 km, typically contain shorter sections
with high irregularity, and the variability between sections is higher than can be
explained by the stationary Gaussian model. This phenomenon can be captured by
a Laplace process, which can be seen as a Gaussian process with randomly vary-
ing variance. Thus, the Gaussian process is a special case of the Laplace process.
A Laplace process can be constructed by randomly varying the local variance, for
segments of fixed length, according to a gamma distribution. Here we will em-
ploy the ISO road spectrum with waviness w = 2, see Eq. (13), and 100-metre
segments, giving the Laplace-ISO model that can be described by only two pa-
rameters, namely its mean roughness, C' and the Laplace shape parameter, v (or
equivalently by its variance and kurtosis). The parameters can be estimated from a
sequence of IRI-values, which is often available, and can then be used for recon-
struction of road profiles. Simulated profiles for different Laplace shape parameters
are shown in figure 7. More details on Laplace road models are found in (Bogsjo
et al., 2012; Johannesson & Rychlik, 2014), including Matlab code for simulating
Laplace-ISO road profiles. Further, in (Johannesson & Rychlik, 2014) the Laplace-
ISO model was validated using eight road sections representing different types of
roads as well as different geographical locations.

3.3 Stationary Gaussian model

A zero mean stationary Gaussian processes is completely defined by its power
spectrum. There are several ways to generate Gaussian sample paths. The algo-
rithm proposed in (Shinozuka, 1971) is often used in engineering. It is based on
the spectral representation of a stationary process. Here we use an alternative way
that expresses a Gaussian process as a moving average of white noise.

Roughly speaking a moving average process is a convolution of a kernel func-
tion g(z), say, with an infinitesimal “white noise” process having variance equal
to the spatial discretization step, say dx. Then a Gaussian process can be approxi-
mated by

Z(z)~ > gl — ;) Z; Vda, (16)

where the Z;’s are independent standard Gaussian random variables, while dz is the
discretization step, here reciprocal of the sampling frequency (often dz = 5 cm for
road profiles). An appropriate choice of the length of the increment dz is related
to the smoothness of the kernel. The kernel g(z) is conveniently defined by its

Fourier transform, viz.
(Fg) () = v2m S(), (17)

where F stands for Fourier transform.
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3.4 Stationary Laplace model

A stationary Laplace process can be constructed by extending the above Gaussian
model, Eq. (16), by introducing gamma variables. The resulting Laplace Moving
Average (LMA) process can be approximated by

Z(x) %Zg(m—xi)\/ﬁi& Vi, (18)

where the R;’s and the Z;’s are independent gamma and standard Gaussian random
variables, respectively. Note that \/R; Z; has a generalized Laplace distribution,
and it can be shown that Z(x) also has a generalized Laplace distribution. More
details about the LM A model are found in (Aberg et al., 2009; Bogsjo et al., 2012;
Kvanstrom et al., 2013). An application of the LMA model for cultivator loads will
be shown in Section 4.2.

3.5 Local road roughness

Suppose that a 10 km long road is split into 100 metre segments, giving a sequence
of estimates of the local roughness Ci, 7 =1,...,100, e.g. using Eq. (28) below.
The observed variability of the estimates C'j could be caused by statistical esti-
mation errors and hence could be neglected. In such a case the road is stationary
with spectral density (13) and mean roughness C estimated as the average of M
roughness values

| M
C=— pxet (19)
j=1
Consequently the variance o2 in Eq. (15) is estimated by
62 =C/Cy, (20)

The local variance can be written as 0]2 =7 .02 where the factor r; s estimated
as

rj=C;/C. (21)

The variability of r; is measured by means of its variance, denoted by v and esti-
mated by

1 M
U= (r; —1)% (22)
M -1 ; J

Based on an extensive simulation study of 10 km long stationary Gaussian road
profiles it was found that  is only negligibly biased, with an estimated median
bias of 0.017, and a 95% empirical quantile of 0.021. Hence, if © is less than about
0.02, then we may assume that the variance o2 is constant for the road profile and
a stationary Gaussian model can be used, see Section 3.3.

However, quite often the variability of r; is too large to be explained by solely
statistical estimation errors. This type of variability calls for a special treatment.
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For example, one could use different ISO spectra for each of the 100 metre road
segments giving 100 parameters to describe the spectral properties of a 10 km long
road. The result is a non-stationary Gaussian model, presented in Section 3.6. An
alternative to this rather ad hoc procedure is to use a stochastic model for the vari-
ability of the factors r;. Here we model r; as gamma distributed random variables,
having mean one and variance v, which results in the Laplace model presented in
Section 3.7.

3.6 Non-stationary Gaussian model

The process consists of M segments of length L = L,,/M and we wish to define a
process on [0, L,]|. Define the j:th non-stationary Gaussian process Z;(x) process
forall 0 < 2 < L,. Let again dx be the sampling step of the process and [s;_1, s;],
sj — sj—1 = L, the interval where the road profile model would have the local
variance O'JQ- =71 0%, viz.sg =0 < 51 < ... < sy = L,. Now define M
processes Z;(x) as follows

Zix)~ > glw— ) T ZiVde, (23)

85-1<T;<8;

where the Z;’s are independent standard Gaussian variables, and dx is the dis-
cretization step. Finally the road profile model Z(z) is given by

M
Z(x) =Y Zj(x). (24)
j=1

3.7 Non-stationary Laplace model

The non-stationary Gaussian model for M road segments requires M parameters
in order to model the variability in the variance, i.e. the varying local roughness. In
order to reduce the number of parameters it is desirable to use a stochastic model
for the sequence of rj-values. A non-stationary Laplace process is obtained by
modelling the r;’s as gamma distributed random variables, and thus, only one pa-
rameter is needed to model the variability in the roughness, namely, the Laplace
shape parameter v. By definition of the factors 7; in Eq. (21), the gamma factors
have mean one and variance v. In order to completely define the Laplace model one
also needs to specify the dependence structure of the sequence of factors r;. The
simplest Laplace model is obtained by assuming that the factors are independent,
i.e. the roughness of the segments vary in an independent manner. Then, the non-
stationary Laplace model can be described by one extra parameter v, compared to
the stationary Gaussian model.

By replacing r; in Eq. (23) by independent Gamma random variables R;, we

get
Zix)~ > gz —w) /Ry ZiVda. (25)

8j—1<x;<sj
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and the road profile Z(z) is given by
Z(x) = Zj(x). (26)

Further, for a zero mean Gaussian random variable Z;, the product \/E Z; has a
generalized Laplace distribution, and thus the process Z(z), defined in Eq. (26),
has a generalized Laplace distribution, see (Kotz et al., 2001).

It seems reasonable to believe that the quality of the road surface varies slowly
and hence the factors R; defined in Eq. (21) are likely dependent between them-
selves. The degree of dependence is a function of the chosen length of the constant
variance segments (here 100 metres). Therefore, an autoregressive model for the
random variances [?; can be employed. In fact, the same gamma AR(1) model
as presented for topography can be used for road roughness, see Eq. (37), thus
introducing one extra parameter, the correlation a,.

3.8 A simulation example

In Figure 8 two simulated road profiles are illustrated, both having ISO spectrum
with waviness parameter w = 2 and standard deviation C' = 1 - 1075 m3. The
factors I?; are gamma distributed with parameter v = 1, see Eq. (10). In the top
plot the Laplace model has independent gamma distributed variances, while in the
bottom plot the variances form an AR(1)-process with correlation a, = 0.9. One
can see that regions with larger/smaller variability are longer for correlated vari-
ances. Such a region may last for several kilometres. MATLAB code to simulate
this model can be found in Appendix A.2.

3.9 International Roughness Index

When monitoring road quality, segments of measured longitudinal road profiles are
often condensed into a sequence of IRI values, see (Gillespie et al., 1986). They are
calculated using a quarter-car vehicle model, see Figure 9, whose response at speed
80 km/h is accumulated to yield a roughness index with units of slope (e.g. mm/m).
More precisely, IRI is defined as the accumulated suspension motion divided by
the distance travelled. The parameters of the quarter vehicle are defined by the
so-called Golden Car with parameters given in Figure 9. Since its introduction in
1986, IRI has become the road roughness index most commonly used worldwide
for evaluating and managing road systems. Thus, IRI parameters are often available
from road databases maintained by road agencies and are typically reported for
each 20 or 100 metres.
For a Gaussian road profile with ISO spectrum the expected IRI can be com-
puted as
E[IR]] = 2.21-10%-VC, E[IRI] =1.91-10%-VC (27)
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Figure 8: Comparison of 10 km simulated Laplace models having ISO spectrum,
with waviness parameter w = 2 and parameters C = 1-107% m? and v = 1. The
variance of the factors R; is v = 1. Top graph has independent random factors
(a, = 0) and the bottom graph has correlated AR(1) factors with a,, = 0.9.

m sprung mass Golden Car Quarter Truck
Symbol Value Unit Symbol Value Unit
ks c=cs/mg 60 s~! ms 3400 kg
ki = k¢/ms 653 s 2 ks 270000  N/m
unsprung mass ko = ks/ms 633 s 2 Cs 6 2(5)8 st/m
p=mqy/ms 0.15 - mg g
kt 950000  N/m
ct 300 Ns/m

__—~___~road profile

Figure 9: Quarter vehicle model.
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Table 1: Road classes of Finnish roads.

Functional class Number of sections
1 = main road 1131
2 = main road 2nd class 577
3 =local road 1479
4 = connecting road 2204

for waviness w = 2, 2.5, respectively, where the roughness coefficient C has units
m?3/rad. The theoretically derived relationship between IRI and C' can be gen-
eralized to arbitrary waviness and speed, see (Sun et al., 2001), (Johannesson &
Rychlik, 2014), and (Kropa¢ & Miucka, 2004, 2007).

For completeness, we give formulas to estimate the parameter C' in the ISO
spectrum (13) if the IRI value is known, viz.

~ 2 ~ 2
R L; R I
C;=10"%. (2.51) , C;=107°. (151) (28)

for w = 2, 2.5, respectively, where I j 1s an estimate of IRI in unit mm/m and C'j
has unit m?/rad.

3.10 Laplace modelling of roads in Finland

We here present results on Laplace modelling of Finnish roads, where we have
IRI values for 100 metre road segments. The data have been obtained from the
Finnish Transport Agency. In total there are 5391 road sections longer than 5 km.
Most of the road sections are between 5 and 10 kilometres. The goal here is to
describe and classify roads according to the Laplace parameters and relate these to
the functional class, see Table 1.

For each longer section (at least 5 km) of the roads, Laplace models have been
estimated based on the sequence of IRI-values. First the C-values for 100 metre
segment are estimated from IRI-values by using Eq. (28) with w = 2. In the second
step the Laplace parameters are estimated, according to

M 1 M A 2
.\ 1ZA ==
C = Mj:l OJ, V= C’Q . (29)

i.e. the roughness coefficient C is the mean roughness, and the Laplace shape
parameter ¥ is the coefficient of variation squared, see (Johannesson & Rychlik,
2014) for details. Once the Laplace parameters have been estimated from IRI-
values, it is possible to stochastically reconstruct a road profile, see Figure 7 for
examples. However, here we will investigate the variability of the Laplace parame-
ters, and thus Box plots of the estimated parameters are presented in Figure 10 for
different road classes.
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Figure 10: Estimated parameters C' and v of Laplace models for roads in Finland.

Table 2: Distribution of Laplace parameters for different functional classes.

Functional ~ Roughness, C' [m - mm?] Laplace, v

class median std-log median std-log
1 0.39 0.43 0.37 0.65
2 0.50 0.47 0.41 0.71
3 0.73 0.54 0.41 0.66
4 1.12 0.54 0.47 0.67

In Figure 10 we can observe that there is high variability in the estimates. How-
ever, it can be clearly seen that the roughness C increases with functional class,
which is what can be expected. However, for the Laplace parameter v there are no
clear tendencies, but rather that it seems to be independent of the functional class.
We have investigated the distribution of the Laplace parameters within a certain
functional class by making normal probability plots. The conclusion was that the
log-normal distribution fits reasonably well. Therefore, it seems adequate to char-
acterize the distribution of the logarithmic Laplace parameters by their mean and
standard deviation, see Table 2, where the median of the parameter is presented,
instead of the logarithmic mean, calculated as: median(C) = exp(In C).

As it was concluded before, the median roughness increases with the func-
tional class, while the median of the Laplace shape parameter does not seem to
depend on the functional class and the median Laplace parameter is about 0.4 (i.e.
slightly non-Gaussian). The standard deviations in log-scale can be interpreted as
the relative scatter, and it does not seem to depend on the functional class. For
the roughness it is about 0.5 and for the Laplace parameter it is about 0.7. The
conclusion is that, for the Finnish roads, only the median roughness depends on
the functional class, while the median Laplace parameter and the relative scatters
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do not depend on the functional class.

We have demonstrated that for a certain functional class, the Laplace param-
eters may be characterized by their medians and relative scatters, where only the
median roughness varies between different classes for the Finnish roads. This char-
acterization of road types can be useful for reconstruction of roughness parameters
for roads in regions where there are no roughness data available. In such a case
the roughness parameters could be reconstructed based on, for example, road type
(e.g. functional class) and the general standard of the region (e.g. obtained from
socio-economic data).

3.11 Fatigue damage due to Laplace road profiles

We will here define a fatigue damage index that is assessed by studying the re-
sponse of a quarter-vehicle model travelling at a constant speed on road profiles,
see Figure 9. To be more precise, the response considered is the force acting on
the sprung mass. Such a simplification of a physical vehicle cannot be expected to
predict loads exactly, but it will highlight the most important road characteristics
as far as fatigue damage accumulation is concerned. The parameters in the model
are set to mimic heavy vehicle dynamics, following (Bogsjo, 2007b). Thus, the
values of the parameters differ somewhat form the ones defining the Golden car.
The force response of the quarter-vehicle can be computed through linear filtering
of the road profile. The purpose of this work is to propose models for road profiles
defined by means of a few parameters that could be used to compute the vehicle
response, and hence the most important criterion for a good model of a measured
road profile is that the rainflow damage of the response is well represented. Thus,
the fatigue damage index is defined by using rainflow cycle counting of the re-
sponse in combination with the Palmgren-Miner rule, see (Palmgren, 1924; Miner,
1945) for details.

A practically important theoretical result on the expected damage for the Laplace-
ISO model is presented in (Johannesson & Rychlik, 2014). The expected damage
index, with damage exponent k, for a Laplace-ISO road with waviness w = 2 and
parameters (C, /) can be approximated by an explicit algebraic expression

C\F2 (s \FPY T (k)2 + 1))
E DS k ~ 0. 13.92k k/2
[Ds(k,C,v)] =~ 0.07093¢ Co - v T

where the reference values are Cp = 1/14.4 m? and sy = 10 m/s. The first fac-
tor depends on the parameters of the quarter-vehicle response, and the coefficients
have been estimated from a long simulation of a Gaussian road. The coefficients
0.07093 and 13.92 will be different for another filter. The second factor is a cor-
rection for the average roughness C'. The third factor is a correction for the vehicle
speed s. The last factor is a correction for the Laplace model, depending only on
the Laplace shape parameter v.

As an example, we have computed the expected damage under Gaussian and
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Laplace model assumptions for the Finnish roads, see Figure 11. Damage exponent
k = 5 and vehicle speed 80 km/h were used in the damage calculations. We can see
that the Laplace model predicts higher damages compared to the Gaussian model,
which is due to the correction factor depending on the Laplace shape parameter v.

Gaussian damage Laplace damage
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damage
le+13
|

° ii
é ST

———HH#-)O
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1e+09
|

Functional class Functional class

Figure 11: Theoretically computed expected damage for Gaussian and Laplace
models.

4 Multi-dimensional Laplace models

Here we give extensions of the Laplace models to situations of multiple correlated
signals, e.g. road profiles along two parallel tracks and multi-dimensional loads.
First a non-stationary Laplace model of road profiles along two parallel paths taken
by left and right wheels of a vehicle are presented, following (Kozubowski et al.,
2013; Johannesson et al., 2015a). Then a stationary multi-dimensional Laplace
model is presented, as described in (Kvanstrom et al., 2013), with an example on
cultivator loads.

4.1 Two-track Laplace models

Considering just a single path along the road can be an oversimplification, as any
four-wheeled vehicle is subjected to excitations due to road roughness in the left
as well as the right wheel paths. Thus, accounting for both the paths should be an
important aspect of vehicle fatigue assessment. Hence, it is natural to search for
an adequate and effective bivariate stochastic model corresponding to parallel road
tracks. The spectral representation of a 2-track Laplace process is the same as for a
standard 2-track Gaussian one, namely the left and right tracks are described by the
spectra S7,(€2), Sr(€2) and the cross-spectra Spr(2) = SgrL(2), see e.g. (Dodds
& Robson, 1973; Bogsjo, 2007a). The work is an extension to parallel track of
the single track models presented in (Johannesson & Rychlik, 2014; Bogsjo et al.,
2012). It can be interpreted as a Gaussian vector valued process where the local
variance is randomly varying according to a gamma distribution. More precisely,
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left and right road profiles, Zy(z) and Zg(x), respectively, are assumed to be
Gaussian with variances that vary between short road segments. The value of the
variance is random between the short road segments and varies according to a
gamma distribution, introducing the Laplace shape parameter v.

In our example the ISO spectrum is employed for both left and right tracks

Q

SL(2) =Sgr(2)=C <Q> , 9 <Q<Q9rad/m, €y = 1rad/m,
0

€19
and the dependence between left and right tracks is modelled by an exponentially
decreasing normalized cross-spectrum

|SLR(S2)]

= s @sn)

— exp(~bJ9). (32)

It was demonstrated in (Bogsjo, 2008) that this simple normalized cross-spectrum,
with only one parameter, describes the correlation between the tracks in many mea-
sured signals rather well. Note that the (squared) coherence spectrum is | K7z (€2)|%.

Based on the spectral representation there are methods to simulate Gaussian
and Laplace roads, see (Kozubowski et al., 2013; Johannesson et al., 2015a). The
algorithm and Matlab code to simulate the signal is presented in Appendix A.3.
As an illustration three 2-track Laplace profiles with v = 0, 1, 3 have been simu-
lated, see Figure 12 showing the distance between 2 and 2.5 km. Note that v = 0
represents the Gaussian case, compare Figure 7. It can be observed that the long
wavelengths are highly correlated while the short wave lengths (high frequency os-
cillations) are almost uncorrelated. This is a result of the exponentially decreasing
normalized cross-spectrum. Further examples on e.g. measured road profiles and
fatigue damage are presented in (Johannesson et al., 2015a).

4.2 Multi-dimensional Laplace moving average models

In the previous section we have used a Laplace model for the road surface rough-
ness along two parallel tracks. The method assumes that the two signal have the
same statistical properties, i.e. the same power spectral densities and variances v of
the factors Ry. Actually the same factors Ry, are used in the signals which gives the
effect that the high roughness parts occur frequently at the same positions on the
tracks. The dependence between the two signals is defined by the cross-spectrum.
However there are cases when the loads, constituted of transients, are correlated
but not equally distributed. For such loads new type of model is needed.
Independent Laplace loads can be simulated using independent Gaussian noises
and gamma factors, see Eq. (18). However it can lead to oversimplifications for
loads where the transients tend to occur simultaneously in the loads. (Obviously
the independent Laplace loads are lacking the property.) In (Kvanstrom et al.,
2013) a general multi-dimensional Laplace model was given to handle correlated
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Figure 12: Simulation of three different 2-track Laplace roads.
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Figure 13: Measured forces and bending moments at one location of cultivator frame

and identically distributed Laplace loads. The mathematical details are quit com-
plicated however the resulting algorithms to simulate multi-dimensional Laplace
loads is simple. It is presented in Appendix A.3. The limitation of the method is
that the loads have cross-spectra defined by the correlations between instantaneous
values of the loads and the PSD of signals which may differs from the actual ones,
see (Kvanstrom et al., 2013) for details. A general Laplace model for not iden-
tically distributed multi-dimensional loads having any cross spectra is not known
yet.

In this section, we will apply the multi-dimensional Laplace model, to describe
variability of forces and bending moments, measured at some point of a stiff me-
chanical structure. The method was used in (Kvanstrom et al., 2013) to asses the
durability of welds in a stiff frame of a cultivator. For a stiff frame, stresses are
linear combinations of environmental loads. In Figure 4.2, six loads, measured on
one tine, are presented. In the figure one can see that transients appearing in dif-
ferent forces and bending moments are often close in time. Since stress is a linear
combination of the loads this may result in very large stresses which may greatly
amplify the fatigue damage accumulation rate in a weld.

In the present example we are modelling responses (forces and bending mo-
ments) which are filtered external loads and may have different PSDs as well kur-
tosis. This implies that the random factors R, used in the definition of Laplace
signal, may have different gamma distributions, i.e. variances v.
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Figure 14: Left: Simulation of the Laplace model for standardized loads (F, F,, M),
having mean zero and variance one.

4.3 Loads on cultivator frame

The multivalued Laplace method do not make any limitation for the load compo-
nents spectra. However, it is desirable to use spectra dependent on few parameters
which can vary between different environments, e.g. sandy or clay soil when the
cultivator is working. For modelling cultivator loads, the following PSD proves to
be useful

S(w) = 0.502 a, exp(—ac|wl). (33)

For the particular case of exponential spectrum this leads to

20 /\/T
g(t) = 1_’_4{;//;0)2' (34)

The parameter a. governs steepness of transients while o their average energy.

In Figure 4.2 one can see that forces I, I, and the bending moment M, are
dominating signals and, for simplicity of presentation only, those three signal will
be used in this example. Further, we will normalize the signal so that these have
mean zero and variance (02) one. The estimated parameters a.., (apy,arz, arz)
equal to (0.012,0.009,0.015) while the signals kurtosis The kurtosis of the loads
are (Kpy, KFz, KMg) equal to (11.4,9.4,20.1). For the parameters the variances v
of the factors Ry, can be evaluated using the following formula

v =042(k — 3) a, (35)

see (Rychlik, 2013) for more detailed presentation. Note that as « tends to 3 the
Laplace model approaches the Gaussian model. The parameters (Vpy, Vs, Viiz)
are equal to (0.042,0.024,0.108), respectively. The loads are correlated; correla-
tion between M, and Fy is 0.9; M, and F, is 0.3; correlation F, and F’, is 0.5.
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Using the program given in Appendix A.4 the standardized Laplace loads F,,
F,, M, were simulated and the results are presented in Figure 14. One can see that
the transients observed in the loads are present in the Laplace model. Those are
missing in commonly used Gaussian model. Finally we give the marginal fatigue
damage indexes estimated using the Laplace models and the Gaussian models and
compare it with the observed indexes, i.e. computed using the observed loads. The
results are presented in Table 3. One can see that the observed damages agrees well
with estimates based on Laplace models while the Gaussian model underestimate
the damages due to lack of transients.

DAMAGE INDEX
Data F, F. M,

observed 369 518 56
Laplace model 335 497 56
Gaussian model 151 245 19

Table 3: Observed damage index for loads F);, F,, M, compared with the expected dam-
age indexes for Laplacian and Gaussian models.

5 Conclusions

Topography modelling

We discuss the classical Gaussian autoregressive models and an extension that ac-
counts for non-Gaussian distribution of the records, thus providing a more flexible
representation of observed topography data. The extended model has two compo-
nents: the first one is given by a classical Gaussian AR(1) time series, while the
second one represents the randomly varying variance given by an autoregressive
gamma process. The dependence in the model is governed by two autoregressive
parameters: a for the Gaussian AR(1) part and a, for the autoregressive gamma
part. The distributional parameters; location, scale and shape are obtained by fitting
sample mean, variance and kurtosis to their sample equivalents. The models have
been successfully used to investigate fuel consumption of an articulated hauler,
where the generated topographies produce, with high accuracy, similar fuel con-
sumptions as the ones induced by the real topography records. Understanding the
topography environment is a key for evaluation of customer fuel consumption. The
proposed simple AR(1) models give possibility to efficiently log sufficient infor-
mation on topography, and can be used for vehicle on-board logging of topography
to investigate and understand customer behaviour.
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Roughness modelling

Laplace models have proved to be useful for modelling measured road profiles
with application to fatigue, see the validation studies in (Bogsjo et al., 2012; Jo-
hannesson & Rychlik, 2014; Johannesson et al., 2015a). The conclusions of the
validation studies, with road sections represent different types of roads as well as
different geographical location, can be summarized as follows

1. We have demonstrated that the Laplace model having observed spectrum
reproduces the damage indices very well.

2. We investigated whether the simpler ISO spectrum could be used instead,
and a useful Laplace-ISO model could be found for the studied roads.

3. We found that the presented approach to estimate Laplace-ISO models from
IRI sequences is useful for reconstruction of road profiles when profile mea-
surements are not available.

The third point has been of special industrial interest, since often measured
road profiles are not available, but only condensed roughness data are available
from road agencies in the form of IRI values or roughness coefficients. Then a
simple statistical model for the road profile is needed in order to be able to estimate
the model parameters. However, the model should still be useful for durability
applications. For this purpose, the Gaussian model has been found to be too simple,
see e.g. (Bogsjo, 2007b), since it cannot correctly capture the variability of the
roughness. For our setup we have found that the Laplace-ISO model, i.e. a non-
stationary Laplace model, (Bogsjo et al., 2012), with ISO spectrum (ISO 8608,
1995), is simple enough but still useful for durability evaluations, see (Johannesson
& Rychlik, 2014). It can be interpreted as a Gaussian process where the local
variance is randomly varying according to a gamma distribution. The length of
constant variance segments is predefined, and for road profiles typically one or
some hundred metres. Especially there are three good properties of the Laplace-
ISO road model

e a small number of parameters are needed to define the model, namely the
roughness coefficient, C, the Laplace shape parameter, v, and the length of
constant variance road segment, L,

e the parameters C and v can be estimated from the sequence of IRI, which is
often available, and can then be used for reconstruction of road profiles, and

o the expected damage of a response of a vehicle, modelled by a linear filter,
having Laplace-ISO road as an input, can be accurately approximated by
an explicit formula depending only on the Laplace parameters, the damage
exponent and the speed.
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The last property is particularly convenient for sensitivity studies since lengthy
simulations can be avoided. It can also be used for estimation of Laplace parame-
ters and for classification purposes. The usefulness of the Laplace-ISO model was
demonstrated for Finnish roads, where it was found that only the mean roughness
varies between different road types, while no effect on the Laplace shape param-
eter was found. Lastly, it was demonstrated that the Laplace-ISO model can be
extended to two-track road profiles.

Multivariate track models

Two types of multivariate Laplace model have been presented. The first deals with
road profiles along parallel tracks and assumes that the distribution of individual
track are the same and follow the Laplace-ISO model. The dependence has been
introduced by a cross-spectrum. The explicit simulation algorithm for the model is
presented.

The second multivariate model allows for different distributions for individual
components. It aims at modelling multivariate responses that have transients aris-
ing from a common source. The model has been successfully applied to model
forces and moments on a cultivator frame and is validated by comparison of dam-
age indexes. The results show that the Laplace model delivers much better accu-
racy in assessing damage when compared to the Gaussian model. An algorithm for
simulation of this model is also given.
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Appendix
A MATLAB code for model simulation

For readers convenience we present the MATLAB codes used to simulate the
Gaussian and Laplace models for both road topography and road profile. In the
code some functions from the WAFO toolbox (Brodtkorb et al., 2000; WAFO
Group, 2011a) are used, which can be downloaded free of charge, (WAFO Group,
2011b). The statistical functions rndnorm, rndgam, rndpois and rndexp
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are also available in the MATLAB statistics toolbox through normrnd, gamrnd,
poissrnd and exprnd. Note that WAFO also contains functions to find rain-
flow ranges used to estimate fatigue damage.

A.1 Simulation of Laplace road topography model

We begin by explaining the models for simulation and then we present a MAT-
LAB script to simulate the discussed model, resulting in stochastically generated
topographies.

Recall that the classical Gaussian AR(1)-process X having mean zero and
variance one, is defined by a recursion

Xk:an_l-l- \/1—(12 €L, (36)

where ey, are independent zero mean variance one Gaussian variables (Gaussian
white noise). Further, the parameter a is the one-step correlation. Defining a
gamma distributed AR(1)-process is a more difficult problem which is discussed in
(Johannesson et al., 2015a). The gamma AR(1)-process for Ry, can be defined by
a recursion similar to the Gaussian AR(1)-process, viz.

Ry =ar K(Rg—1) - Rg—1+ (1 — ar) e, (37)

where a, € (0, 1) is an autoregressive coefficient, €;’s are mutually independent
gamma distributed variables — random innovations — with mean one and variance
equal to the parameter v, independent also from K}, = K(Rj_1) and Rj_;. Here
the random factor K (r) is given by

N(r)

K(r) = mz) Z E;, (38)

where F;’s are independent random variables, £y = 0 while, for ¢ > 0, E;’s are
exponentially distributed and independent of the Poisson random variable N (r)
having mean m(r) equal to

ar T

= —. 39
l1—a,v (39)

m(r)
It can been shown that this model has exponentially decaying autocorrelation a¥,
k=0,1,..., see (Sim, 1971), where the gamma autoregressive model has been
introduced, or (Kozubowski & Podgorski, 2008), where a historical overview and
further properties of this model are presented.

>> N=1320;

>> sy=3.71; nu=1.11;

>> a=0.734; a_r=0.84;

>> rAR=zeros (N,1l); xAR=zeros(N,1);

>> riid=nuxrndgam(l/nu,1,N,1); xiid=rndnorm(0,1,N,1);
>> rAR(1)=riid(1l); xAR(1l)=xiid(1);
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>> for i=2:N

>> mr=a_r/ (l-a_r)/nu*rAR(i-1);

>> Nr=rndpois (mr) ;

>> if Nr>0, E=rndexp(l,Nr,1); else E=0; end
>> Kr=sum (E) /mr;

>> rAR(i)=a_r*Kr*«rAR(i-1)+(l-a_r)*riid(i);
>> XAR (1) =a*xAR(1i-1)+sqrt (1-a”2)*xiid (i) ;
>> end

>> yG=sy*xAR;

>> yL=sy*xAR.x (sqgrt (riid));
>> yLAR=sy*xAR.* (sqrt (rAR))
>> subplot(3,1,1), plot (yG)
>> subplot(3,1,2), plot(yL)
>> subplot (3,1,3), plot (yLAR)

’

In the program the standard deviation of the topography Y}, is o, = 3.71, the
shape parameter is ¥ = 1.11, while the correlation parameters are a = 0.734, a,, =
0.84. It corresponds to the parameters estimated from the measured topography in
Figure 1. Using the MATLAB code, three topography models are simulated and
plotted, namely Gaussian yG, Laplace yL, and Laplace with correlated gamma
variances yLAR, compare Figures 4 and 5.

A.2 Simulation of Laplace road roughness models

The length of the simulated function will be 5 km and the sampling interval 5 cm.
The following code can be used to compute the spectrum.

>> C=9.45e-6; ww=2;

>> Lp=5000; dx=0.05; NN=ceil(Lp/dx)+1; xx=(0:NN-1)’xdx;
>> w = pi/dxxlinspace(-1,1,NN)’; dw=w(2)-w(l);

>> wL=2+pi/90; wR=2%pi/0.35;

>> CO0=1/((1/wL.”(ww-1) — 1/wR.”(ww—1))/ (ww—-1));

>> sigma=sqrt (C/CO);

>> S=zeros (size(w));

>> indw=find (abs (w)>wL & abs (w)<wR);

>> S=zeros (NN, 1); S(indw)=C/2x1./abs (w(indw)) . ww;
>> G=fftshift (sqrt(S))/sqgrt (dx/dw/NN) ;

>> kernel=fftshift (real (1fft(G)));

>> figure, plot (w+xdx/dw,kernel)

The kernel g(x) is introduced through its Fourier transform G(§2) = Fg(2).
The standard deviation of the road is denoted by sigma. If the load is Gaussian
then o is constant for whole length Lp and need to be estimated from the signal.
We turn now to simulation of Gaussian and Laplace models.

A.2.1 Gaussian model

First a Gaussian white noise process InpG is generated, then the road profile zG
is computed by means of FFT.

>> InpG=rndnorm(0,1,NN,1);

>> zG = sqrt (dx)xreal (ifft (f£ft (InpG) .*G));
>> figure, subplot(4,1,1), plot (xx,zG)
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A.2.2 Stationary Laplace model

For the LMA model, first, parameter v is computed for kurtosis, and then Laplace

fvhiée noise InpLMA is evaluated, after which the road elevation zLMA is simu-
ated:

>> nu=1;

>> rLMA=nuxrndgam(l/nu,1,NN,1);

>> InpLMA=InpG.x*sqrt (rLMA) ;

>> zLMA = sqgrt (dx)+real (1fft (fft (InpLMA) .*G));
>> subplot(4,1,2), plot (xx,zLMA)

A.2.3 Non-stationary Laplace model

In the Laplace model it is assumed that the roughness is constant for a short seg-
ment of a road, here 100 metres. The Laplace shape parameter is here specified to
v = 1, corresponding to a road profile kurtosis of 6. This determines the gamma
distributed random variances riid and rAR for independent and AR cases, re-
spectively. Then the modulation processes mod and modAR are evaluated and
finally road elevations zL and zLAR are computed.

>> L=100; M=ceil(L/dx); NM=ceil (NN/M);

>> nu=1l; a_r=0.9;

>> riid=nuxrndgam(l/nu,1,1,NM);

>> rAR(1l)=riid(1); % Gamma AR

>> for i=2:NM

>> mr=a_r/ (l-a_r) /nu*rAR(i-1);

>> Nr=rndpois (mr);

>> if Nr>0, E=rndexp(l,Nr,1); else E=0; end
>> Kr=sum(E) /mr;

>> rAR (i) =a_r*Kr*rAR(i-1)+(l-a_r)*riid(i);
>> end
>> mod=[]; modAR=[];

>> for j=1:NM;

>> mod=[mod; sqrt(riid(j))*ones(M,1)];

>> modAR=[modAR; sqgrt (rAR(j)) *ones (M,1)];

>> end

>> zL = sqgrt (dx)xreal (ifft (fft (InpG.*mod (1:NN)) .*G));

>> zLAR = sqgrt (dx)xreal (ifft (fft (InpG.+modAR(1:NN)) .xG));
>> subplot(4,1,3), plot(xx,zL)

>> subplot(4,1,4), plot (xx,zLAR)

Note that in the code the same sample of a Gaussian white noise InpG has
been used to generate the Gaussian and non-stationary Laplace models of the road
profile. This is done to facilitate visual comparison of the simulated records.

A.2.4 Estimation of non-stationary Laplace model

Here we assume that from some database the sequence of IRI are available sampled
also at 100 metres. The sequence is saved in a vector IRT.

>> Ci=(IRI/2.21)."2;
>> C=mean (Ci);
>> nu=var (Ci) /C"2;

The estimated parameters C and nu of the non-stationary Laplace model can
then be used for simulating profiles. Note that if the simulated gamma variables
riid are replaced by a corresponding vector of observed normalized variances
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riid=C1i/C, the same simulation code can be used for simulating a non-stationary
Gaussian road profile.

A.3 Simulation of bivariate Laplace road roughness model

A zero mean bivariate stationary Gaussian process is completely defined by its two
power spectra and the normalized cross-spectrum. There are several means to sim-
ulate sample paths, and the algorithm proposed in (Shinozuka, 1971) is most com-
monly used. Here we present a method proposed in (Kozubowski et al., 2013) valid
only for processes with real valued normalized cross-spectra K (£2), see Eq. (32).
First introduce two kernels g; (x) and g2 () by means of the Fourier transforms

(Fo) (@) = VorS.(@) - (VI+ K@ + VI K@) /2
(Fg) (@) = V2rS(@) - (VIFK(Q) — VI- K@) /2

where S; (€2) and Sk (€2) are the left and right spectra, respectively. Then two cor-
related Gaussian moving averages Z, (x), Zx(x) are given by

Z () =~ (Z g1(x — x;) Z1; + Zgz(ﬂf — ;) Z2i> Vdzr,
Zp(z) = (Z g2(x — x4) Z1i + 291(1‘ — ;) ZQi) Vdz

where Z1;, Z2;’s are independent standard Gaussian random variables, with equal-
ity in limit as dz tends to zero.

Essentially, the Gaussian processes Z, (x), Zz(x) are obtained by filtering of
sequences of independent standard Gaussian variables Z1;, Zo;, which serve as two
Gaussian noise sequences. The Laplace processes are constructed in a similar way,
the difference is that now we allow Zj;, Zs; to have variable gamma distributed
variances, see Section 3.7 and Eq. (25). For completeness we give a MATLAB
code to simulate the Laplace model.

(40)

(41)

>> C=9.45e-6; ww=2.5; b=1.15;

>> nu=0.33; a_r=0.41;

>> Lp=10000; L=100; dx=0.05;

>> NM=Lp/L; M=L/dx;

>> riid=nuxrndgam(l/nu,1,NM,1);

>> rAR=riid;

>> for i=2:NM

>> mr=a_r/ (l-a_r) /nu*rAR(i-1);

>> Nr=rndpois (mr) ;

>> if Nr>0, E=rndexp(l,Nr,1l); else E=0; end

>> Kr=sum (E) /mr;

>> rAR (1) =a_r*KrxrAR(i-1)+(l-a_r)+riid(1i);
>> end

>> Noise=[]; NoiseAR=[];

>> for i=1:NM

>> Nois=rndnorm(0,1,2,M)";

>> Noise=[Noise; sqgrt (riid(i)) *Nois];

>> NoiseAR=[NoiseAR; sqgrt (rAR(1i)) *Nois];
>> end
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>> wL=0.011%2xpi; wR=2%pix2.83;

>> C0=1/((1/wL.”(ww-1) — 1/wR.”(ww—=1))/ (ww=1));

>> sigma=sqrt (C/CO) ;

>> NN=NM=*M;

>> w=pi/dxxlinspace(-1,1,NN)’; dw=w(2)-w(l);

>> indw=find (abs (w)>wL & abs (w)<wR);

>> S=zeros (NN, 1); S(indw)=C/2x1./abs (w(indw)) . ww;

>> SL=S; SR=S;

>> K=zeros (NN, 1); K=exp (-bxabs(w));

>> Gl=sqgrt (2+«pi*SL)/dx.« (sqgrt (1+K) +sqrt (1-K)) /2;

>> G2=sqrt (2xpi*SR) /dx.* (sqrt (1+K) -sqrt (1-K)) /2;

>> Gl=ifftshift (Gl); G2=ifftshift (G2);

>> zLiid=real (ifft (fft (Noise(:,1)) .»Gl)+ifft (fft (Noise(:,2)) .%G2)) *sqgrt (dx) ;
>> zRiid=real (ifft (fft (Noise(:,1)) .xG2)+ifft (fft (Noise(:,2)) .%Gl)) *sqgrt (dx);

>> zLAR=real (ifft (fft (NoiseAR(:,1)) .*Gl)+ifft (fft (NoiseAR(:,2)).xG2))+xsqrt (dx);
>> zRAR=real (1fft (fft (NoiseAR(:,1)) .*G2)+ifft (fft (NoiseAR(:,2)) .*Gl)) xsqrt (dx);

>> figure(l), plot ((1:NN)*dx, [zLiid zRiid])
>> figure(2), plot ((1:NN)x*dx, [zLAR zRAR])

Using the code, 10 km long left and right profiles having ISO spectrum with
waviness parameter w = 2.5 sampled each 5 cm were simulated for independent
and correlated factors r;. Examples of simulated road profiles are shown in Fig-
ure 12.

A.4 Simulation of multi-axial correlated Laplace model

For readers convenience we present MATLAB code used to simulate standardized
(zero mean variance one) multi-axial Laplace model having exponential spectrum
introduced in Section 4.2. In (Kvanstrom et al., 2013) mathematical derivations

leading to the algorithm are given.

Here we consider the standardized three dimensional load presented in Fig-
ure 14. We will simulate tri-axial load saved in X on interval [—T, T'] with sample
step dt. First the discretization step and related constants are set;

>> dt=0.001; T=120; NO=floor (T/2/dt); N=2xNO+1;
>> t=0.5«1linspace(-T,T,N)’;

We now evaluate kernels g and its transfer functions Fg(w), see Eqs.(17) and

(34), Gk. For this we define three exponential spectra (33) having parameters a and

02 = 1. Kurtosis of the loads are given in kappa and the variances v of factors

R; are evaluated using (35) and saved in nu;

>> K=3; a=[0.012 0.009 0.015 ]; kappa=[11.4 9.4 20.1];
>> nu=0.42x (kappa-3) .*a;

>> w=pi/dtxlinspace(-1,1,N)’; dw=w(2)-w(l); S=[];

>> for i=1:K

>> S=[S 0.5xa(i)+*exp(-a(i)*abs(w))]1;

>> end

>> Gk=ifftshift (sqrt (S))/sqgrt (dt/dw/N) ;

>> g=fftshift (real (1fft (Gk)));

In the following script one defines the covariance structure of the Laplace
model. The correlation matrices for jump sizes SIGMA (this defines sizes of tran-
sients) and the correlation of added Gaussian noise CG will be specified;

>> SIGMA = [1 0.5 0.9; 0.5 1 0.3; 0.9 0.3 1 ]; CG=eye(3);
>> [V,D] = eig(SIGMA); AJump=V*sqgrt (D);
>> [V,D] = eig(CG); AGauss=Vxsqrt (D) ;
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Now we turn to the the simulation algorithm of the multi-axial Laplace model.
The simulated load is given in the matrix X; In the following script Njmp defines
number of transients, here we choose to be as many as the number of values of the

load, i.e. N;

>> X = zeros ([N KJ);

>> Njmp=N;

>> nu_min=min (nu) ;

>> G = exp (-nu_min*cumsum(rndexp (1,1, Njmp))/T);
>> W = sqgrt (rndexp(1l,1,Njmp)) ;

>> 7Z = AJump*rndnorm (0,1, [K Njmp]);

>> dXG=sqgrt (dt) *AGauss+ rndnorm (0,1, [K N]);

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

indU=randperm (N) ;
for ii=1:K

nui=nu(ii);
p=sqrt (exp (-nui*Njmp/T)) ;
dLambda=zeros (1,N);
dLambda (1, 1:Njmp) = sqgrt(nui)*Z(ii,:).*W.*G.” (nui/nu_min/2);
dLambda=dLambda (indU) ' ;
dX = pxdXG(ii, :)’+dLambda;
X(:,11) = real (ifft(Gk(:,1ii).+~fft(dX)));
end
figure, plot (t,X)

39



List of abbreviations

AR - Autoregressive

IRI - International Roughness Index

ISO - International Organization for Standardization
FFT - Fast Fourier Transform

LMA - Laplace Moving Average

PSD - Power Spectral Density

List of symbols and notation

a - Autoregressive parameter for topography

ar - Autoregressive parameter for gamma AR-process
b - scale parameter in exponential normalized cross-spectrum function
C - roughness coefficient [m3/rad]

E[X] - expectation of random variable X

F - Fourier transform

g(z) - kernel for moving averages [m'/2]

() - gamma function

IRI - International Roughness Index [mm/m]

k - damage exponent

K(Q) - normalized cross-spectrum

L - length of road segments [m]

L, - length of a road profile [m]

Ly - sampling distance for topography [m]

Ry, - Gamma random variables

rj - factors describing variability of variances

S(2) - road profile model spectrum [m?3/rad]

S(Q) - normalized road profile model spectrum [m/rad]
Sir(£2) - cross-spectrum [m?3/rad]

v - vehicle speed [m/s]

V [X] - variance of random variable X

T - position of a vehicle [m]

w - waviness parameter in ISO spectrum

Xk - Gaussian topography [%]

Y - Laplace topography [%]

Z(x) - road profile [m]

Z(z), Zn(x) - left, right road profile [m]

K - kurtosis of road profile

v - scale parameter in gamma distribution

o - standard deviation of road profile [m]

Oz, 0y - standard deviation of topography [%]

w - angular frequency [rad/s]

Q - spatial angular frequency [rad/m]

Qr, Qg - cutoff frequencies defining the ISO spectrum [rad/m]
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