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Abstract

Bodnar and Schmid (2008) derived the distribution of the global minimum vari-

ance portfolio weights and obtained the distribution of the test statistics for the

general linear hypothesis. Their results are obtained in the case when the number

of observations n is bigger or equal than the size of portfolio k. In the present paper,

we extend the result by analyzing the portfolio weights in a small sample case of

n < k, with the singular covariance matrix. The results are illustrated using actual

stock returns. A discussion of practical relevance of the model is presented.
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1 Introduction

Starting from 1952, when H. Markowitz published his seminal paper on portfolio selection

and provided the mathematical foundation for the problem (see Markowitz (1952)), the

portfolio theory has become a well established branch of finance. The variance was intro-

duced as a measurement of risk to complement the expected return as the main criteria

for portfolio construction. The global minimum variance (GMV) portfolio was defined as

the asset portfolio with the lowest return variance for a given covariance matrix, i.e.

wGMV = argmin{wTΣw; wT1k = 1}, (1)

where w = (w1, ..., wk)
T is the vector of portfolio weights, 1k denotes the vector whose

components are all equal to 1, and Σ stands for the covariance matrix of the asset returns.

If Σ is a positive definite matrix, then

wGMV =
Σ−11k

1TkΣ−11k
.

The importance of the GMV portfolio in the financial applications is well motivated

by Merton (1980), Best and Grauer (1991), Chopra and Ziemba (1993), Glombek (2014)

and others. Note that the GMV portfolio is the limiting case of the expected quadratic

utility portfolio, when the risk aversion increases without bound, i.e. the case of a fully

risk-averse investor.

A number of papers were written on this topic for the case when the number of ob-

servations is larger than or equal to the dimension of portfolio, see Okhrin and Schmid

(2006), Bodnar and Schmid (2008), Bodnar and Okhrin (2011) among others. This as-

sumption realistically may be not valid for portfolios which consist of a large number of

assets, in particular, when historical data on assets are scarce due to the assumption of

historical independence of observations. For these reasons the case when the number of

observations is less than the size of portfolio assets is of importance. We also note the

large portfolio case rises also the issues of singularity of the covariance matrix – large

portfolios bring together assets that are dependent and thus singularities become intrin-

sically present in the data. However, these particular cases of singular covariance and

small sample relatively to the portofolio size have not been given sufficient attention in

the portfolio theory. This motivates our work in which we extend the results obtained by

Bodnar and Schmid (2008), where the case of the non-singular covariance matrix and the

sample size is larger than the number of portfolio assets has been worked out.

More precisely, we work under two ‘singular’ conditions. Namely, we assume that Σ

is singular and that the sample size n is smaller than the portfolio size k. Under these

conditions, one has two distinct cases: rank(Σ) = r < n and rank(Σ) = r ≥ n. While the
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latter is currently an open question in this theory, we solve completely the former using

previously obtained results of Bodnar et al. (2015). The presented results are random

scale invariant, i.e. they are valid under the assumption that the matrix of returns has

a matrix normal distribution scaled by an arbitrary random variable. In particular, it is

valid for the elliptically contoured distributions that are very useful in finance, see, for

example, Owen and Rabinovitch (1983), Zhou (1993), Berk (1997), Bodnar and Schmid

(2007).

The main contribution of the paper is derivation of a test for the hypothesis of linear

combinations between GMV portfolio weights for the case of the portfolio size exceeding

the sample size and the covariance matrix with rank smaller than the sample size. For a

financial market analyst, such a test is an important tool for setting investment strategies

and we illustrate this using actual return data of diversified stocks coming from several

industries.

2 The global minimal variance portfolio

We consider a portfolio consisting of k assets and xt denotes the k-dimensional vector of

the log-returns of these assets at time t. Throughout the paper it is assumed that x1, ..,xn

are vectors with mean vector µ and covariance matrix Σ, which is a non-negative definite

matrix with rank(Σ) = r < n.

Since Σ is singular, the Moore-Penrose inverse A+ of a matrix A will be employed as

an important tool of analysis. Next, we revise the definition of the Moore-Penrose inverse.

A matrix A+ is the Moore-Penrose of A if the following conditions hold (see Horn and

Johnsohn (1985) )

(I) AA+A = A,

(II) A+AA+ = A+,

(III) (AA+)T = AA+,

(IV) (A+A)T = A+A.

The optimization problem (1) has an infinite number of solutions, since in our setup

Σ does not have a full rank. One of the solutions can be expressed as

wGMV =
Σ+1k

1TkΣ+1k
, (2)

which is the unique minimal Euclidean norm solution given that 1TkΣ+1k 6= 0, see Pap-

pas et al. (2010). However, if the latter is not true, then equation (2) cannot be used.

Therefore it is important to test from the data if the condition 1TkΣ+1k = 0 is occurring.
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At the end of this section we discuss how this problem can be addressed although formal

statistical tests are not know at the moment.

In the reality, the unknown parameters µ and Σ have to be estimated. The sample

mean vector and the sample covariance matrix are used for this purpose

x =
1

n

n∑
i=1

xi and S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T . (3)

Replacing Σ with S in (2) we obtain a sample estimator for GMV portfolio weights

ŵGMV =
S+1k

1TkS+1k
. (4)

We consider the linear transformation of the GMV portfolio weights

θ = LwGMV =
LΣ+1k
1TkΣ+1k

, (5)

where L is the p×k matrix of constants with rank(L) = p < r. The corresponding sample

estimator of (5) is given by

θ̂ = LŵGMV =
LS+1k
1TkS+1k

. (6)

The density function of θ̂ under the assumption of normality is summarized in the

following theorem, the proof of which can be found in Bodnar et al. (2015).

Theorem 1. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and with

rank(Σ) = r < n. Consider a p × k matrix L of the full rank p with the rows linearly

independent of 1Tk . Then the density function of θ̂ = LŵGMV is given by

θ̂ ∼ tp

(
n− r + 1;θ,

1

n− r + 1

LRLT

1TkΣ+1k

)
,

where R = Σ+−Σ+1k1
T
kΣ+/1TkΣ+1k. The symbol tp(d; a,A) stands for the p-dimensional

multivariate t-distribution with d degrees of freedom, the location parameter a, and the

dispersion matrix A.

This result is similar to the one obtained under the assumption of the non-singularity

(see Bodnar and Schmid (2008)). The only difference is in the degrees of freedom of the

t-distribution. Applying the properties of the multivariate t-distribution we obtain

E(θ̂) = θ and V ar(θ̂) =
1

n− r − 1

LRLT

1TkΣ+1k
. (7)
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Next, by using the above result, we derive a confidence interval for a linear combination

of the GMV portfolio weights. Without loss of generality we deal with the first weight of

the GMV portfolio only and note that the confidence intervals for other weights can be ob-

tained similarly. Let L = eT1 = (1, 0, ..., 0), then the distribution for θ̂ = eT1 S+1k/1
T
kS+1k

is expressed as

θ̂ ∼ t

(
n− r + 1;

eT1 Σ+1k
1TkΣ+1k

,
1

n− r + 1

eT1 Re1

1TkΣ+1k

)
. (8)

The application of (8) leads to the (1 − α)-confidence interval for the first weight of

the GMV portfolio given by

eT1 Σ+1k
1TkΣ+1k

± 1√
n− r + 1

√
eT1 Re1√

1TkΣ+1k
tn−r+1;α/2,

where tm;β denotes the β-quantile of the t-distribution with m degrees of freedom.

We conclude this section with three remarks.

Remark 1. There is an interesting property which follows directly from Theorem 1.

Namely, it yields that ŵGMV also has a multivariate t-distribution but it is a singular one.

This happens in the case when the dispersion matrix A in the definition of t-distribution

is singular. Formally such a distribution has a linear subspace U ⊂ Rk as its support and

on this support it has a regular multivariate t-distribution. As a singular distribution,

it does not have a density with respect to volume measure in Rk, but it does have a

density with respect to the (lower-dimension) volume measure on U . For more properties

of singular multivariate t-distributions see Gupta and Nagar (2000). Thus the singularity

of ŵGMV follows directly from its characteristic function ϕŵGMV
(t) = ϕtT ŵGMV

(1), and

the fact that R is a singular matrix since R1k = 0.

Remark 2. We note that Theorem 1, as well as all the result in this work, is scale invariant

in the following sense. Let [x̃1 . . . x̃n] = R[x1 . . .xn], where R is an arbitrary, possible ran-

dom scale. Then θ̂ evaluated for the scaled matrix is exactly the same as the one original

one. In particular, by a proper choice of R, the matrix R[x1 . . .xn] can be elliptically

contoured. However, practical consequences of such an extension are limited due to the

fact that only a single value of scaling R is involved and thus such data are equivalent to

non-random scaling normal matrix variates.

Remark 3. The case 1TkΣ+1k = 0 is only trivially encountered in practice. To see this

note that this condition is equivalent to 1TkΣ1k = 0. Indeed, since Σ is the singular

covariance matrix with rank(Σ) = r, we obtain that Σ = HDHT , where H is an k × r
orthogonal matrix such that HTH = Ir, and D is a r×r positive definite diagonal matrix.

Then it holds that Σ+ = HD−1HT . As a result, we get that 1TΣ+1 = 0 if and only

if 1THD−1HT1 = 0. From the last equality we get that HT1 = 0 because D−1 is the
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positive definite matrix. On the another hand, the equlity 1TkΣ1k = 0 means that xTt 1k,

t = 1, . . . , n, are deterministic, i.e. for X = (x1, ...,xn) is the k × n matrix of returns,

XT1k = (µT1k, ...,µ
T1k)

T .

In practice, XT1k will typically be random and only its small variation can be an

indication of a problem. Investigating the variance of this vector becomes equivalent to

1TkΣ+1k ≈ 0. One can thus choose a small value δ and test if V ar(xTt 1k) ≤ δ. Since

xTt 1k are independent identically distributed variables it leads to the classical test for the

variance of iid variables. The choice of δ is an interesting problem that deserve a separate

study.

3 The main result

Our results by assuming that the portfolio size is larger than the sample size can be

useful for a large portfolio size. For such large portfolios, an investor maybe interested in

knowing whether the weights of the GMW portfolio fulfill some linear restrictions. Such

a need can arise, for example, in a decision of changing investing strategy from the one

that was previously established under different market conditions. This can be formulate

as a testing hypothesis problem in the following way

H0 : LwGMV = r against H1 : LwGMV 6= r (9)

with the following test statistics which extends the one introduced by Bodnar and Schmid

(2008) to the case of singular covariance matrix

T =
n− r
p

(1TkS+1k)(θ̂ − r)T R̂−1L (θ̂ − r), (10)

where r ∈ Rp is a vector of constants and R̂L = LR̂L
T

with R̂ = S+−S+1k1
T
kS+/1TkS+1k.

It is noted that the test statistic (10) is a generalization of the multivariate test for the

mean vector (see Muirhead (1982)).

Let Fi,j stand for the F -distribution with i and j degrees of freedom and its density

function we denote by fFi,j . Also, let 2F1(a, b, c;x) be the hypergeometric function (see

Chapter 15 of Abramowitz and Stegun (1984)), that is,

2F1(a, b, c;x) =
Γ(c)

Γ(a)Γ(b)

∞∑
i=0

Γ(a+ i)Γ(b+ i)

Γ(c+ i)

xi

i!
.

The density function of the test statistic (10) is presented in Theorem 2.

Theorem 2. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and with

rank(Σ) = r < n. Consider L a p×k non-random matrix with rank(LT ,1k) = p+1 ≤ r.
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Then the density function of T is given by

fT (x) = fFp,n−r(x)(1 + λ)−(n−r+p)/2

×2F1

(
n− r + p

2
,
n− r + p

2
,
p

2
;

px

n− r + px

λ

1 + λ

)
,

with λ = 1TkΣ+1k(θ− r)T (LRLT )−1(θ− r). Moreover, under the null hypothesis it holds

that T ∼ Fp,n−r

Proof. First we demonstrate that

T |(n− 1)R̂−1L = C ∼ Fp,n−r,λ(C),

where R̂L is defined through

S̃ =

(
LS+LT LS+1k

1TkS+LT 1TkS+1k

)
=

(
S̃11 S̃12

S̃21 S̃22

)
,

S̃−1 =

(
R̂−1L −R̂−1L θ̂

−θ̂
T
R̂−1L (S̃22 − S̃21S̃

−1
11 S̃12)

−1

)
.

Because (n− 1)S ∼ Wk(n− 1,Σ), k > n− 1, has a singular Wishart distribution (see

Theorem 4 of Bodnar et al. (2015)) and we get from Theorem 1 of Bodnar et al. (2015)

and Theorem 3.4.1 of Gupta and Nagar (2000) that the random matrix S̃ = {S̃ij}i,j=1,2

has the (p+1)-variate inverse Wishart distribution with (n−r+2p+2) degrees of freedom

and the non-singular covariance matrix Σ̃, i.e. S̃ ∼ Wp+1(n− r + 2p+ 2, Σ̃), where

Σ̃ =

(
LΣ+LT LΣ+1k

1TkΣ+LT 1TkΣ+1k

)
=

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
.

It is easy to see that θ̂ = S̃−122 S̃12 and θ = Σ̃−122 Σ̃12.

We can factorize T as follows

T =
n− r
p

(1TkΣ+1k)(θ̂ − r)T R̂−1L (θ̂ − r)

1TkΣ+1k/1TkS+1k

From Theorem 3.2.10 (ii) of Muirhead (1982) we get

√
n− 1Σ̃

1/2
22 R̂

−1/2
L (θ̂ − r)

∣∣∣ (n− 1)R̂−1L = C ∼ Np
(

Σ̃
1/2
22 C1/2(r− θ), Ip

)
,

so that

(n− 1)Σ̃22(θ̂ − r)T R̂−1L (θ̂ − r)
∣∣∣ (n− 1)R̂−1L = C ∼ χ2

p,λ(C),
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where λ(C) = Σ̃22(θ − r)TC(θ − r). Moreover, from Corollary 1 of Bodnar et al. (2015)

we know that

(n− 1)
1TkΣ+1k
1TkS+1k

∼ χ2
n−r.

Also, from Theorem 3.2.10 of Muirhead (1982) we have that S̃22 is independent of R̂−1L

and R̂−1L θ̂. Thus, S̃22 is independent of R̂−1L and (θ̂ − r)T R̂−1L (θ̂ − r). Putting all above

results together we get

T |(n− 1)R̂−1L = C ∼ Fp,n−r,λ(C).

Using the fact that (n− 1)R̂−1L ∼ Wp(n− r + p,R−1L ) with R−1L = LRLT , we obtain

the unconditional density function of T which is given by

fT (x) =

∫
C>0

fFp,n−r,λ(C)
(x)fWp(n−r+p,R−1

L )(C)dC,

where fFi,j,λ denotes the density of the non-central F -distribution with i and j degrees of

freedom and noncentrality parameter λ, and fWp(·) stands for the density of the Wishart

distribution. For a case when λ = 0 we write fFi,j .

Application of Theorem 1.3.6 of Muirhead (1982) leads us to

fFp,n−r,λ(C)
(x) = fFp,n−r(x) exp

(
−λ(C)

2

)
×
∞∑
i=0

((n− r + p)/2)i

(p/2)i
(λ(C))i

i!

(
px

2(n− r + px)

)i
.

Let

κ(i) =
1

i!

[(n− r + p)/2]i

(p/2)i

[
px

2(n− r + px)

]i
.

Then

fT (x) = fFp,n−r(x)
∞∑
i=0

κ(i)

∫
C>0

(λ(C))i exp

(
−λ(C)

2

)
× |RL|(n−r+p)/2|C|(n−r−1)/2

2p(n−r+p)/2Γp((n− r + p)/2)
etr

{
−1

2
RLC

}
dC

= fFp,n−r(x)|RL|(n−r+p)/2|RL + 1TkΣ+1k(r− θ)(r− θ)T |−(n−r+p)/2

×
∞∑
i=0

κ(i)(1TkΣ+1k)
iE

[(
(r− θ)T C̃(r− θ)

)i]
,

where C̃ ∼ Wp(n− r+ p, R̃L) with R̃L = (RL + 1TkΣ+1k(r− θ)(r− θ)T )−1. The symbol
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Γp(·) denotes the multivariate gamma function (see Muirhead (1982)), while etr stands

denotes the exponential of the trace of a matrix.

Using Theorem 3.2.8 of Muirhead (1982) we get

E

[(
(r− θ)T C̃(r− θ)

)i]
= 2i((n− r + p)/2)i

[
(r− θ)TR−1L (r− θ)

1 + 1TkΣ+1k(r− θ)TR−1L (r− θ)

]i
.

Finally, putting all above together we get the statement of the theorem.

Under the null hypothesis it holds that T ∼ Fp,n−r so that the null hypothesis is

rejected if T > Fp,n−r;1−α, where Fp,n−r;1−α denotes for the (1−α) quantile of the central

F -distribution. Moreover, from Theorem 2 it is easy to get the elliptical confidence set

for θ̂ which is expressed as{
r ∈ Rp :

n− r
p

(1TkS+1k)(θ̂ − r)T R̂−1L (θ̂ − r) ≤ Fp,n−r,1−α
}
.

4 Empirical Illustration

The test derived in Theorem 2 can be an useful tool for a financial market analyst. To

illustrate this, in this section, we presented an example of analysis in which we use the

test to decide if a strategy adopted in the past should be modified based on new data

that inform about current market conditions. More specifically, we consider the financial

quality control setup in which we assume that based on information from the past T0

periods we have built an investment strategy expressed as a portfolio w0. We assume

that within each period we have approximately constant volatility so the the model can

be viewed Gaussian within such a period. In general the periods do not need to be of

the same length but rather should split the data over ranges during which volatility is

approximately constant. For r we take the average of the portfolio estimates obtained for

each of the past periods. The data from a new ‘current’ period are used to evaluate a

new estimate LwGMV for the weights LŵGMV . The goal is to determine if LwGMV differs

from r so a new strategy of investment should be evaluated and implemented.

We consider the log return monthly data of k = 24 stocks for leading oil, insurance,

car, and IT companies that are listed in NYSE and NASDAQ stock exchanges for the

period from September 2013 to July 2015, i.e. n = 23. Their abbreviated symbolic

names are COP, MRO, VLO, CVX, XOM, GSK, AZN, MRK, NVS, RHHBY, PFE, JNJ, PG,

LLY, FCAU, GM, F, HMC, TM, AAPL, FB, GOOGL, YHOO, MSFT. Similar data are used

by Bodnar et al. (2015) for the same period.

First we discuss the distribution of the estimated global minimum variance portfolio

weights. This analysis is based on Theorem 1. A quite important issue in applications

is that we can not observe the singularity of the data in the strict sense due to the
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Figure 1: Heatmap of the estimated correlation matrix of 24 stocks (left) and its eigen-
values (right)

observational noise. For this reason, we should rather examine small eigenvalues (see

Srivastava (2007)) and determine the rank of the covariance matrix as the number of its

‘significantly’ large eigenvalues. In Figure 1, we present the heatmap of the estimated

covariance matrix of stocks as well as its eigenvalues. We do not attempt here to provide

a formal test for singularity, but from the plot of eigenvalues one can say that the rank

of the covariance matrix is r = 5 or r = 9.

Using the above setup, we get the estimated GMV portfolio weights

ŵGMV = [-0.33 -0.13 0.05 0.5 0.06 0.13 -0.24 0.22 -0.14 0.3 0.24 0.18

-0.12 0.04 -0.07 -0.1 0.18 -0.08 0.1 0.17 0.18 -0.21 -0.02 0.08]T

with the estimated standard deviation based on (7) and with r = 9

ŝGMV = [0.16 0.08 0.08 0.28 0.17 0.23 0.14 0.07 0.20 0.25 0.23 0.31 0.36

0.14 0.10 0.08 0.15 0.24 0.11 0.09 0.07 0.11 0.12 0.10]T .

We can see that some weights are negative that means a short sales for corresponding

assets.

In Figure 2, we plot the densities of the estimation error centered at the estimated

GMV portfolio weights that can be used to construct confidence intervals arround the

true weights. Here we use the result which is obtained in Theorem 2. Thus, we plotted

the estimated GMV portfolio weights of Conoco, Pfizer, General Motors, and Facebook

for different values of r = {5, 9}. We observe larger variances when r = 9 and higher

peaks r = 5.
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Figure 2: The densities of the GMV portfolio weights (two cases: r = 5 and r = 9) for four
stocks: Conoco, Pfizer, General Motors, and Facebook. The estimated GMV portfolio
weights are marked by ‘×’.

In the second part of our analysis, we apply to the data the test in order to determine if

a change of original investment allocation is justified. We consider the test statistics T for

four stocks: Conoco, Pfizer, General Motors, and Facebook. A given value r = Lŵ∗GMV

is a reference vector from a previous time period, namely, from December 2011 to August

2013. This period is divided into 5 sub-periods of monthly log returns. The average

vector of the GMV portfolio weights ŵ∗GMV from the weights of the GMV portfolio of five
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sub-periods is

ŵ∗GMV = [0.01 0.06 0.03 0.04 0.03 0.03 0.06 0.06 0.05 0.05 0.02 0.02 0.02 0.05

0.00 0.1 0.08 0.03 0.02 0.07 0.09 0.02 0.00 0.07 ]T

In Table 4, we present the values of the test statitics T of four stocks using the setup

above. Moreover, we have that (1− α) quantiles of the central F - distribution for r = 5

and r = 9 are 4.413873 and 4.60011, respectively, with α = 5%. Using the fact that the

null hypothesis is rejected if T > Fp,n−r;1−α, and results in Table 4, we can say that the

null hypothesis for Conoco and General Motors should be rejected. As a consequence, an

investor should consider a new allocation of these assets.

r \ Company Conoco Pfizer General Motors Facebook

5 6.1836 1.2471 7.3289 2.0888
9 4.8094 0.9699 5.7002 1.6246

Table 1: Values of the test statistics T for four stocks: Conoco, Pfizer, General Motors,
and Facebook. Two cases: r = 5 and r = 9.

5 Summary

In this paper, we extended the results obtained by Bodnar and Schmid (2008). We discuss

the distribution of estimated GMV portfolio weights for the case when the portfolio size

exceeding the sample size and the covariance matrix has the rank smaller than the sample

size. A test for the general linear hypothesis is given as well as the distribution of the

test statistics under the null and alternative hypothesis. These results are applied to the

empirical data of certain popular stocks traded on NYSE and NASDAQ stock exchanges.

Through this we illustrate the utility of such results for a financial investor.

References

Abramowitz, M. and Stegun, I. A. (1984). Pocketbook of mathematical functions. Verlag

Harri Deutsch, Frankfurt (Main).

Berk, J. B. (1997). Necessary conditions for the CAPM. Journal of Economic Theory,

73:245–257.

Best, M. J. and Grauer, R. R. (1991). On the sensitivity of mean-variance-effecient

portfolios to changes in asset means: some analytical and computational results. Review

of Financial Studies, 4:315–342.

12
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