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Abstract

The third moment cumulant for the aggregated multivariate claims is consid-

ered. A formula is presented for the general case when the aggregating variable is

independent of the multivariate claims. It is discussed how this result can be used to

obtain a formula for the third cumulant for a classical model of multivariate claims.

Two important special cases are considered. In the first one, multivariate skewed

normal claims are considered and aggregated by a Poisson variable. The second

case is dealing with multivariate asymmetric generalized Laplace and aggregation is

made by a negative binomial variable. Due to the invariance property the latter case

can be derived directly leading to the identity involving the cumulant of the claims

and the aggregated claims. There is a well established relation between asymmetric

Laplace motion and negative binomial process that corresponds to the invariance

principle of the aggregating claims for the generalized asymmetric Laplace distribu-

tion. We explore this relation and provide multivariate continuous time version of

the results.
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1 Introduction

The joint aggregated claim models for the multivariate claims is of the fundamental im-

portance for risk assessment in actuarial sciences. In fact, insurance claims usually arrive

from contracts that are insuring against accidents of different nature but dependent in

their occurrences. For example, it is natural to expect that weather conditions affect for-

est fires and draught in farms and thus inducing dependence for claim size arriving from

such accidents. Dependencies can be present in the severities of the claims of different

type as well as in the numbers of claims of different types occurring during particular

types of accidents. Actuaries need tools that would facilitate the analysis of models that

account for multivariate dependence structure. In the pioneering paper of Cummins and

Wiltbank (1983), it was pointed out that the dependence in the aggregated multivariate

claim sizes (severities) can occur at three different levels: dependencies between num-

bers (frequencies) of different types of accident resulting in multivariate losses (number of

forest fires and farm droughts are naturally correlated through weather conditions); the

aggregated numbers of different types of claims within a particular accident type (num-

ber of injury claims and number of damage claims in vehicle accidents); a joint claim

size distribution for the multivariate claims corresponding to each type of accident (in a

car accident, the damage to the vehicle and severities of injuries of individual involved in

the accident). Following this seminal work, a number of multivariate extensions of the

standard aggregated one-dimensional Cramer-Andersen collective risk model have been

discussed in the literature, see Ivanova and Khokhlov (2007), Ambagaspitiya (1999), and

Ren (2012) and the references therein. Despite of the importance of the models, under-

standing the theoretical properties of these models is lagging as compared for the theory

of one dimensional claims.

The skewness of the records has a major impact on the risk assessment resulting from

the aggregated claims. For the multivariate distributions, the third moment cumulant

can be viewed as multivariate generalization of the skewness that plays the quite impor-

tant role, see Kollo and von Rosen (2005), De Luca and Loperfido (2015) and others.

For example, one can approximate the density function of the aggrageted claims using

its cumulants (see McCullagh (1987), Barndorff-Nielsen and Cox (1989), Kollo and von

Rosen (1998)). However, until now, the workable formula for the third cumulant of the

aggregated claims was not known. The main contribution of this paper lies in deriving

a general formula for the third cumulant that can be applied to a number of practically

relevant models of aggregated multivariate claims.

In a generic form, the aggregate claims in the multivariate case describe aggregation

of sizes of claims from a number of types of accident each carrying a certain number of

types of claims (Cummins and Wiltbank (1983)), while Anastasiadis and Chukova (2012)

provides a recent overview of the developments. More precisely in this model it is assumed

that we deal with a certain number, say B, of different types of claims and their aggregated

2



severities (sizes) per accident constitute a random vector Xa = (Xa1, . . . , XaB), where a

is referring to a type of the accident, a = 1, . . . , A. Since in each accident there can be

a certain random number Kab of the incidents of claims of the type b, Xab’s are, in fact,

aggregations of individual claims, i.e.

Xab = Xab1 + · · ·+XabKab
=

Kab∑
j=1

Xabj, b = 1, . . . , B.

For example, if a refers to the automobile accident, and b to bodily injury liability, then if

in an accident there is Kab = 3 injured persons, then Xabj refers to the claim value by the

jth injured person, j = 1, 2, 3. Generally, it is assumed that for different a and different

instances i of the ath accident, the aggregated claims Xai are independent.

Typically, it is assumed that given fixed b, Xabji’s are independent when different a

(accidents), j (individual claims) and i (instances of accidents of the type a) are considered

together with independence of the claim numbers Kabi. Consequently, one can assume

independence between aggregated claims for accidents of type a:

Sa = Xa1 + Xa2 + ...+ XaNa , a = 1, . . . , A,

where A is the number of types of accidents, Na is the random number of occurrences

of the a-type accidents and Xai is the vector of sizes of different types of claims in the

ith occurrence of an a type accident. The total aggregated claim sizes in a certain time

period writes as

S = S1 + · · ·+ SA. (1)

The coordinates of S = (S1, . . . , SB) are the aggregated claim sizes of B claim types.

It is clear that these coordinates are dependent and understanding the structure of this

dependence is of great interest for an actuary. The third cumulant allows to summarize

the skewness of the multivariate structure of claims and results this work provides tools

for effective evaluation of this important multivariate characteristic.

In the next section, we present mathematical properties of the third cumulants for

linear combination of multivariate vectors that allow, under the assumption of indepen-

dence of Sa’s, to express the third cumulant of S in terms of the third cumulants of Sa,

see Corollary 1 of Section 2. In fact, it would be also possible to find the third cumulant

without the independence but this would require cross-cumulants as seen in Proposition 2,

Section 2. However, we do not explore this direction in the present work. We conclude

this section with a discussion of validity of independence between Sa’s.

It is argued in the literature that the assumption of independence is on some occasions

not supported in reality. For example, the fire of a house can be triggered by severe hot

weather condition which can also induce medical conditions among elders. Thus under

these conditions home insurance claims will stochastically dependent on claims follow-
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ing from the health insurance contracts and different types accidents do not necessarily

occur independently of each other. One way to model such a dependence is to consider

finer partition of the type of events (‘accidents’) that would treat jointly the claims that

follows from the similar circumstances (claims during extreme temperature incidents)

but separating the types of accidents do not occur simultaneously (claims under regular

weather conditions). This allows multivariate grouping of the claim sizes into the aggre-

gated claim models Sa with the independent components for different a’s. From such

an ‘independent’ type of accident model one can obtain the dependent one by a choice

of a linear transformation of the independent component. This interpretation of depen-

dence between different types of accidents has been explored, for example, in Ivanova and

Khokhlov (2007). Since the third cumulant of a linear transformation of a random vector

can be expressed using the cumulants of the independent components, see Proposition 2,

Section 2, we conclude that for the purpose of this paper the assumption of independence

can be maintained and it is enough to discuss properties for individual Sa.

The main part of the paper is Section 3, where a general result on the third cumulant

for the total aggregated claim with independent components is presented. From the above

discussion, it follows that in principle it also applicable to produce the third cumulant for

a general Cramer-Andersen model, although the explicit formula would require further

specifications of the model which is not the subject of this paper.

2 The third cumulant – definition and properties

Let µ ∈ Rd be the mean vector and Σ ∈ Rd×d be the covariance matrix of a d-dimensional

random vector X. Then the third cumulant of X is a third order tensor, often represented

as the d2 × d matrix,

κ3(X) = E
{

(X− µ)⊗ (X− µ)⊗ (X− µ)T
}
,

where ⊗ denotes the Kronecker (tensor) product of matrices. This a natural third order

concept that parallels the mean κ1(X) and covariance κ2(X):

κ1(X) = E(X),

κ2(X) = E
{

(X− µ)(X− µ)T
}

= E
{

(X− µ)⊗ (X− µ)T
}
.

There are a number of basic properties of the third cumulant that can be found in

Kollo and von Rosen (2005), De Luca and Loperfido (2015) and others. Here we will list

only these that are important for the results of this paper.

In what follows the third cumulant is treated as a d2 × d matrix and the linear trans-

formation Y = AX, where A is a r × d real matrix has the third cumulant that is given
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by

κ3(Y) = (A⊗A)κ3(X)AT , (2)

where A⊗A is treated as a r2 × d2 matrix (see Kollo and von Rosen (2005), p.190).

The following property is particularly useful when the effect of linear dependencies has

been removed by considering the standardized random vector Z = Σ−1/2(X− µ), where

Σ−1/2 is the (unique) symmetric and positive definite square-root matrix of the inverse

of the covariance matrix Σ, which is assumed to be non-singular. The third standardized

cumulant of X is the third cumulant of Z. It is often denoted by κ3(X), and is related to

κ3(Z) via the equality

κ3(Z) = (Σ−1/2 ⊗Σ−1/2)κ3(X)Σ−1/2 = κ3(X).

The skewness of a random variable X satisfying E
(
|X|3

)
< +∞ is often measured by

its third standardized cumulant

γ1 (X) = E

[
(X − µ)3

σ3

]
,

where µ and σ2 are the mean and the variance of X, respectively. The squared third

standardized cumulant β1 (X) = γ21 (X), known as Pearson’s skewness, is also used.

The third cumulant of a d-dimensional random vector is a d2× d matrix with at most

d (d+ 1) (d+ 2) /6 distinct elements. Since their number grows very quickly with the

vector’s dimension, it is convenient to summarize the skewness of the random vector itself

with a scalar function of the third standardized cumulant, as for example Mardia’s skew-

ness, partial skewness and directional skewness. They have been mainly used for testing

multivariate normality, are invariant with respect to one-to-one affine transformations and

reduce to Pearson’s skewness in the univariate case. Loperfido (2015b) reviews their main

properties and investigates their mutual connections.

Mardia (1970) defined the skewness of a random vector X as

βM1,d (X) = E
[(

ZTW
)3]

,

where W = Σ−1/2 (Y − µ), Z = Σ−1/2 (X− µ), while X and Y are two d-dimensional,

independent and identically distributed random vectors with mean µ and variance Σ.

Mardia’s skewness can be defined as the squared Forbenius norm of the third standardized

cumulant as

βM1,d(X) = ||κ3(X)||2.

5



Mardia’s skewness is by far the most popular measure of multivariate skewness. Its

statistical applications include multivariate normality testing (see Mardia (1970)) and

assessment of robustness of MANOVA statistics (see Davis (1980)).

Another measure of multivariate skewness is

βP1,d (X) = E
(
ZTZZTWWTW

)
,

where Z and W are the same as above. It has been independently proposed by several

authors (Davis (1980), Isogai (1983), Mòri et al. (1993)). The name partial skewness

reminds that βP1,d (X) does not depend on the cross-product moment E (zizjzk) when i, j,

k differ from each other. The partial skewness is far less popular than Mardia’s skewness.

Like the latter measure, however, it has been applied to multivariate normality testing

(see Henze (1997)) and to the assessment of the robustness of MANOVA statistics (see

Davis (1980)). Moreover, Loperfido (2015a) showed that the partial skewness can be

obtained as

βP1,d(X) = || [κ3(X)]T IV ||2,

where IV denote the vector obtained by stacking the columns of the identity matrix I on

top of each other.

Malkovich and Afifi (1973) defined the multivariate skewness of a random vector X as

the maximum value βD1,d (X) attainable by β1
(
CTX

)
, where C is a nonnull, d-dimensional

real vector and β1 (Y ) is the squared third standardized moment of the random variable

Y . The name directional skewness reminds that βD1,d (X) is the maximum attainable

skewness by a projection of the random vector X onto a direction. Statistical applications

of directional skewness include normality testing (see Malkovich and Afifi (1973)), point

estimation ( see Loperfido (2010)), projection pursuit and cluster analysis (see Loperfido

(2015b)).

We conclude this section with the relation between the third cumulant of a vector X

that is a matrix linear combination of two vectors Y and Z with dimensions a and b,

respectively. Namely, we consider

X = AY + BZ, (3)

where A and B are an arbitrary matrices with sizes d× a and d× b, respectively.

Before formulating the result we list some basic properties of the tensor product. We

refer to Harville (2008), and Mardia et al. (1979) for more details. In all properties, we

assume that the dimensions of the matrices are such that the operations on them are well

defined.
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For arbitrary vectors F and G treated as column matrices

F⊗GT = GT ⊗ F = FGT . (4)

For matrices A, B, C, and D we have the following linearity properties

(A + B)⊗C = A⊗C + B⊗C,

C⊗ (A + B) = C⊗A + C⊗B,
(5)

and the following commutative-associative property

(A⊗B)(C⊗D) = AC⊗BD. (6)

We have the following result that generalizes (2).

Proposition 1. Let the cross cumulants of the third order between to vector variables Z

and Y be defined through

κ21(Y,Z) = E
{

(Y − µY)⊗ (Y − µY)⊗ (Z− µZ)T
}
,

κ12(Y,Z) = E
{

(Y − µY)⊗ (Z− µZ)⊗ (Z− µZ)T
}
,

whenever all the required moments exist. Then for matrices A and B we have

κ21(AY,BZ) = (A⊗A)κ21(Y,Z)BT ,

κ12(AY,BZ) = (A⊗B)κ12(Y,Z)BT .

Proof. Without the loss of the generality, we assume that µY and µZ are equal to zero.

By definition

κ21(AY,BZ) = E
{

(AY)⊗ (AY)⊗ (BZ)T
}
.

Applying (6) to the last formula we have that

κ21(AY,BZ) = E
{

(A⊗A)(Y ⊗Y)⊗ (ZTBT )
}
.

Finally, linear properties of the expected value imply

κ21(AY,BZ) = (A⊗A)E
{
Y ⊗Y ⊗ ZT

}
BT .

Using the same properties for κ12(AY,BZ) we obtain the statement of the proposition.

Before reporting the result on the third cumulant for linear transformation of vectors,
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we note that if X and Y are independent, then

E(X⊗Y) = EX⊗ EY.

In particular all third order cross cumulants are zero.

Proposition 2. For X given in (3) we have

κ3(X) = (A⊗A)κ3(Y)AT + (B⊗B)κ3(Z)BT

+ 2
(
(A⊗A)κ21(Y,Z)BT + (B⊗B)κ21(Z,Y)AT

)
+ (B⊗A)κ12(Z,Y)AT + (A⊗B)κ12(Y,Z)BT .

If we assume additionally that Y and Z are independent, then

κ3(X) = (A⊗A)κ3(Y)AT + (B⊗B)κ3(Z)BT .

Proof. We can assume without losing generality that µX, µY, and µZ are all zero. By

the linearity properties (5) of the tensor product

κ3(X) = E
{

(AY + BZ)⊗ (AY + BZ)⊗ (AY + BZ)T
}

= E
{

(AY)⊗ (AY)⊗ (AY)T
}

+ E
{

(BZ)⊗ (BZ)⊗ (BZ)T
}

+ E
{

(AY)⊗ (BZ)⊗ (AY)T
}

+ E
{

(BZ)⊗ (AY)⊗ (AY)T
}

+ E
{

(BZ)⊗ (BZ)⊗ (AY)T
}

+ E
{

(AY)⊗ (AY)⊗ (BZ)T
}

+ E
{

(AY)⊗ (BZ)⊗ (BZ)T
}

+ E
{

(BZ)⊗ (AY)⊗ (BZ)T
}
.

By (2) and (4), we get

κ3(X) = (A⊗A)κ3(Y)AT + (B⊗B)κ3(Z)BT

+ 2E
{

(AY)⊗ (AY)⊗ (BZ)T
}

+ 2E
{

(BZ)⊗ (BZ)⊗ (AY)T
}

+ E
{

(BZ)⊗ (AY)⊗ (AY)T
}

+ E
{

(AY)⊗ (BZ)⊗ (BZ)T
}
.

Applying Proposition 1 to the last formula we get the first statement of the proposition.

The case when Y and Z are independently distributed, follows easily since cross cu-

mulants vanish.

From Proposition 2 we get the third cumulant of a random vector X is made of entries

of two independent vectors Y and Z.

Corollary 1. Let A and B have the following forms

A =

[
Ia

0

]
, B =

[
0

Ib

]
,
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where In denotes the n×n identity matrix and 0 stand for zero matrices with dimensions

not represented in the notation and chosen so that A and B have sizes d × a and d × b,
respectively. Then, κ3(X) for a case when Y and Z are independently distributed can be

expressed in the block matrix form

κ3(X) =

[
(Ia ⊗A)κ3(Y) 0

0 (Ib ⊗B)κ3(Z)

]

and we have [
κ3(Y) 0

0 κ3(Z)

]
=

[
Ia ⊗AT 0

0 Ib ⊗BT

]
κ3(X),

where the last result follows from the identity

(Ia ⊗A)
(
Ia ⊗AT

)
= Ia2 .

3 The third cumulant for aggregated claims

We have seen that from the above properties we can reduce the problem of evaluating the

third cumulant of multivariate claims to the aggregate claims of the following form

S = X1 + X2 + ...+ XN , (7)

where X1, . . . ,XN are identically and independently distributed d-dimensional claim sizes

random vectors and N is the univariate claim count random variable which is independent

of the X1, . . . ,XN . We note that Xi’s and N should have the finite moments up to the

third order.

3.1 General formula

Next, we consider the third cumulant of the aggregate claims for the general case when

the aggregating variable is independent of the claims. This result is presented in the

following theorem.

Theorem 1. Let N be a nonnegative random variate with finite the third moment. More-

over, let X1, . . . ,XN be identically distributed random vectors with a finite third moment,

independent of each other as well as independent of N . Then the third cumulant of the

multivariate aggregate claims is given by

κ3(S) = ν1ξ3 + ν2
(
ξ2 ⊗ ξ1 + ξV2 ξ

T
1 + ξ1 ⊗ ξ2

)
+ ν3ξ1 ⊗ ξT1 ⊗ ξ1,
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where νj and ξj (j = 1, 2, 3) denote the j−th cumulants of N and Xi, respectively, and

ξV2 denote the vector obtained by stacking the columns of the ξ2 on top of each other.

From Theorem 1 we get that the third cumulant of multivariate aggregate claims is

expressed as the function the first three cumulants of the random variable N and the

random vector Xi. In the next corollary, we present the third cumulant of S using non-

centered and centered moments of the random variable N and the random vector Xi. We

note that Corollary 2 follows directly from Theorem 1.

Corollary 2. Let N be a nonnegative random variate with finite third moment. More-

over, let X1, . . . ,XN be identically distributed random vectors with finite third moment,

independent of each other as well as independent of N . Then the third cumulant of the

multivariate aggregate claims is given by

κ3(S) = µN,1 · µXi,3
+ 3µXi,1 · µXi,2

· µN,2 + µ3
Xi,1
· µN,3,

where µY,i and µY,i are the i−th noncentered and centered moment, respectively.

Remark 1. It is noted that Corollary 2 is a well known result, and can be found, for

example, in Cummins and Wiltbank (1983), or Panjer and Willmot (1992). Also, uni-

variate cumulants, included the third and the fourth, are considered in Chaubey et al.

(1998) and Sundt et al. (1998).

In the following subsection we present application of the result to some concrete ag-

gregated claims model.

3.2 The Poisson-skewed normal aggregated claims model

Here, we consider the multivariate aggregate claims with multivariate claim sizes which

have the skew-normal distribution and the claim count which has a Poisson distribution.

We remind that the distribution of a d-dimensional random vector y is a multivariate

skew-normal (SN, henceforth) with scale parameter Ω ∈ Rd × Rd and shape parameter

α ∈ Rd, i.e. Xi ∼ SN d(Ω,α), if its density function (see Azzalini and Dalla Valle (1996))

is given by

f(y; Ω,α) = 2φd(y; Ω)Φ(αTy),

where Φ(·) is the cumulative distribution function of a standard normal variable and

φd(y; Ω) is the density function of a d-dimensional normal distribution with mean vector

0 and covariance matrix Ω. The importance of SN distribution in finance and actuarial

science is well described by Adcock et al. (2015).

In the following theorem, we derive the third cumulant of the aggregate cliams under

assumptions that claims have a SN distribution and the aggregation is made by Poisson
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distribution. Moreover, we derive its third standardized cumulant, Mardia’s, partial and

directional skewness.

Theorem 2. Let N be a Poisson random variable with mean λ. Moreover, let X1, . . . ,XN

be skew-normal random vectors with scale matrix Ω and shape vector α, independent

of each other as well as of N . Additionally, let δ =
Ωα√

1 + αTΩα
, η = Ω−1/2δ, and

q = αTΩα/
(
1 + αTΩα

)
. Then for the multivariate aggregated claim model S given in

(7) we have

(a) the third cumulant

κ3(S) = λ

√
2

π

(
Ω⊗ δ + ΩV δT + δ ⊗Ω− δ ⊗ δT ⊗ δ

)
;

(b) the third standardized cumulant

κ3(S) =

√
2

λπ

(
I⊗ η + IV ηT + η ⊗ I− η ⊗ ηT ⊗ η

)
;

(c) Mardia’s skewness, partial skewness and directional skewness, respectively

βM1,d (S) =
2q

λπ

[
3 (d− 1) + (q − 3)2

]
, βP1,d (S) =

2q

λπ
(d+ 2 + q)2 , βD1,d (S) =

2q (3− q)2

λπ
.

3.3 Generalized multivariate Laplace claim sizes

Another important multivariate aggregated claims model can be obtained by considering

in (7) asymmetric multivariate Laplace distribution for the claim sizes Xi. Recall, that

a random vector Y ∈ Rd is said to have a multivariate generalized asymmetric Laplace

distribution (GAL) if its characteristic function is given by

ϕY(t) =

(
1

1 + 1
2
tTΣt− iµT t

)s
, t ∈ Rd,

where s > 0, µ ∈ Rd, and Σ is a d × d non-negative definite symmetric matrix. This

distribution is denoted by GALd(Σ,µ, s). Also, the GAL random vector Y has the

following stochastic representation

Y
d
= µΓ +

√
ΓX

d
= Bd(Γ), (8)

where Γ has a standard gamma distribution with shape parameter s, X ∼ Nd(0,Σ),

while Bd(t) is the multivariate Brownian motion with the drift µ and the covariance

matrix parameter Σ. The symbol
d
= denotes the equality in distribution. Stochastic

representation (8) shows that GAL distributions are location-scale mixtures of normal
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distributions.

For our discussion we need the third cumulant for GAL distributions. The result has

been derived in Hürlimann (2013). Alternatively, one can apply a general result about the

third cumulant of the process that is obtained by subordination of a Brownian motion

with drift to a random time change. We consider a non-negative random variable Γ

independent of a Brownian motion Bd and consider

Y = Bd(Γ). (9)

Theorem 3. Let Bd be a d-variate Brownian motion with drift µ ∈ Rd and covariance

matrix Σ ∈ Rd×d. Then the third cumulant of Y in (9) is given by

κ3(Y) = ζ2 · (ΣVµT + µ⊗Σ + Σ⊗ µ) + ζ3 · µ⊗ µ⊗ µT ,

where ζ2 and ζ3 denote the second and third cumulants of Γ, respectively.

Proof. Let us note that the mean vector of Y is µY = E(Γ)µ. If we consider the Brownian

motion without drift B0
d(t) = Bd(t)− µt and the centered variable Γ0 = Γ− E(Γ), then

from the definition of the third cumulant we have

κ3(Y) = E
[
(B0

d(Γ) + µΓ0)⊗ (B0
d(Γ) + µΓ0)⊗ (B0

d(Γ) + µΓ0)
T
]

= κ3(B
0
d(Γ)) + E

(
B0
d(Γ)⊗B0

d(Γ)⊗ Γ0µ
T
)

+E
(
B0
d(Γ)⊗ Γ0µ⊗B0

d(Γ)T
)

+ E
(
B0
d(Γ)⊗ Γ0µ⊗ Γ0µ

T
)

+E
(
Γ0µ⊗B0

d(Γ)⊗B0
d(Γ)T

)
+ E

(
Γ0µ⊗B0

d(Γ)⊗ Γ0µ
T
)

+E
(
Γ0µ⊗ Γ0µ⊗B0

d(Γ)T
)

+ E
(
Γ0µ⊗ Γ0µ⊗ Γ0µ

T
)

Since B0
d(Γ) is symmetric its third cumulant is zero and thus

κ3(Y) = E
(
Γ0E

(
B0
d(Γ)⊗B0

d(Γ)|Γ
)
⊗ µT

)
+ E

(
Γ0E

(
B0
d(Γ)⊗ µ⊗B0

d(Γ)T |Γ
))

+ E
(
Γ0µ⊗ E

(
B0
d(Γ)⊗B0

d(Γ)T |Γ
))

+ ζ3 µ⊗ µ⊗ µT

+ E
(
Γ2
0

(
µ⊗ E

(
B0
d(Γ)|Γ

)
⊗ µT + E

(
B0
d(Γ)|Γ

)
⊗ µ⊗ µT + µ⊗ µ⊗ E

(
B0
d(Γ)T |Γ

)))
.

Conditionally on Γ the vector B0
d(Γ) is simply Gaussian and centered at zero with the

covariance ΓΣ, so the last line in the above vanishes and

κ3(Y) = E (Γ0Γ)
(
ΣVµT + Σ⊗ µ + µ⊗Σ

)
+ ζ3 µ⊗ µ⊗ µT .

which proves the result.

Corollary 3. For the gamma distributed variable Γ with the shape parameter s and the

scale equal to one, Y has the multivariate Laplace distribution and the formula for the
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third cumulant takes the form

κ3(Y) = s · (ΣVµT + µ⊗Σ + Σ⊗ µ) + 2s · µ⊗ µ⊗ µT

The model with GAL claim sizes can be compounded by various discrete valued ran-

dom variables N . For example and similarly as before one can consider Poisson distributed

N but it is more natural in this case to consider a negative binomial (NB) variable Np

for the compounding. It is due to some important invariance relations between the GAL

and NB distributions. These properties are discussed next.

3.3.1 The negative binomial distributed number of claims

The negative binomial distribution arises naturally in the scheme of waiting for the failures

in a sequence of Bernoulli trials. This happens to be infinitely divisible distribution and

thus extend to a continuous time process Np(t), t ≥ 0, see Kozubowski and Podgórski

(2007) and Kozubowski and Podgórski (2009) for further details. Here just let us recall

that Np(s) has a negative binomial distribution with parameters p ∈ (0, 1) and s > 0

given by

P (Np(s) = k) =
Γ(k)

Γ(s)(k − s)!
ps(1− p)k−s, k = s, s+ 1, s+ 2, ....

The key property of the generalized Laplace distributions is that they are limiting

distributions under the random summation schemes induced by Np, with the probability

of failure p being small (asymptotically convergent to zero). In fact, these distributions

play a similar central role when one considers random number of terms in the summation

as do the Gaussian distribution with nonrandom summations. This and their asymme-

try/tail properties make the GAL distributions particularly suitable for application to

compounding multivariate insurance claims. A exhaustive account of the properties for

this class of distributions can be found in Kotz et al. (2001).

In particular, when the parameter s = 1, then Np = Np(1) has geometric distribution

and we have the limiting distribution of (normalized) geometric random sums

Sp = X1 + X2 + ...+ XNp ,

as p→ 0 (and thus Np →∞), is the multivariate Laplace distribution with s = 1, as long

as Xi have second moment and are properly centered. This shows that approximately

the geometric compounding always leads to the multivariate Laplace distribution, which

stresses the importance of this distribution in theory of accidents and for modeling insur-

ance claims, see Arbous and Kerrich (1951), Ferreri (1983), Lawless (1987) and Boucher

et al. (2008).

In general, see Kozubowski et al. (2013), a similar result is true under negative bino-
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mial random compounding. Let Xi be identically and independently distributed random

vectors with mean vector µ and covariance matrix Σ, and let Np(s) be independent of

Xi’s. When p→ 0, we obtain that in the asymptotic sense compounding by the negative

binomial process Np(s) of the centered X̃i = Xi+bp, where bp = µ(p1/2−1) always leads

to a GAL distribution

S̃ = ap

Np(s)∑
i=1

X̃i ∼ GALd(Σ,µ, s), (10)

where s is a positive integer and the normalizing constant ap = p1/2. Thus the third

cumulative for multivariate GAL distribution presented in Corollary 3 can be viewed as

an approximation of the third cumulant of the negative binomial compounding of any

multivariate distribution. However, in one special case, this compounding yields exact

result. We conclude this part with a discussion of this special but important case.

Consider a multivariate Laplace motion Ld(t), i.e. the Lévy process obtained by

subordination of the Brownian motion Bd(t) with a gamma process Γ(t). We consider here

the standard gamma process for which Γ(1) has the standard exponential distribution.

As shown in Kozubowski and Podgórski (2007), if a negative binomial process Np(t) is

independent of Laplace motion Ld the following invariance property of Ld(t) holds:

Ld(t)
d
=
√
p · Ld(Np(t)).

Thus, in particular, if X has GAL distribution with parameters µ, Σ, and s, for a non-

negative integer s, then we have

X
d
= Ld(s)

d
=
√
p Ld(Np(s)) =

√
p

Np(s)∑
n=1

(Ld(n)− Ld(n− 1))
d
=

Np(s)∑
n=1

Xn,

where Xn are iid having the multivariate asymmetric Laplace distribution with parameters
√
pµ, pΣ, and s = 1. This leads to the following result.

Corollary 4. The aggregated claims model (7) with the negative binomial distribution

Np(t), t ∈ N of the number of claims and the multivariate asymmetric Laplace claim sizes

with parameters
√
pµ, pΣ, and s = 1 can be viewed as a stochastic time dependent model

with S(t), t ∈ N that adds new claims using increments of the negative binomial process

Np(t). Additionally, let µ̃ = Σ−1/2µ and r = µ̃T µ̃. Then for this model we have

(a) the third cumulant

κ3(S(t)) = t · (ΣVµT + µ⊗Σ + Σ⊗ µ) + 2t · µ⊗ µ⊗ µT ;
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(b) the third standardized cumulant

κ3(S(t)) = t · (IV µ̃T + µ̃⊗ I + I⊗ µ̃) + 2t · µ̃⊗ µ̃⊗ µ̃T ;

(c) Mardia’s skewness, partial skewness and directional skewness, respectively

βM1,d(S(t)) = t2r

[
3(d− 1) + 4

(
r +

3

2

)2
]
,

βP1,d(S(t)) = t2r(1 + r + d)2, βD1,d(S(t)) = t2r(3 + 2r)2.

The special case when the number of claims has geometric distribution is obtaining by

taking t = 1. We note that the cumulant in this model does not depend on the choice of

p.

3.3.2 The Poisson distributed number of claims

Another important model of the multivariate aggregate claims is obtained when the num-

ber of claim sizes follow the Poisson distribution, while the claim sizes have the mul-

tivariate GAL distribution. The importance of this model lies in its ability to obtain

an interesting continuous time model as the subordination of the Laplace motion by a

Poisson process

S(t) = Ld(νN(t)) =

N(t)∑
k=1

(Ld(νk)− Ld(ν(k − 1))) =

N(t)∑
k=1

Xk, (11)

where independent identically distributed claims Xk have a multivariate GAL distribution

with parameters µ, Σ and ν. Since the Laplace motion is obtained from the subordination

from the Brownian motion having µ, Σ for the parameters, we have

S(t) = Bd(Γ(νN(t))). (12)

Consequently, the following result for the third moment of S(t) can be derived from either

Theorem 1, or from Theorem 3.

Theorem 4. For the model (11) or, equivalently, (12) we have the following formula for

the third cumulant

κ3 (S(t)) = ν2t · (ΣVµT + µ⊗Σ + Σ⊗ µ) + 2ν3t · µ⊗ µ⊗ µT .

As we have seen above either the result on the compound model presented in Theorem 1

or the result on the Brownian motion subordination presented in Theorem 3 could be
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used to derive the third cumulant for the considered aggregated claim model. In the next

section we discuss the model in which both the results are needed.

3.4 The Poisson-normal inverse Gaussian claim model

We start from the consideration of the multivariate Brownian motion Bd with drift µ ∈ Rd

and covariance matrix Σ ∈ Rd×d that is subordinated to the random variable Γ that has

generalized inverse Gaussian (GIG) distribution with parameters λ ∈ R, χ > 0, and ψ > 0,

i.e. Γ ∼ GIG(λ, χ, ψ). We work under the assumption that Bd and Γ are independently

distributed. Hence, Bd(Γ) has the d-dimensional generalized hyperbolic distribution with

parameters λ, χ, ψ, µ, and Σ. This distribution is denoted by GHd(Σ,µ, λ, χ, ψ). Then

the third cumulant for Bd(Γ) can be obtained from Theorem 3 and from the formula for

the moments of Γ ∼ GIG(λ, χ, ψ) (see Lemma 1 of Scott et al. (2011)) which are given

by

E
(
Γk
)

=

(
χ

ψ

)(λ+k)/2
Kλ+k(

√
χψ)

Kλ(
√
χψ)

,

where Ka(·) is the modified Bessel function of the third kind (see Abramowitz and Stegun

(1972)).

Corollary 5. Let Bd be a d-variate Brownian motion with drift µ ∈ Rd and covariance

matrix Σ ∈ Rd×d that is subordinated to the random variable Γ ∼ GIG(λ, χ, ψ). Then the

third cumulant of Bd(Γ) is given by

κ3(Bd(Γ)) =
1

Kλ(
√
χψ)

(
χ

ψ

)(λ+2)/2 [
Kλ+2(

√
χψ) · (ΣTµT + µ⊗Σ + Σ⊗ µ)

+

√
χ

ψ
Kλ+3(

√
χψ) · µ⊗ µ⊗ µT

]
.

When λ = −1/2, Γ has the inverse Gaussian (IG) distribution with parameters χ

and ψ, i.e. Γ ∼ IG(χ, ψ). Thus, Bd(Γ) has the d-dimensional normal inverse Gaussian

(NIG) distribution that is the special case of GH distribution, and its third cumulant can

be easily derived from Corollary 5 and the well-known properties of the modified Bessel

function (see Kotz et al. (2001) for example)

K1/2(x) =

√
π

2x
e−x, K−λ(x) = Kλ(x), Kc+1/2(x) =

√
π

2x
e−x

c∑
k=0

(c+ k)!

(c− k)!k!
(2x)−k,

where c is non-negative integer.

Corollary 6. Let Bd be a d-variate Brownian motion with drift µ ∈ Rd and covariance

matrix Σ ∈ Rd×d that is subordinated to the random variable Γ ∼ IG(χ, ψ). Then the
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third cumulant of Bd(Γ) is given by

κ3(Bd(Γ)) =

(
χ

ψ

)3/4 [(
1 +

1√
χψ

)
· (ΣTµT + µ⊗Σ + Σ⊗ µ)

+

√
χ

ψ

(
1 +

3√
χψ

+
3

χψ

)
· µ⊗ µ⊗ µT

]
.

The important model of multivariate aggregate claims can be obtained when the num-

ber of claim sizes have the Poisson-inverse Gaussian distribution, and the claim sizes have

the multivariate NIG distribution, i.e.

S(t) = Bd(Γ(N(t))) =

N(t)∑
k=1

(Bd(Γ(k))−Bd(Γ(k − 1))) =

N(t)∑
k=1

Xk, (13)

where Xk’s are identically and indpendently distributed claims that have a multivariate

NIG distribution with parameters Σ, µ, χ, and ψ.

Next, we apply the above results to derive the third cumulant of S(t) in (13).

Corollary 7. For the model (13) we have the following formula for the third cumulant

κ3(S(t)) = t

(
χ

ψ

)3/4 [(
1 +

1√
χψ

)
· (ΣTµT + µ⊗Σ + Σ⊗ µ)

+ 2

√
χ

ψ

(
1 +

3√
χψ

+
3

χψ

)
· µ⊗ µ⊗ µT

]
.

4 Summary

In this paper we analyzed the model for the aggregated multivariate claims when the

aggregating variable is independent of the multivariate claims. We derived the third

cumulant for the general case involving random compounding and random subordination.

These general results are used to obtain specific formula for concrete models. In the first

one, the multivariate aggregate claims with multivariate claim sizes which have the SN

distribution and the count which has a Poisson distribution are considered. The second

case focuses on the GAL distribution and when the aggregation is made by a negative

binomial variable. Moreover, we established relation between an asymmetric Laplace

motion and a negative binomial process that corresponds to the invariance principle of

the aggregating claims for the GAL distribution. Finally, we provided continuous time

versions of the results.
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5 Appendix

Proof of Theorem 1. From (7) we have that S = X1 + ... + XN and its mean is equal to

ν1ξ1. Then the third cumulant of S is given by

κ3 (S) = E
[
(S− ν1ξ1)⊗ (S− ν1ξ1)

T ⊗ (S− ν1ξ1)
]
,

which may be represented as E
[
(w + u)⊗ (w + u)T ⊗ (w + u)

]
with w = (X1 − ξ1) +

· · ·+ (XN − ξ1) and u = ξ1 (N − ν1) .
Using the standard properties of the Kronecker product and the vectorization operator

we obtain that

κ3(S) = E
(
wwT ⊗w

)
+ E

(
wwT ⊗ u

)
+ E

(
wuT ⊗w

)
+ E

(
wuT ⊗ u

)
+E

(
uwT ⊗w

)
+ E

(
uwT ⊗ u

)
+ E

(
uuT ⊗w

)
+ E

(
uuT ⊗ u

)
.

First, we evaluate E
(
w ⊗wT ⊗w

)
. Since {Xi}Ni=1 and N are independently dis-

tributed we get that E
(
w ⊗wT ⊗w

∣∣N = n
)

is the third cumulant of the sum X1 + ...+

Xn, that is

E


[

n∑
i=1

(Xi − ξ1)

]
⊗

[
n∑
i=1

(Xi − ξ1)

]T
⊗

[
n∑
i=1

(Xi − ξ1)

] .

Because X1, ...,Xn are independent and identically distributed, then the third cumulant

of their sum equals to the third cumulant of the i−th summand Xi, multiplied by the

number of summands n, i.e. E
(
w ⊗wT ⊗w

∣∣N = n
)

= n · ξ3. By taking expectations

over N we obtain that E
(
wwT ⊗w

)
= ν1 · ξ3.

Next, we evaluate E
(
wwT ⊗ u

)
starting from the conditional expectation

E
(
wwT ⊗ u

∣∣N = n
)

= E

{
n∑
i=1

(Xi − ξ1)
n∑
i=1

(Xi − ξ1)
T ⊗ [ξ1 (n− ν1)]

}
.

Applying the properties of linear operators we get

E
(
wwT ⊗ u

∣∣N = n
)

= (n− ν1)E

[
n∑
i=1

(Xi − ξ1)
n∑
i=1

(Xi − ξ1)
T

]
⊗ ξ1.

The above expectation is the second cumulant of the sum X1 + ...+ Xn. The random

vectors X1...,Xn are independent and identically distributed, so that the second cumulant

of their sum equals the second cumulant of the i−th summand Xi, multiplied by the
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number of summands n:

E
(
wwT ⊗ u

∣∣N = n
)

= (n− ν1) · n · ξ2 ⊗ ξ1.

By taking expectations over N we obtain

E
(
wwT ⊗ u

)
= E

{
E
(
wwT ⊗ u

∣∣N)} = E [(N − ν1) ·N ] · ξ2 ⊗ ξ1.

The expectation in the right-hand side of the above equation is just the variance (that

is the second cumulant) of N . Hence E
(
wwT ⊗ u

)
= ν2 · ξ2 ⊗ ξ1.

We shall now evaluate E
(
w ⊗ uT ⊗w

)
, starting from the identity

E
(
w ⊗ uT ⊗w

∣∣N = n
)

= E

{
n∑
i=1

(Xi − ξ1)⊗ [ξ1 (n− ν1)]T ⊗
n∑
i=1

(Xi − ξ1)

}
,

which may be simplified as follows, by remembering that a ⊗ bT = bT ⊗ a, for any two

vectors a and b:

E
(
w ⊗ uT ⊗w

∣∣N = n
)

= E

{
n∑
i=1

(Xi − ξ1)⊗
n∑
i=1

(Xi − ξ1)⊗ [ξ1 (n− ν1)]T
}
.

Properties of linear operators lead to

E
(
wuT ⊗w

∣∣N = n
)

= E

[
n∑
i=1

(Xi − ξ1)⊗
n∑
i=1

(Xi − ξ1)

]
⊗ [ξ1 (n− ν1)]T .

For any vector a, a⊗ a is just the matrix aaT , vectorized. Hence

E
(
wuT ⊗w

∣∣N = n
)

= E

{
n∑
i=1

(Xi − ξ1)⊗
n∑
i=1

(Xi − ξ1)
T

}V

⊗ [ξ1 (n− ν1)]T .

The above expectation is the second cumulant of the sum X1 + · · ·+ Xn. An argument

similar to the one used before leads to

E
(
wuT ⊗w

)
= E

{
E
(
wuT ⊗w

∣∣N)} = E
[
NξV2 ⊗ ξT1 (N − ν1)

]
= ν2 · ξV2 ⊗ ξT1 .

In order to evaluate E
(
u⊗wT ⊗w

)
, we shall apply linear properties of expectation

to obtain E
(
uwT ⊗w

∣∣N = n
)

= uE
(
wT ⊗w

∣∣N = n
)
. Recall now that wT ⊗ w =

wwT = w⊗wT and use arguments similar to the above ones to obtain E
(
u⊗wT ⊗w

)
=

ν2 · ξ1 ⊗ ξ2.
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We shall now consider the expectation E
(
u⊗ uT ⊗ u

)
, that is

E
{

[ξ1 (n− ν1)]⊗ [ξ1 (n− ν1)]T ⊗ [ξ1 (n− ν1)]
}

= E
[
(N − ν1)3

]
ξ1 ⊗ ξT1 ⊗ ξ1.

The expectation in the right-hand side of the above equation is the third cumulant of N .

Hence E
(
u⊗ uT ⊗ u

)
= ν3ξ1 ⊗ ξT1 ⊗ ξ1.

We shall now consider the expectation E
(
w ⊗ uT ⊗ u

)
. The identity

E
(
w ⊗ uT ⊗ u

∣∣N = n
)

= E

{[
n∑
i=1

(Xi − ξ1)

]
⊗ [ξ1 (n− ν1)]T ⊗ ξ1 (n− ν1)

}

may be simplified by linear properties of the expectation into

E
(
w ⊗ uT ⊗ u

∣∣N = n
)

=

{
n∑
i=1

[E (Xi)− ξ1]

}
⊗ [ξ1 (n− ν1)]T ⊗ ξ1 (n− ν1) .

By definition, E (Xi) = ξ1, so that E
(
w ⊗ uT ⊗ u

∣∣N = n
)

= O, where O is a d2 × d
matrix of zeros. As a direct consequence, E

(
w ⊗ uT ⊗ u

)
= O. In a similar way, we can

prove that E
(
uwT ⊗ u

)
= E

(
uuT ⊗w

)
= O.

We shall now complete the proof by representing the third cumulant of S as the sum of

E
(
wwT ⊗w

)
, E
(
wwT ⊗ u

)
, E
(
wuT ⊗w

)
, E
(
wuT ⊗ u

)
, E
(
uwT ⊗w

)
, E
(
uwT ⊗ u

)
,

E
(
uuT ⊗w

)
, E
(
uuT ⊗ u

)
:

κ3 (S) = ν1ξ3 + ν2
(
ξ2 ⊗ ξ1 + ξV2 ξ

T
1 + ξ1 ⊗ ξ2

)
+ ν3ξ1 ⊗ ξT1 ⊗ ξ1.

Proof of Theorem 2. We shall first prove part (a) of the Theorem. The first three cumu-

lants of Xi ∼ SNd (Ω,α) are

ξ1 =

√
2

π
δ, ξ2 = Ω− 2

π
δδT , ξ3 =

√
2

π

(
4

π
− 1

)
δ ⊗ δT ⊗ δ.

By assumption, N is a Poisson random variate, whose first three cumulants equal the

parameter λ: ν1 = ν2 = ν3 = λ. We shall now apply Theorem 1 to obtain the third

cumulant of the first N components of the sequence:

κ3 (S) = λ

√
2

π

[(
4

π
− 1

)
δ ⊗ δT ⊗ δ +

(
Ω− 2

π
δδT

)
⊗ δ

+

(
Ω− 2

π
δδT

)V
δT + δ ⊗

(
Ω− 2

π
δδT

)
+

2

π
δ ⊗ δT ⊗ δ

]
.

The identities δ ⊗ δT ⊗ δ = δδT ⊗ δ =
(
δδT

)V
δT = δ ⊗ δδT and a little algebra help in
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simplifying the right-hand side of the above equation as follows:

κ3 (S) = λ

√
2

π

(
Ω⊗ δ + ΩV δT + δ ⊗Ω− δ ⊗ δT ⊗ δ

)
.

We shall now prove part (b) of the Theorem. The variance of S is

V (S) = ν1ξ2 + ν2ξ1ξ
T
1 = λ

(
Ω− 2

π
δδT

)
+ λ

2

π
δδT = λΩ.

Hence the third standardized cumulant of S, denoted by κ3

[
(λΩ)−1/2 S

]
, is

√
2

λπ

(
Ω−1/2 ⊗Ω−1/2

) (
Ω⊗ δ + ΩV δT + δ ⊗Ω− δ ⊗ δT ⊗ δ

)
Ω−1/2.

The product κ3

[
(λΩ)−1/2 S

]√
2/ (λπ) might be expressed as

Ω−1/2ΩΩ−1/2 ⊗Ω−1/2δ +
(
Ω−1/2 ⊗Ω−1/2

)
ΩV δTΩ−1/2 +

Ω−1/2δ ⊗Ω−1/2ΩΩ−1/2 −Ω−1/2δ ⊗ δTΩ−1/2 ⊗Ω−1/2δ,

by remembering that (A⊗B) (C⊗D) = AC⊗BD, Ω = 1⊗Ω = Ω⊗1 and a⊗aT⊗a =

a ⊗ a ⊗ aT , where A, B, C, D are matrices of appropriate order and a is a vector.

By definition, η = Ω−1/2δ and Ω−1/2ΩΩ−1/2 = I. Moreover,
(
Ω−1/2 ⊗Ω−1/2

)
ΩV =(

Ω−1/2ΩΩ−1/2
)V

by elementary properties of the Kronecker product and vectorization.

Hence the third standardized cumulant of S is

κ3

[
(λΩ)−1/2 S

]
=

√
2

λπ

(
I⊗ η + IV ηT + η ⊗ I− η ⊗ ηT ⊗ η

)
.

We shall now prove the third part of the Theorem. Mardia’s skewness is the squared

Frobenius norm of the third standardized cumulant:

βM1,d (S) =
∥∥∥κ3 [(λΩ)−1/2 S

]∥∥∥2 = tr
{
κT3

[
(λΩ)−1/2 S

]
κ3

[
(λΩ)−1/2 S

]}
.

By part (b) of the Theorem, (λπ/2) βM1,d (S) is the trace of(
I⊗ η + IV ηT + η ⊗ I− η ⊗ ηT ⊗ η

) (
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)
.
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We shall first evaluate T1 = tr
[
(I⊗ η)

(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)]
:

tr
[
(I⊗ η)

(
I⊗ ηT

)]
+ tr

[
(I⊗ η)ηIV T

]
+ tr

[
(I⊗ η)

(
ηT ⊗ I

)]
−tr

[
(I⊗ η)

(
ηT ⊗ η ⊗ ηT

)]
= tr

(
I⊗ ηηT

)
+ tr

(
ηηT

)
+tr

(
ηT ⊗ η

)
− tr

(
ηηT ⊗ ηηT

)
= d · ηTη + ηTη + ηTη −

(
ηTη

)2
.

We shall now evaluate T2 = tr
[
IV ηT

(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)]
:

tr
[(

IV ηT
) (

I⊗ ηT
)]

+ tr
[(

IV ηT
) (

ηIV T
)]

+tr
[(

IV ηT
) (

ηT ⊗ I
)]
− tr

(
ηηT ⊗ ηηT

)
= tr

(
ηηT

)
+ ηTη · IV T IV + tr

(
ηT ⊗ η

)
−
(
ηTη

)2
= ηTη + ηTη · d+ ηTη −

(
ηTη

)2
.

We shall now evaluate T3 = tr
[
(η ⊗ I)

(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)]
:

tr
[
(η ⊗ I)

(
I⊗ ηT

)]
+ tr

[
(η ⊗ I)

(
ηIV T

)]
+

tr
[
(η ⊗ I)

(
ηT ⊗ I

)]
− tr

[
(η ⊗ I)

(
ηT ⊗ η ⊗ ηT

)]
= tr

(
η ⊗ ηT

)
+ tr

(
ηηT

)
+ tr

(
ηηT ⊗ I

)
− tr

(
ηηT ⊗ ηηT

)
= ηTη + ηTη + d · ηTη −

(
ηTη

)2
.

We shall now evaluate T4 = tr
[
(η ⊗ I)

(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)]
:

tr
[(
η ⊗ ηT ⊗ η

) (
I⊗ ηT

)]
+ tr

[(
η ⊗ ηT ⊗ η

) (
ηIV T

)]
+

tr
[(
η ⊗ ηT ⊗ η

) (
ηT ⊗ I

)]
− tr

[(
η ⊗ ηT ⊗ η

) (
ηT ⊗ η ⊗ ηT

)]
= tr

[
ηηT ⊗ ηηT

]
+
(
ηTη

)
tr
[
(η ⊗ η)

(
IV T
)]

+ tr
[
ηηT ⊗ ηηT

]
−
(
ηTη

)
tr
[
ηηT ⊗ ηηT

]
=
(
ηTη

)2
+
(
ηTη

)2
+
(
ηTη

)2 − (ηTη)3 .
All the above traces are functions of ηTη, which equals q. In fact, by definition,

δ =
Ωα√

1 + αTΩα
, η = Ω−1/2δ and q =

αTΩα

1 + αTΩα
.

Mardia’s skewness is just the sum of T1, T2, T3, and T4, multiplied by 2/ (πλ). A little

algebra leads to

βM1,d (S) =
2q

λπ

[
3 (d− 1) + (q − 3)2

]
.

We shall now focus on partial skewness. Loperfido (2015a) showed that it is the squared
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norm of (
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)
IV =(

I⊗ ηT
)
IV + ηIV T IV +

(
ηT ⊗ I

)
IV −

(
ηT ⊗ ηηT

)
IV .

The identity(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)
IV = ηTV + dη + ηV +

(
ηηTη

)V
follows from a fundamental property of the Kronecker product and the vectorization

operator: (ABC)V =
(
CT ⊗A

)
BV , when A ∈ Rp × Rq, B ∈ Rq × Rr, C ∈ Rr × Rs.

We also have(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)
IV =

(
d+ 2 + ηTη

)
η,

since abT , a⊗bT and bT ⊗a denote the same matrix, when a and b are two vectors. By

definition, q = ηTη, so that the partial skewness βP1,d (S) is∥∥∥∥∥
√

2

λπ

(
I⊗ ηT + ηIV T + ηT ⊗ I− ηT ⊗ η ⊗ ηT

)
IV

∥∥∥∥∥
2

=
2q

λπ
(d+ 2 + q)2 .

We shall now focus on directional skewness, by considering the cubic form γ, defined as(
vT ⊗ vT

) (
I⊗ η + IV ηT + η ⊗ I− η ⊗ ηT ⊗ η

)
v =

(
vTη

) [
3
(
vTv

)
−
(
vTη

)2]
.

The last identity follows from repeated application of the previously recalled properties of

the Kronecker product and the vectorization operator. By differentiating γ with respect

to vTη we obtain

∂γ

∂ (vTη)
=

3
[(

vTv
)
−
(
vTη

)2]
(vTη)2

[
3 (vTv)− (vTη)2

]2 .
The numerator of the fraction is positive, due to the inequality

(
vTη

)2
<
(
vTv

)
, which in

turn follows from the Cauchy-Schwarz inequality
(
vTη

)2 ≤ (vTv
) (

ηTη
)

and the squared

norm ηTη = q = αTΩα/
(
1 + αTΩα

)
being smaller than one. As a direct consequence, γ

is an increasing function of vTη, which attains its maximum value when v is proportional

to η.

Let Z = (λΩ)−1/2 [S− E (S)] be the standardized version of S. The Pearson’s skewness

of the linear combination vTZ is

β1
(
vTZ

)
=

2

λπ

[(
vT ⊗ vT

)
κ3 (Z) v

]2
(vTv)3

=
2

λπ

γ2

(vTv)3
.
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It attains its maximum value when v is proportional to η:

β1
(
ηTZ

)
=

2

λπ

(
ηTη

)2 [
3
(
ηTη

)
−
(
ηTη

)2]2
(ηTη)3

=
2q (3− q)2

λπ
.

Since Pearson’s skewness is invariant with respect to affine transformations, we have

β1
(
ηTZ

)
= βD1,d (S) and this completes the proof.
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