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Abstract

The APARCH model is a generalization of the GARCH model that attempts
to capture asymmetric responses of returns and of volatility to positive and neg-
ative ‘news shocks’ – the phenomenon known as the leverage effect. Despite
its potential, the model’s mathematical properties have not yet been fully in-
vestigated. While the capacity of the model to account for the leverage effect
is clear from its defining structure, little is known how the effect is quantified
in terms of the model’s parameters. The same applies to the quantification of
heavy tails and time dependence. Here, in an attempt to fill this void, we study
the model in further detail. We obtain sufficient conditions of its existence in
different metrics as well as explicit forms of important characteristics: skewness,
kurtosis, correlations and leverage. Utilizing these results, we analyze the roles
of the parameters and discuss statistical inference. We also propose a natural
extension by introducing an additional parameter and discuss how it affects the
model. Through theoretical results and a Monte Carlo study we demonstrate
that the model can produce heavy-tailed data. We illustrate these properties
using S&P500 data as well as country indices for dominant European economies.

1 Introduction

In the field of finance, it has been long observed and exhaustively documented that the
data exhibit distinct features that call for more general models than the linear ones
based on the Gaussian distribution. Among the most frequently quoted non-Gaussian
and nonlinear features are: heavy-tailed distributions, clustering and asymmetries of
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volatility, and to a lesser degree asymmetry in the return distribution (see [7] and
references therein).

Heavy-tailedness goes back to Mandelbrot, see [15], who noticed that the price
changes of cotton futures showed a much heavier tail than normal. The non-Gaussianity
in the data is of serious concern because heavy-tailed extreme values have serious
implication for risk management and assessment. It was argued in the literature that
misspecified tail behavior in a distributional model can be disastrous for a financial
analyst since the price and hedge strategies will not take the large returns into account.

Equally important aspects of the data are the long-range dependence and volatility
clustering observed in market returns. To quote from Mandelbrot in [15] “... large
changes tend to be followed by large changes, of either sign, and small changes tend
to be followed by small changes.” This stylized fact is sometimes associated by various
authors with empirical evidence that the absolute or squared returns are substantially
more correlated than are the returns themselves (see [5] and [19] as well as the references
therein). Additionally it has also been observed that the absolute and squared returns
display slowly decaying autocorrelation as the lag increases.

It is now commonly accepted that to account for the special properties of finan-
cial and, particularly, stock return data, one has to give up either on the linearity
of the models, or on the Gaussian distribution of the noise driving a model in ques-
tion, or both. Over the years, an enormous variety of stochastic models, both discrete
and continuous time, have been proposed. The two classical directions are either to
treat volatility as non-random conditionally on the past (conditionally heteroscedas-
tic volatility) or to add independent randomness to the volatility model (stochastic
volatility); see [19] for a classical overview of general principles and classes of such
models. It is worth mentioning that a non-Gaussian noise model can also be viewed
as a stochastic volatility model if the noise is a variance normal mixture; see for exam-
ple [1] and [13]. We do not explore stochastic volatility in this work, instead focusing
on the conditionally heteroscedastic volatility model.

One of the first volatility models for financial data was proposed in Engle’s seminal
paper [6] in an attempt at modeling non-constant volatility effects (volatility cluster-
ing) which seemed to be present in the data. The main idea was to model current,
unobserved and non-constant variances of returns (volatility) through a form of au-
toregressive equation in which they are also dependent on the past noise. The same
noise is used both in the volatility and to drive the observed returns that follow an
autoregressive model conditionally on the unobserved volatility.

It is well known to financial practitioners that the vast majority of data show var-
ious systematic asymmetries (see, for example [17] and [2]). Among them two have
been subject of more thorough studies, namely asymmetry in the distribution of re-
turns and asymmetry in the way volatility responds to positive and negative (relatively
to the mean) returns. For example, asymmetries in empirical distributions of five stock
indices and of six foreign exchange rates were observed in [14] and accounted for by a
variable skewness and kurtosis time series model. In [20], it has been shown that intro-
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ducing asymmetric distribution for the noise allows for more adequate representation
of outlying observations.

Another form of asymmetry stems from the fact that the market is prone to react
differently to positive as opposed to negative returns. In the financial terminology, the
leverage on a company valuation results in an increase in the volatility of the stock price,
i.e. the larger leverage, the larger increase in the volatility. It was heavily argued in the
literature, (see [3] for some of the earliest work on this topic), that a decrease in stock
valuation increases the leverage, as compared to when there is an increase of the stock
value. In layman terms, this phenomenon, referred to as the leverage effect, means that
good and bad news have different predictability for the future volatility, i.e. the effect
of positive response on volatility is different than of a negative response of the same
size. Such effect can be detected in the data by using the so-called autocoskewness, i.e.
the negative and significant correlation between returns and future squared returns, as
discussed in [8].

Ding-Granger-Engel’s APARCH model

By introducing non-constant, conditionally heteroscedastic volatility, a relatively sim-
ple form of non-linearity became available in time series modeling. However, in order
to obtain asymmetry due the leverage effect, which exhibits in the ‘bad’ news having a
more prominent effect on volatility than the ‘good’ news, some structural changes were
needed to the model. In [5], the authors address these issues by modifying the existing
model in a way to account for such discrepancies. They make use of the power term in
the volatility equation and introduce asymmetry weights for the positive and negative
error terms. Such asymmetric power stochastic volatility models have been extensively
discussed in the literature and, in principle, have capacity to model important aspects
of the data, see, for example, [9].

The model that is referred to as APARCH(α0, α, β, δ, θ), α0 > 0, α ≥ 0, β ∈ [0, 1),
θ ∈ [−1, 1], δ > 0, is a generalized version of Bollerslev’s GARCH introduced in [4] and
can be described through

yt = f(yt−1, yt−2, . . . ) + εt, εt = ρtet,

ρδt = α0 + ρδt−1λt−1,
(1)

where λt = α
[
(1− θ)δe+δt + (1 + θ)δe−δt

]
+β, variables ρt and et are independent, with

et having a standard normal distribution. Here e+t and e−t stand for the positive and
negative part of et, respectively, while the parameters and their role in the model
are discussed in the introduction to Section 5. The generic autoregressive function
f(yt−1, yt−2, . . . ) of the past values is irrelevant for this paper, but one can consider
linear autoregressive models of any order, for example f(yt−1) = a0 + a1yt−1 leads
to AR(1) model. It should be mentioned that the efficient market hypothesis can be
realized by taking f as a constant shift µ, as for example in [6], from where the ARCH
model originated.
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A direct statistical fitting is based on two facts associated with the construction
of the model. Firstly, the conditional variance ρδt to depend on the past realizations
represented by {ys, s < t} or, equivalently, by {εs, s < t}. Secondly, while the process εt
is not normally distributed, the process yt defined in (1) has, conditionally on the past,
normal distribution, because ρt depends only on the past values {ys, s < t}. Therefore,
in [5], the joint density is defined by considering all the conditional densities. As a
result, the parameters of the model can be estimated by maximizing the log-likelihood
as the sum of the conditional log-likelihoods corresponding to (1) by retrieving the
‘estimated’ volatility values through the recursive relation. To proper statistical ter-
minology we refer to the values of volatility obtained in this manner as the empirical
volatility.

The conditional Gaussian likelihood works best under the assumption that et are
indeed normally distributed. However in the real data, as exemplified below, the stan-
dardized residuals êt based on this model and computed from the data continue to
show some non-Gaussian features.

A motivating example

Here we aim at analyzing the properties of residuals from the model based on the same
S&P500 data as used in the original work [5]. We complement the analysis by using
simulated data from the fitted model and under the gaussian paradigm. We are mainly
interested in the tail behavior of the residuals. The latter are obtained by using the
maximum likelihood method with the Gaussian likelihood conditionally on the volatil-
ity as described above. The simulation is done using the parameter estimates presented
in [5]. Below we report the kurtosis of residuals (ε̂t) and standardized residuals, i.e.
residuals scaled by empirical volatility (êt = ε̂t/ρ̂t).

Table 1: Analysis of heavy tailed behavior via kurtosis.

Data Kurtosis

S&P500 data

Returns 26.12
Residuals 24.89
Stnd. Residuals 8.18

Simulation
Returns 7.33
Residuals 7.23
Stnd. Residuals 2.96

If in the model (1) we assume a Gaussian noise, the non-linear component ρδt can
help to capture some heavy-tailedness in the data. However, as our analysis of S&P 500
data shows, it may be not sufficient to address the actual heavy-tailedness of residuals.
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Figure 1: Normal probability plots: (Top-left) the SP data; (Top-right) simulated data from
the model with fitted parameters; (Bottom-left) the residuals from the real data after being
standardized by the empirical volatility; (Bottom-right) the standardized residuals from the
simulated data.

First consider the case of fitting the model to our data. From the tabulated values
of kurtosis reported in Table 1, it can be seen that the kurtosis for real returns’ data
and the estimated residuals are, as expected, close to each other and show very large
kurtosis (26.12 and 24.89 respectively). This serves as an evidence of a quite heavy
tailed unconditional distribution. The key observation, however, is that even though
the model removed significant amount of mass from the tail, the estimated standardized
residuals still show excess kurtosis with a value of the kurtosis coefficient equals to 8.18.

Next, we apply the same procedure to simulated data that are generated from the
model with the set of parameters taken from a fit to the real data. The value of kurtosis
coefficient for simulated returns is 7.33. This value, while showing clear departure from
the normal distribution, is far below the kurtosis of real returns’ data (26.12), which
indicates that the simulated data couldn’t even generate the magnitude of tails as seen
in the real data. However, the kurtosis for the estimated standardized residuals is very

5



close to 3, which is expected since the simulation was actually done from the Gaussian
distribution. We illustrate it graphically by presenting the qq-plots of the real and
simulated data together as well as of the estimated residuals and the standardized
residuals. The graphs are presented in Figure 1. These observations exemplify that
the model is incapable of fully accounting for heavy-tailedness in the data. To remedy
this, in this work, we promote an approach that makes a fit that preserves the sample
kurtosis. Possibly, a non-Gaussian distribution of the standardized innovations can
produce a more accurate models for this data set, however, this will not be pursued in
this work, see also [13] and [12].

Contributions

Our example reveals that the degree to which various components of the APARCH
model encompass the so-called ?stylized facts? (heavy tails, asymmetry, volatility
clustering, long-range dependence etc.), is not evident and thus has to be thoroughly
investigated. Surprisingly, there is a lack of comprehensive accounts of the effects of
the parameters on the behavior of the model. Some studies indicate that these effects
are far from straightforward, see [11] and [10].

In the original volatility equation in (1), the parameter α0 pushes volatility away
from zero and thus imposes an unnecessary restriction on the volatility process. We
note by analyzing the series representation in (2) that it attempts to play a dual role:
accounting for the location and for the scale simultaneously. In order to address this
issue, we propose an extension of the existing model by introducing an additional pa-
rameter. This extension is presented first in Section 2 so that the following discussions
apply to this generalized model.

The focus of the paper is on analysis of the effect of the six parameters in the
volatility equation (1): α0, α, β, δ, θ, and the new parameters λ on the features and
the so-called ‘stylized facts’ observed in data. We focus, in particular, on the power
parameter δ which played an instrumental role when the APARCH model was intro-
duced in [5]. The motivation for introducing δ stemmed from the following argument.
Empirical evidence suggested that taking powers of absolute value of returns yields
strongest autocorrelation for the case when power is equal to one and thus it appears
to support setting δ = 1. However, it was argued, volatility models with different δ (for
example δ = 2) may still show similar behavior of absolute powers of returns to the
one observed in the empirical data, i.e. the power of one yielding the highest autocor-
relation. Therefore there seems to be no an empirical reason to limit the model to the
case δ = 1. This provided an argument for introducing δ but its actual effect has not
been well investigated. There is some anecdotal evidence about effects of the power
parameter for which typical values reported in the literature are somewhere between
0.8 and 2.5, see, for example, [16]. An effect on the tail weight and extent of volatility
time dependence (clustering) was claimed. However, a thorough treatment of this is
still lacking. Some step in this direction has been made in [10]. Our work extends
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these initial findings, Sections 3.1, 4.1, and 4.2.
It is equally important to acknowledge that the range of the parameters has to

be established in order for correlations and stationary solutions to be well defined.
The initial range of the parameters, α0 > 0, α ≥ 0, β ∈ [0, 1), δ > 0, θ ∈ [0, 1],
λ ≥ −β/(1 − β) must be complemented by additional restriction to assure that the
proposed model for ρt yields a well defined stationary process within a space that
guarantees the existence of desired moments. For example, it is a common practice to
square the data to obtain a proxy for variable variance. If, then, the time dependence
is investigated through correlation of the squares, the fourth moment of the volatility
is needed, which, we shall demonstrate, imposes certain restrictions on the values of
the parameter.

To utilize the model in practice, one has to develop estimation techniques to fit the
parameters in the model. The estimation based on the maximum likelihood method
under the assumption of normality, where the likelihood is recursively evaluated from
the conditional structure of variance, has been extensively used due to its relative
simplicity. One the other hand and as reported in our motivating example, the stan-
dardized residuals frequently do not follow the assumption of Gaussianity. Thus if one
would like to capture the tail behavior, this method does not necessarily accomplish it.
Instead, one can estimate kurtosis and match the model kurtosis through the method
of moments. The same applies to other stylized facts that can be characterized by
moments or functions of them. Finally, one can combine these approaches by match-
ing some sample moments with the ones of interest and maximizing the likelihood
under the resulting constraints. This guarantees that the fit model exhibits features
important for the problem at hand. All this is discussed in Section 5 and illustrated in
Section 6.

2 Scale-location extended volatility model

At the first sight, parameter α0 in the recurrence relation for volatility in (1) appears
to play the role of a location of the model. However, by noticing that the solution to
this equation is

ρδt = α0

(
1 +

∞∑
k=1

λt−1 . . . λt−k

)
one concludes that this parameter rather controls the scale of volatility. In other words,
instead introducing α0 in the equation for the volatility one can equivalently choose et
to have normal distribution with standard deviation 1/α0.

However, and it follows immediately from the above series representation, the
volatility process ρt as defined can not take values lower than the value of α0. In
fact, if β > 0, then this shifts from zero extends by the term α0β/(1−β). This separa-
tion from zero seems somewhat artificial, since the volatility process should be allowed
to take any non-negative value.
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We also note that in a certain sense, α0 does play the role of the location, since it
shifts a scaled stationary and non-negative process from zero. Thus the parameter α0

plays a double role, which somehow limits flexibility of the model. It would be natural
to add additional parameter λ ≥ −β/(1−β) that will account for an arbitrary shift of
the distribution independently of the shift provided by α0 and β. This is achieved in
the following extension that we call the scale-location volatility APARCH model

ρδt = α0

(
λ+

∞∑
k=1

λt−1 · · ·λt−k

)
. (2)

We note the corresponding recurrent relation

ρδt = α0 (λ+ (1− λ)λt−1) + ρδt−1λt−1, t = . . . ,−1, 0, 1, . . . . (3)

The extended model is equivalent to the original APARCH model for λ = 1. Another
interesting example is the case λ = −β/(1 − β) that allows for arbitrary non-zero
volatility values.

2.1 Existence and stationarity conditions

We present the conditions on the parameters to guarantee the existence of stationary
process ρt satisfying recurrence relation of the model. Although it is a mathematical
problem, it is also of importance for practitioner when dealing with actual data. In
particular, estimated parameters values have to be constrained so it is assured that
required covariances or, in general, moments of ρδt do exist. For example, in [11], it can
been seen that for real data the choice of value for δ has to be limited if the covariance
of ρδt is expected to be well-defined. This is further discussed in Subsection 4, where
Figure 7 shows the parameter region yielding well defined autocorrelation.

Consider autoregressive volatility model (2), where λt ≥ 0 are independent iden-
tically distributed non-negative random variables. To provide with conditions for the
existence of a stationary volatility process we notice that it is equivalent to the following
series being well defined

∞∑
k=1

λt−1 · · ·λt−k. (4)

It should be noted that although mathematically it easier to discuss ρδt , for the APARCH
model the volatility ρt is of importance. The question is now in what sense the defining
equation yields ρt having, for example, the first, the second, or, more generally, the pth
moment. The existence is equivalent to convergence of the series

∑∞
k=1 λt−1 · · ·λt−k in

the p/δ norm, which is discussed in detail in the Appendix. We note that once the
convergence is established the process ρδt is strictly stationary, i.e. its finite dimensional
distributions are shift invariant. The mathematically most elegant sufficient solutions
are obtained for the cases of p = δ and p = 2δ. We report the corresponding restricting
equations for the parameters that follow from Propositions 3 and 4.
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The case of p = δ

A sufficient condition for existence of a strictly stationary solution ρδt with finite first
moment is

(1− θ)δ + (1 + θ)δ <
√
π

1− β
α

21−δ/2

Γ
(
δ+1
2

) . (5)

We note two important special cases. Firstly, δ = 1 yields the condition that does not
depend on θ:

1 <

√
π

2

1− β
α

. (6)

Secondly, the case of δ = 2 yields

1 + θ2 <
1− β
α

. (7)

The case of p = 2δ

A sufficient condition for existence of a strictly stationary solution ρδt with finite second
moment is

2δ/2−1Γ

(
δ +

1

2

)
α
(
(1− θ)2δ + (1 + θ)2δ

)
+ Γ

(
δ + 1

2

)
β
(
(1− θ)δ + (1 + θ)δ

)
<

<

√
π

2δ
1− β2

α
. (8)

Here, we also note two important special cases. Firstly, δ = 1 yields the condition

α
(
1 + θ2

)
+

23/2

√
π
β <

1− β2

α
(9)

Secondly, the case of δ = 2 yields

3α(1 + 6θ2 + θ4) + 2β(1 + θ2) <
1− β2

α
. (10)

Remark 1. We note that the above conditions are sufficient and necessary for the
absolute convergence in the norm of Lp. These conditions are particularly important if
one wants to consider models that have flexibility to account for wide range of values of
meaningful parameters such as kurtosis or autocorrelations. For example, to account
for large values of kurtosis that relate to the tails of distribution one has to consider the
parameters that lie close to the boundary of the region for which the model is defined
in Lp for p = 4. This effect is illustrated in Figure 4 in the next section. In Figure 2,
we see the regions for the parameters α, β and θ that guarantees the existence model
for two cases of δ = 1 and δ = 2, that illustrate equations (9) and (10). In the first
case we consider the existence in L2 sense while in the second case the existence in
L4 sense is considered. Both cases are important when the leverage and kurtosis are
considered. We also note that the value of λ does not affect the existence conditions.
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Figure 2: The regions of existence: variance for δ = 1 (left) and kurtosis for δ = 2 (right).

3 Moments and tail behavior

We have seen in the example discussed in the introduction that the model (1) has
limited ability to account for the tails of the distribution of the returns. Here we discuss
the tail of the distribution in some further detail. We start by noting that although
the conditions from the previous section (and more general ones in the Appendix)
are aiming at determining when the model is well defined, they also yield information
about the tail behavior of ρt (and thus of yt). Namely, if the model ceased to exist in,
say, the mean square sense, i.e. the parameters reach the boundary of the region where
the moments of λt are close to one, then the tails must become heavier eventually
yielding infinite variance. Those regions and their boundaries are depending on δ but
for the two special cases we have very straightforward relations. The existence of
variance of ρt is guaranteed by (9), for δ = 1 and by (7) for δ = 2. Consequently tails
are heavier when the difference between both sides of the inequalities are approaching
zero. This shows that the tail behavior of the model is quite complex and the issue
is not particularly well investigated in the literature. In [16], the authors suggest to
consider values other than 2 for δ by stating ‘...for non-normal data, by squaring the
returns one effectively imposes a structure on the data which may potentially furnish
sub-optimal modeling and forecasting performance relative to other power term’. Our
results provide mathematical validation of this and similar statements. The simplest
way to analyze tail behavior of a random variable is through comparing the moments,
the kurtosis being the most popular measure. Here we discuss the relation between
moments and the parameters in the model.

We start with parameter δ, which power transforms the volatility and innovation.
The reason for introducing this parameter can be confused with the power transform
as present in the Box-Cox method, where it is used to transform residuals of the data
to fit the tails to normal distribution. Let us clarify here that this is not the case, i.e.
the parameter δ is not intended to correct for non-normality of the residuals. Note
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that if one observes yt = a + εt, then |ε̂t|δ = |yt − ȳt|δ is the power transformation of
the residuals. In the Box-Cox method the reason for considering the power of residuals
is their non-normal typically heavy tailed distribution. Thus δ is chosen so that |ε̂t|δ
becomes closer to normal distribution (in time series models we would also normalize
the residuals given the past). In the APARCH model the situation is opposite. Consider
the simpler case of θ = 0 and a ≈ ȳt so that we can set a = 0. Then conditionally on
the past, the untransformed data yt = ρtet are normally distributed while yδt = ρδte

δ
t

is not. In this sense, the use of δ is exactly opposite to the spirit of using power
transformation in the Box-Cox method: one takes power of the data to introduce the
volatility relation for otherwise (conditionally) Gaussian data. Let us mention that
there is also work in which the time series financial data are firste power transformed
and then analyzed through the GARCH which in the agreement with the Box-Cox
method, see for example [18].

The most direct study of the tail effect of the parameters is to discuss the kurtosis
of the returns. Unfortunately, analytical methods of investigating the dependence of
kurtosis on δ are limited and one has to resort to numerical methods in the general
case. However for two special cases, δ = 1 and δ = 2, the explicit formula are available
as shown below. We begin with general formulas for the moments of volatility.

3.1 Moments of volatility

Let Mj be the jth moment of L =
∑∞

k=1 λ−1 . . . λ−k and σij be the covariances between
Li and Lj. Let us note the following relations that enable to evaluate these parameters
by using Lemmas 1 and 2 presented in the appendix

σij = Mi+j −MiMj. (11)

For the two special cases of interest Proposition 6 presented in the appendix allows
for more explicit relations. Namely, for the case δ = 1:

E(ρ2t ) = α2
0

(
λ2 + 2M1λ+M2

)
= α2

0

(
(λ+M1)

2 + σ11
)
, (12)

E(ρ4t ) = α4
0

(
λ4 + 4λ3M1 + 6λ2M2 + 4λM3 +M4

)
= α4

0

(
4λ2σ11 + 4λσ12 + σ22

)
+ E2(ρ2t ) (13)

and for δ = 2:

E(ρ2t ) = α2
0 (λ+M1) , (14)

E(ρ4t ) = α4
0

(
λ2 + 2M1λ+M2

)
= α4

0σ11 + E2(ρ2t ). (15)

Remark 2. The values of Mj and σij can be obtained from Lemma 2 of the appendix.
For instance, some simple algebra yields the following expression in terms of the mean
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m and variance σ2 of λi’s

E(ρδt ) = α0

(
λ+

m

1−m

)
,

E(ρ2δt ) =
α2
0

(1−m)2

(
σ2

1− σ2 −m2
+ (λ+m(1− λ))2

)
.

Remark 3. We can use the results with an explicit form of the kth moment mk of λi’s
from Lemma 1 of the appendix and their relation with Mj’s listed in Lemma 2 of the
Appendix to evaluate the above relations in terms of the actual model parameters.
Firstly, for δ = 1, we use the expressions for the first two moments and variance which
are

m = m1 = β + α

√
2

π
,

m2 = β2 + 2αβ

√
2

π
+ α2(1 + θ2),

σ2 = α2

(
1− 2

π
+ θ2

)
.

Secondly, for δ = 2, the expressions for the mean and variance simplify to

m = m1 = β + α(1 + θ2),

m2 = β2 + 2αβ(1 + θ2) + 3α2(1 + 6θ2 + θ4),

σ2 = 3α2
(
1 + 6θ2 + θ4

)
− α2(1 + θ2)2.

(16)

We report below the higher moments which will be required to study the kurtosis. For
example, for δ = 1, the expressions for the third and fourth moments of λk’s are

m3 = β3 + 3αβ2

√
2

π
+ 3α2β(1 + θ2) + 2α3(1 + 3θ2)

√
2

π
, (17)

m4 = β4 + 4αβ3

√
2

π
+ 6α2β2(1 + θ2) + 8α3β(1 + 3θ2)

√
2

π
+ 3α4(1 + 6θ2 + θ4). (18)

Effect of δ on tails of volatility

It is clear from the above derivations that quantifying the actual effect of δ on the
values of the moments is non-trivial since the latter are not explicitly available, except
for the special cases shown above. The reason is that, in the main model, the volatility
enters as ρt and not as ρδt . Thus to make comparisons between various the case of
various values of δ meaningful we need the moments of ρt and not of ρδt . This can be
effectively achieved only through numerical studies. We use the Monte Carlo method
to investigate the contribution of δ parameter in determining the distributional tails
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Figure 3: Kurtosis of ρt as a function of δ for symmetric (θ = 0 – dashed line) and asymmetric
(θ = 0.3 – solid line) cases.

of ρt. For this purpose, we evaluate the kurtosis of simulated ρt as a function of θ and
δ. As an illustration, we take the model that was fit to the S&P 500 data discussed
in the introduction and thus we take α = 0.091 and β = 0.9 (these values are also
reported in [11]). The findings are reported in Figure 3 for both the asymmetric case
with θ = 0.3 taken from the actual fit to the data and the symmetric one (θ = 0),
the latter considered for comparison. The presence of asymmetry slightly increases the
kurtosis of ρt, but the overall pattern is retained. Almost a linear increasing trend can
be seen for kurtosis when δ ≥ 1.

3.2 Moments of returns

In this section, we derive the variance and kurtosis of returns yt. Then these are utilized
to discuss tail behavior of returns and its deviation from normality. We start with two
general relations for the conditionally heteroskedastic model

Var(yt) = E(yt − Eyt)
2 = E(ε2t ) = E(ρ2t )E(e2t ) = E(ρ2t ), (19)

κy =
E(yt − Eyt)

4

Var2(yt)
=

E(ρ4t )E(e4t )

E2(ρ2t )
= 3 · E(ρ4t )

E2(ρ2t )
(20)

The moments of ρδt are obtained using Proposition 6, Lemmas 1 and 2 of the Appendix.

Proposition 1. Let the returns series yt follows the model in (1) under the efficient
market hypothesis, i.e. when the function f does not depend on the past and the
conditional variance ρ2t satisfying (2). Let us denote the variance and kurtosis of yt by
σ2
y and κy respectively and let, as before, M1 be the mean of L =

∑∞
k=1 λ−1 . . . λ−k and

σij be the covariances between Li and Lj. We have, for the case of δ = 1:

σ2
y = α2

0

(
(λ+M1)

2 + σ11
)
,

κy = 3 + 3
4λ2σ11 + 4λσ12 + σ22

((λ+M1)2 + σ11)
2 .

13



and for δ = 2,

σ2
y = α0 (λ+M1) ,

κy = 3 + 3
σ11

(λ+M1)2
.

Proof. Utilising (19) and (12) for δ = 1, we obtain

Var(yt) = α2
0

(
(λ+M1)

2 + σ11
)2

and using (14) for δ = 2:

Var(yt) = α0 (λ+M1) .

Similarily utilizing (13) and (20), for the case of δ = 1 we obtain

κy = 3 ·
(

1 +
4λ2σ11 + 4λσ12 + σ22

((λ+M1)2 + σ11)
2

)
and from (15) it follows that for δ = 2:

κy = 3 ·
(

1 +
σ11

(λ+M1)2

)
.

Remark 4. It should be stressed that the above formulas for kurtosis require the pa-
rameters of the model to lie within the region where the fourth moment of ρt (and thus
of yt) is finite. Thanks to our results given in the Appendix, Propositions 3 and 4, we
can explicitly identify these regions. This is illustrated in the following example.

Example 1. In Figure 4, we present the graphs of the values of the excess kurtosis
evaluated for the model as a function of α and β. We consider δ in {1, 2} and λ in
{0, 1}, which leads to four cases. The values of θ is set to zero and the autoregression
function f is just a constant. We see that the effect of λ (the new parameter in our
extension) is prominent showing that the extension adds flexibility to address features
in the data. This model will be discussed in further details in Section 5.

Remark 5. We observe that in both the cases the kurtosis is bigger than in the normal
case. Additionally, for δ = 1, by using the Cauchy-Schwartz inequality we achieve the
following bounds for the excess kurtosis

3

σ11

(
2λ−

√
σ22/σ11

1 + (λ+M1)2/σ11

)2

≤ κe ≤
3

σ11

(
2λ+

√
σ22/σ11

1 + (λ+M1)2/σ11

)2

.

Using the relations between Mi’s and σij’s given in (11) and Lemmas 1 and 2, one
can obtain σ11, σ12 and σ22 in term of the actual parameters in the model, see also

14



Figure 4: The area for parameters α (horizontal axis) and β (vertical axis) guaranteeing
the existence of the kurtosis and heatmap of the excess-kurtosis values: δ = 1 (left)
and δ = 2 (right), λ = 0 (top) and λ = 1 bottom.

Remark 2 and 3. Thus one can analyze the kurtosis and tails of the returns for a
particular specification of the model.

For δ = 2, the excess kurtosis can be rewritten in the terms of the mean m and
variance σ2 of λt:

κe =
3

1− σ2 −m2

σ2

(λ− λm+m)2
. (21)

From this we can notice that the kurtosis increases without bound with σ2 + m2 ap-
proaching one, which is the upper bound for existence of the model in the L4-sense
needed for having kurtosis well defined. Thus, in terms of kurtosis, the distribution of
the returns can be made arbitrarily heavy tailed.

4 Dependence structure

The APARCH model follows a symmetric GARCH(1,1) model except it adds two
additional parameters θ and δ to account for asymmetric and heavy tail behaviour
in the model. Therefore, it is of interest to analyse the contributions of these extra
parameters to the autocorrelation function and kurtosis of ρt and εt. The motivation
for introducing δ was the Box-Cox power transform which is known to be useful to
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Figure 5: The region of existence of autocorrelation function of ρδt . The orange area indicates
non-convergence in the mean square sense.

reduce anomalies such as non-normality also present in financial data. However, in the
model power is not used to transform the data obtained from a certain but rather is
part of the model inside of autoregressive structure of ρt. Therefore, it is not obvious at
all in what way this parameter contributes when it comes to affecting heavy tails (we
have seen the complexity of this problem already in the previous subsection). In this
subsection, we discuss the role of parameter δ through numerical simulations. However,
it is easier mathematically to consider the ρδt and εδt , which is done next. One has to
bear in mind that this is only proxy for the actual effect on ρt which is present in the
equation for the returns yt in (1).

4.1 Autocorrelations

The autocorrelation of ρδt is particularly simple, see Remark 2 in the previous section
and Proposition 7 in the appendix,

r(ρδt , ρ
δ
0) = mt,

Var(ρδt ) =
α2
0σ

2

(1−m)2(1− σ2 −m2)
.

(22)

In the above relations, m and σ2 are the first moment and the variance of the random
variables λi.

The necessary and sufficient condition for the existence of the autocorrelation func-
tion is that the finite second moment of a considered process must be finite. In our
case, for the existence of the autocorrelation of ρδ, the relation, E2(λt) < 1, needs to
be satisfied. We plot the second moment of ρδ, E2(λt), as a function of θ and δ in order
to illustrate how the obtained formulas can assist in determination of the range of
parameters for which the model is mathematically meaningful. Figure 5 demonstrates
the findings for the model with the parameters other than θ and δ set to the values
obtained from the fit to S&P 500 data. The shaded region in the figure is the area of
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non-convergence. For a given set of values of θ ranging from 0 to 1 and δ ranging from
0.5 to 2, it can be seen that the convergence cannot always be achievable within the
selected bound. It is an important observation and helps in assessing the role of these
two extra parameters associated with the long range dependence of the process. It
highlights that the autocorrelation exists only for some values within the chosen range.

Let us turn now to the case of |εt|δ. In line with the results of [11] and [1], we have
for t ≥ 1 the following autocorrelation formula

r(|εt|δ , |ε0|δ) =2
σ2m e(δ) + α φ(δ, θ) (1−m2) (e(2δ)− 2e2(δ))

σ2 e(2δ) + (λ+m(1− λ))2 (1− σ2 −m2) (e(2δ)− 2e2(δ))
e(δ)mt−1,

(23)

and for variance we have

Var
(
|εt|δ

)
=2

(
α0

1−m

)2
σ2 e(2δ) + (λ+m(1− λ))2 (1− σ2 −m2) (e(2δ)− 2e2(δ))

1− σ2 −m2
.

(24)

For the proofs see Proposition 8, in the appendix. There we use νp = 2e(p), where
e(p) is given in (36), and γ(δ) = Cov(λ0, |e0|δ) = 2α φ(δ, θ) (e(2δ)− 2e2(δ)), where
φ(δ, θ) = (1− θ)δ + (1 + θ)δ. To get the formulas in terms of the model parameters one
can utilize Lemma 1 in the appendix.

For illustration we present in Figure 6 the lag-one autocorrelations for |εt|δ and ρδt
that are obtained using the presented formulas. We can see that generally an increase
in δ increases the autocorrelation (specifically for δ ≥ 1). This effect is more dramatic
for the autocorrelation of |εt|δ than that of ρδt . Moreover the asymmetry has somewhat
large effect on the autocorrelation of |εt|δ for δ close to 2.

The effect of δ on the long-term memory

The above results on the dependence in the model can not be indicative of the actual
effect of δ. In fact, these theoretical formulas for autocorrelation functions, although
explicit, does not give us correlations in yt, except for the case δ = 1. Therefore we
do not discuss any further the effect of δ on the computed correlations of powers of ρt,
while more discussion can be found in [11]. Instead, we move on to numerically assess
the role of the parameter δ on the autocorrelation of ρt in the case of model fit to the
S&P 500 data.

Figure 7 shows the lag-one autocorrelation of ρt and |εt| for the symmetric case
(θ = 0) and an asymmetric case (θ = 0.3). It can be seen, from the lower panel of
the figure, that the autocorrelation for ρt does not change much in these two cases so
it appears that the parameter θ does not contribute significantly to the long-memory
of ρt. Since the process ρt depends on its past values (ρt−1), we see values of the
autocorrelation in proximity of one. Moreover, the dependence becomes stronger for
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Figure 6: First-order autocorrelation function for |εt|δ (top) and ρδt (bottom). Dashed line
corresponds to the symmetric case of θ = 0 and the solid line show the case of θ = 0.3.

δ ≥ 1. The upper panel of the figure displays the autocorrelation pattern for |εt|. Here
again the parameter θ does not contribute to the long memory as much as in the case
of |εt|δ. Moreover, the autocorrelation for |εt| is an increasing function of δ, though
the dependence is no longer so strong in magnitude, when δ is close to 2, reaching
only approximately 0.6, while in Figure 6 the corresponding value is nearly one in the
asymmetric case.

4.2 The leverage effect

In general terms, the leverage effect is described as the higher volatility after ‘bad news’
stretches as compared with the volatility during ‘good news’ periods. If bad news are
revealed by negative log-return values, then one can measure this effect by correlation
between the return yt−1 and the volatility ρt (see, for example [21]). Generally, negative
value of such correlation indicates existence of the leverage effect and the larger the
absolute value of the correlation the stronger leverage effect. Here we present some
explicit formulas for relevant correlations in the APARCH model that allow to analyze
which of the parameters influence the leverage. These formulas can be used for evalu-
ation of the strength of the leverage effect or can be utilized in estimation as discussed
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Figure 7: Autocorrelation function for |εt| (top) and for ρt (bottom) in the symmetric case
of θ = 0 (dashed line) and for the case of θ = 0.3 (solid line).

in Section 5.
For a random variable et having a symmetric distribution around zero, a proxy of

leverage effect is defined through the correlation between lagged δ-powers of centered
returns (ε

(δ)
t−1) and δ-powers of volatility (ρδt ). Here for a number x we define x(δ) =

x+
δ − x−δ. It is shown in the Appendix in Proposition 9 that

r(ρδt , ε
(δ)
t−1) = α

√
e(2δ)(1 + cv−21 )

(1− θ)δ − (1 + θ)δ√
2

, (25)

where e(p) can be simply computed from (36) and the coefficient of variation cv1 for
ρδ0 that can be computed explicitly from (22) and Remark 2 is yielding

cv−21 =
1− σ2 −m2

σ2
(λ(1−m) +m)2 , (26)

where Corollary 2 in the appendix can be used to obtain explicit forms for m and σ2

(the mean and variance of λi’s) in terms of α, β, δ, and θ.
Two special cases are of particular interest due to their simplicity. For compactness
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Figure 8: The area for parameters α (horizontal axis) and θ (vertical axis) displaying
the heatmap of the leverage effect values: δ = 1 (left) and δ = 2 (right), λ = 0 (top)
and λ = 1 bottom.

we set cλm = λ(1−m) +m. For the case of δ = 1:

r(ρt, εt−1) = −αθ
√

1 + cv−21 (27)

= − θ√
1− 2

π
+ θ2

(
α2

(
1 + θ2 − 2

π

)(
1− c2λm

)
+ (1−m2)c2λm

)1/2

.

Similarly, for δ = 2:

r(ρ2t , ε
(2)
t−1) = −2

√
3αθ

√
1 + cv−21 (28)

= −
√

6 θ√
1 + 8θ2 + θ4

(
2α2

(
1 + 8θ2 + θ4

) (
1− c2λm

)
+ (1−m2)c2λm

)1/2
.

From the above formulation, it is obvious that the correlation is always negative, if θ is
positive, assuring negative association between lagged return and volatility. The fact
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that an increase of either α or θ amplifies the effect is not surprising. However, it is
interesting to note that the leverage can also increase from a decrease of the coefficient
of variation for volatility. For example, the location parameter λ, presented in our
extended model (2), enters through the coefficient of variation (cv1) of volatility in
(26). It is interesting to notice that the higher the value of λ, the stronger it will
amplify the leverage effect in the data. This property will be revisited in Section 5
where we discuss estimation strategies. Finally, we notice that for existence of the
model it has to be assumed that m and m2 + σ2 are bounded by one thus these two
terms have limited effect on the leverage.

Example 2. To illustrate the dependence of the leverage on the parameters we consider
the case of α = β and λ = 1 (autoregressive function f is constant as always in our
examples). In Figure 8 we see the dependence of the leverage as defined through (27)
and (28) for the cases δ = 1 and δ = 2, respectively.

Let us also notice the following simplified formulas for the case δ = 1 and δ = 2
for the correlation of the lagged returns and the squared volatility, which is also often
used as the measure of the leverage effect. For the case of δ = 1 we have

r(ρ2t , εt−1) = −2αθ

√
1 + cv2

1

cv2
2

(
α0 +

(
2

√
2

π
α + β

)
E (ρ30)

E (ρ20)

)
E (ρ0)

E (ρ20)
,

and for δ = 2:

r(ρ4t , ε
(2)
t−1) = −8

√
3αθ

√
1 + cv2

1

cv2
2

(
α0 +

(
15α

(
1 + θ2

)
+ β

) E (ρ60)

E (ρ40)

)
E (ρ20)

E (ρ40)
.

We conclude this section with a general relation that relates the correlation of the
powers of the absolute returns with the lagged returns. We can see that they are
closely related to the above correlations. This fact can be utilized to compute method
of moments estimators that would match the leverage observed in the data. Namely,
for each k > 0 and for APARCH models such that the correlations below are well
defined, we have

r(|εt|kδ, ε(δ)t−1) = r(|et|kδρkδt , ε
(δ)
t−1) = 2e(kδ)r(ρkδt , ε

(δ)
t−1),

where the last equality follows from the independence of et from et−1 and ρt.

5 Estimation strategies

Before getting into details of estimation for the APARCH model let us briefly recap its
structure and the role of parameters. We consider the extended APARCH model with
the additional parameter λ that is given through

yt = g(yt−1;a) + εt, εt = ρtet

ρδt = α0 (λ+ (1− λ)λt−1) + ρδt−1λt−1,
(29)
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where, yt = (ys; s ≤ t), λt = α
[
(1− θ)δe+δt + (1 + θ)δe−δt

]
+ β. Here unspecified time

dependent part of the main equation g(yt−1, yt−2, . . . ;a) is controlled by the multivari-
ate parameter a. As it will be discussed, the function g and thus also the parameter
a does not change estimation strategy in any other way than just by accounting the
space for a additionally to the space of other parameters over which likelihood function
is maximized. In the simplest but important case g is a linear autoregressive model
in which a represents the underlying regression coefficients. As we have mentioned
before, the special case of g being a constant function is in the literature referred to as
the random walk model based on the efficient market hypothesis. The remaining pa-
rameters are more pertained to empirically observed ‘stylized facts’ that the APARCH
model aims to capture. This relation between ‘stylized facts’ and the corresponding
parameters is discussed next.

We have introduced the extended volatility model that adds important flexibility
which was missing in the original formulation. This extension is characterized by two
parameters α0 and λ that account both for the scale and the location shift in the
volatility equation. The role of these parameters has been discussed already in detail
in Section 2. They join α and β to fully describe the time dependence in the volatility
(the ‘AR part’ of APARCH). Additional two parameters, θ and δ are defining the
asymmetric power structure (the ‘A-P part’ of APARCH). We note that the role of
θ as a leverage effect parameter has be confirmed in this work, while the role of δ is
somewhat ambiguous.

In the full formulation the model is defined by the multivariate parameter

θT =
[
a α0 α β λ θ δ

]
and, when conditioned on the past, features Gaussian likelihood with varying variance
(heteroscedasticity) represented by ρt (the ‘CH part’ of APARCH). This is the key
property that enables a numerically effective maximum likelihood procedure leading
to an estimate of θ. The resulting estimate can be viewed as an standardmaximum
likelihood estimate (nevertheless, some restrictions on parameters following from the
model existence conditions have to be imposed).

The maximum likelihood estimators have many well-studied theoretical advantages
but these benefits are valid if one truly believes that the mechanism producing real data
indeed follows the assumed structural and distributional model. However, in practice,
real data rarely strictly follows the model in all its features as it is implicitly assumed
by the likelihood method . The likelihood method applied to such data is often referred
to as the quasi-likelihood method. It can lead to a statistical fit that does represent
well such ‘stylized facts’ as leverage, heavy tails, or dependence structure. This was the
case in our motivating example, where the tails were inaccurately fit despite the model
having the capacity of yielding heavy tails (high kurtosis) as shown in Section 3. One
may argue that the data may have some features that drives the likelihood estimates
seem away from the observed ‘stylized facts’.

As a remedy to this problem a practitioner may maximize likelihood while preserv-
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ing certain empirical characteristics describing stylized facts. These restrictions reduce
dimensionality of the parameter space so that maximizing of the likelihood function
is carried over less dimensional space of parameters. There are two benefits of this
approach. Firstly, the important features as seen in the data are followed closely in the
estimated model. Secondly, by reducing dimensionality of the optimization problem,
the computational cost is reduced.

While the computational benefit is practically justified by numerical limitations
of MLE method, following the empirical characteristics of the data is more of the
methodological nature. Namely, real data seldom follows rather simplistic models and
therefore relying only on the likelihood may not account on the features of interest.
Assisting the likelihood through the restrictions make the estimation more robust on
the deviations of the data from the model. This is further discussed in Subsection 5.2.

In the remaining parts of this section we provide technical details of both the stan-
dardand constrained maximum likelihood estimation methods and discuss the impact
the imposed restriction have on the efficiency of estimation.

5.1 The likelihood method

The discussed volatility model is based on conditional heteroscedasticity of innovations
and its explicit Gaussian likelihood. The standardlikelihood estimation method is sim-
ply based on the maximizing likelihoods, where the likelihood is recursively evaluated
from the conditional structure of the variance. Here we discuss briefly this estimation
technique in some further detail.

Let us represent the likelihood conditionally on the initial past e0 through the
product rule

L(θ; y1, · · · , yt|e0) =fθ(y1, . . . , yt|e0) = fθ(yt|yt−1, e0) · · · fθ(y1|e0),

where where yt−1 = (ys; s < t) and e0 = (es; s ≤ 0) and we assume that the initial
history e0 is available. In practice, one chooses some initial guesses for e0 values using
some properties of the model. For example one can take random sample from the
distribution of e0. Typically in large sample case, the accuracy of the estimation does
not suffer by such a substitution of the true values by their ‘educated’ guesses.

Specifically, the APARCH model can be written in the following form

yt = g(yt−1, a) + ρ(yt−1, . . . , y1, e0,b) et (30)

where a and b = (α0, α, β, λ, θ, δ) are vectors of parameters. Using the standard
normality of et’s, the log-likelihood that we want to maximize with respect to θ = (a,b)
takes the form

l(θ; y1, · · · , yt|e0) =

− t

2
log(2 π)− 1

2

t∑
k=1

(
yk − g(yk−1, a)

ρ(yk−1, . . . , y1, e0,b)

)2

−
t∑

k=1

log ρ(yk−1, . . . , y1, e0,b). (31)

23



Let us consider even a more specific model with θ = (µ, a, α0, α, θ, β, δ) and

g(yt−1, (µ, a)) = µ+ ayt−1

ρt
def
= ρ(yt−1, (α0, α, θ, β, δ))

(32)

is given through the recursive relation

ρδt = α0 + α1ρ
δ
t−1[(1− θ)δe+

δ

t−1 + (1 + θ)δe−
δ

t−1 + β],

or through the non-recursive series representation (2) in the Appendix. The log-
likelihood function takes the form

l(θ; y1, · · · , yt|y0) = − t
2

log(2 π)−
t∑

k=1

log ρk −
t∑

k=1

(yk − µ− ayk−1)2

2ρ2k
. (33)

We note that ρt given in (32) is in fact a function of parameters and past observations
yt−1, while, in practice, the entire past yt−1 is not known. So to evaluate the log-
likelihood for given values of the parameters one has to provide with the initial values
for (y0, e0, ρ0) and evaluate all ρk’s, k = 1, . . . , t using the recursive relations (1) and
observed (y1, . . . , yt). There are several ‘educated’ ways of choosing initial values. For
example e0 can be simulated, ρ0 can be taken as the standard deviation of the data sy
due to (19), and y0 = ȳ. Alternatively, the explicit moments formula can be utilized
for the particular choice of parameters over which the likelihood will be maximized.
For large data sizes this initial choice will not have a significant effect for the final
maximizer and thus the issue is not discussed any further.

Example 3 (Maximum likelihood for the APARCH model without leverage). To illus-
trate how the MLE can be facilitated for APARCH model in practice, we consider (1)
with the autoregressive part being constant f(y) = µ and theta θ = 0 (no leverage).
We first consider δ = λ = 1. For particular values of the model parameters, we can
recursively evaluate the log-likelihood as described by, for example, starting with the
values of y0 = ȳ, ρ0 = sy, and e0 = 0

ρ1 = α0

(
1 +

∞∑
k=1

λ0λ−1 . . . λ−k+1

)
and thus for i ≥ 1:

ei =
yi − µ
ρi

, ρi+1 = α0 + ρiλi,

where λi = α|ei|+ β yielding ρ1, . . . , ρt+1.
Similarly, for δ = 2 we take

ρ1 = α
1/2
0

(
1 +

∞∑
k=1

λ0λ−1 . . . λ−k+1

)1/2
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and ρi+1 =
√
α0 + ρ2iλi where λi = αe2i + β.

The log-likelihood becomes

l(µ, α0, α, β; y1, · · · , yt|e0) = − t
2

log(2 π)− 1

2

t∑
k=1

(
yk − µ
ρk

)2

−
t∑

k=1

log ρk. (34)

In Figure 9, the log-likelihood function is presented as a function of α and β (for
illustration purposes α0 is set to one and µ = 0) for t = 5000 data simulated from
the model. Two pairs of (α, β) have been selected. The first pair, α = 0.12 and
β = 0.86, has values close to the one obtained in estimation for the S&P 500 data
analyzed in Section 6. This model has a moderate kurtosis value of 3.96, when δ = 1
and rather high kurtosis of 11 for δ = 2, as can be seen from Figure 4 (bottom), see
also Proposition 1. This choice of parameters places them very close to the boundary
of the region guaranteeing existence of the fourth moment (and thus of the kurtosis).
The effect of high values of the kurtosis is discussed in the next subsection. The second
pair, α = 0.2 and β = 0.6, represents values that are further from the boundary and
thus faring fairly small kurtoses (3.51 for δ = 1 and 3.86 for δ = 2), which are closer
to the value three featured by the Gaussian distribution. In this figure the likelihood
function is shown together with the contour line representing the constrained likelihood
method described in the next subsection. We see that the likelihood method retrieves
reasonably well the values of the parameters for both cases of δ.

In the above example, it is illustrated how important for the model fitting is to
know the range of parameter guaranteeing the existence of the model in a proper
mathematical sense. In practice, observing values the MLE close to the boundary of
existence of certain moments can influence on the choice of the characteristics used to
study the model. For example, by evaluating the likelihood function over the region of
finite kurtosis, one can assess how reasonable is the assumption of the finite kurtosis
– the MLE close to the boundary may indicate that the data may require releasing
this assumption. Even if one requires the existence of certain moments for the model,
their values can be used to obtain more realistic models. This is described in the next
section.

5.2 The constrained likelihood method

It follows from the general theory of statistics that in most cases the maximum likeli-
hood method provides efficient estimators. We have seen in the previous section that
the method can be successfully applied to the extended AP-GARCH model. However,
there are several reasons for which one can consider a modification of the method.
Some of them have been already discussed in the introduction to this section. Here we
reemphasize two that are particularly important in the context of estimation for the
extended AP-GARCH model.

Real data very rarely truly follow the model one tries to fit. The MLE in such
contexts is called the quasi-likelihood method and still provides consistent estimates
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Figure 9: Illustration of the standardand constrained likelihood methods for estimation of α
and β for the model in Example 3. The cases of δ = 1 and δ = 2 are presented in the left and
the right columns, respectively. The data were simulated for two sets of the parameters: the
top graphs feature values α = 0.12 and β = 0.86 that are close to the boundary of the kurtosis
existence region, the bottom ones correspond to α = 0.2 and β = 0.6. The true values are
represented by the stars on all figures (in the top-left we included an enlargement in order to
distinguish between other points on the graph). The gray area represents prohibited region for
the parameters (the fourth moment does not exist). The log-likelihood is represented by the
colored contour map. The MLE estimator is presented by the white points. The continuous
line represents the constrained line so that the parameters match the empirical kurtosis. The
dark dot lying on it represents the constrained likelihood estimator. The dashed lines show
the constrained log-likelihood line corresponding to the true kurtosis of the model. In the
upper left corner of each graph the log-likelihood values along the constraint curve of the
constant empirical based kurtosis are shown.

which are relatively easy to evaluate. However, for the model that may not necessarily
represent given data in all its features, the quasi-MLE fit may emphasize those features
that are not important for a particular application. It can be then desirable to use the
likelihood but at the same time to require that some characteristics observed in the
data are preserved by the fit to the model.

Secondly, the MLE estimator based on the data can lead to the values of the
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parameters that prevents existence of certain characteristics that are important for the
model. For example, the estimated parameters can go beyond the region where the
kurtosis is well defined. This can happen even if the data are generated from the model
with a well defined kurtosis, in particular, when the true parameter values are close to
the boundary of kurtosis existence region (the cases of large kurtoses). This problem
maybe amplified by the problem mentioned in the previous paragraph.

A simple and quite effective approach to eliminate the above problems can be
based on blending maximizing likelihood with restriction that makes values of empirical
characteristics to match theoretical characteristics represented by the parameters in the
model. Such a ‘hybrid’ estimation scheme can be described next.

Here we use the notation of the previous subsection. Let Si(θ), i = 1, . . . , p denote
certain characteristics of the model as function of the parameter θ. Important examples
of such characteristics for financial applications are kurtosis and measures of leverage.
Assume that some direct estimators of these characteristics are given as Ŝi(y1, . . . , yt),
i = 1, . . . , p, where y1, . . . , yt are the observed values from the model. The constrained
MLE θ̂ is defined as the solution to the following optimization problem with constraints

θ̂ = argmax{l (θ; y1, · · · , yt|y0) : θ ∈ Θ, Si(θ) = Ŝi(y1, . . . , yt), i = 1, . . . , p}.

In the following example we use the kurtosis based constraint that seems to perform
quite well.

Example 4 (Kurtosis constrained maximum likelihood). We continue to work with the
model from Example 3. For the likelihood we take l(α, β; y1, · · · , yt|e0) given in (34),
with α0 = 1 and µ = 0. We provide the formulas only for the case of δ = 2 although
the case of δ = 1 can be treated similarly (the formulas are slightly more complex) .
The kurtosis in this special case is given by

κ(α, β) = 3
1− (α + β)2

1− (α + β)2 − 2α2
.

Consequently, the problem reduces to finding maximum of l(α, β; y1, · · · , yt|e0) with
respect to α and β assuming additionally that the following constraint is satisfied

3
1− (α + β)2

1− (α + β)2 − 2α2
=

(y − ȳ)4(
(y − ȳ)2

)2 .
This constraint reduce the problem of finding maximum over one parameter (along the
curve). In Figure 9, we see the contour line corresponding to this constraint for four
cases discussed in Example 3. The log-likelihood values along this contour line are
presented in the upper right corner of the graphs. We observe that the method leads
to the estimates that are comparable to the one obtained through standard likelihoods.

A choice of the type of constraint can be dictated by its importance in a particular
application, its accessibility for direct estimation, and finally by its properties. For
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Figure 10: Distribution of empirical kurtosis based on 1000 Monte Carlo samples of size 5000
for the cases discussed in Examples 3 and 4. The parameters are α = 0.12 and β = 0.86. The
case of δ = 1 is on the left hand side graph – the theoretical kurtosis is 3.96 and the average
of MC sample kurtoses is 3.9374. The case of δ = 2 is on the right hand side graph – the
theoretical kurtosis is 11 and the average of MC sample kurtoses is 6.4634. The pronounced
bias of the empirical kurtosis for large values of the kurtosis is evident. One observes also
the skewness of the sample kurtosis distribution in both the cases.

example, one can choose kurtosis as an important characteristic that one wishes to
preserve in the estimation procedure. Kurtosis is easy to estimate by the method of
moments and often is used to compare models. But the word of caution is needed
here since convenience is not always the best guide in the choice of constraints. This is
due to the fact that poor properties of Ŝi can hamper the effectiveness of the method.
Here we illustrate this problem by showing the behavior of the sample kurtosis for the
AP-GARCH model. In Figure 10 (right), we observe that the sample kurtosis for large
value of the kurtosis is negatively biased and has distribution that is heavily skewed to
the right. The bias is not present for the small values of kurtosis Figure 10 (left), but
skewness of the distribution still is quite visible. It implies that using sample kurtosis
for the constraints may lead to some inaccuracies in the estimation. However, in the
previous example using kurtosis did not lead to any apparent problems though more
studies are needed to understand the effect of the constraints.

We conclude this section with an explicit form of the kurtosis constrained maximum
likelihood method in the full model with δ = 2.

Kurtosis constraint in the full model, the case of δ = 2

The formulas derived in our work allows for evaluation of the kurtosis constraint for
the full model in the case of δ = 2. Similar approach can be applied for δ = 1 although
the formulas would be more complex. We note if δ = 2, then from (21) and (16) we
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obtain the explicit form for the kurtosis

κ = 3 + 3
σ2

1−m2

1

(λ(1−m1) +m1)
2 ,

where

m1 = α
(
1 + θ2

)
+ β,

m2 = 3α2
(
1 + 6θ2 + θ4

)
+ 2αβ

(
1 + θ2

)
+ β2,

σ2 = 2α2
(
1 + 8θ2 + θ4

)
and to have the model well defined and possessing all required moments the following
range for the parameter is imposed

−1 ≤ θ ≤ 1, λ ≥ − β

1− β
, α > 0, β > 0, 3α2

(
1 + 6θ2 + θ4

)
+ 2αβ

(
1 + θ2

)
+ β2 < 1.

We assume that κ is taken as the empirical kurtosis and thus by solving for λ we obtain
the following functional dependence of this parameter on the other parameters

λ(α, β, θ) =
1

1−m1

(
±σ

√
3

(κ− 3)(1−m2)
− 1

)
,

with the constraint that only α, β and θ such that λ(α, β, θ) ≥ −β/(1−β) are allowed.
Then the likelihood as given in (31) is dependent only on a and (α0, α, β, θ), since
δ = 2 and λ is evaluated from the above equation. The optimization of this function
should be performed over the region where the fourth moment of the data exists, i.e.
the region described in the Appendix, Propositions 3 and 4.

The original AP-GARCH model is obtained by setting λ = 1. In this case, one can
obtain explicit form for α as function of β and θ that is obtained by solving in for α
the following equation

κ− 3

3
=

σ2

1−m2

.

After tedious but straightforward calculations, we obtain

α(β, θ) =

√
(κ− 1) (1 + θ4) + 2 (3κ− 1) θ2 − 2

3
κβ2 (1 + θ4 + 8θ2)−

(
κ
3
− 1
)
β (1 + θ2)

(κ− 1) (1 + θ4) + 2 (3κ− 1) θ2
.

Now, the maximization of the likelihood is with respect of a and (α0, β, θ) with the
constraints given through −1 ≤ θ ≤ 1, 0 ≤ β < 1 and

0 ≤ α(β, θ) <

√
β2(1 + θ2)2 + 3(1− β2) (1 + 6θ2 + θ4)− β(1 + θ2)

3(1 + 6θ2 + θ4)
.
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6 Empirical data analysis

In this section, we implement different estimation strategies for empirical analysis. As
discussed before, the maximum quasi-likelihood method may result in a fit for which
empirical characteristics do not match their theoretical counterparts. To ensure this
match, one may prefer the maximization of the likelihood with additional constraints.
Here, for illustration and also because of its practical significance, we focus on the kur-
tosis. In our analysis we considered several data sets that are characterized by moderate
to fairly large kurtoses. These are: the S&P500 historical data from 3 January 1928
to 30 August 1991 and selected European countries indices: France, Germany, Greece,
Italy, Spain, Switzerland, and UK for the period from 2 January 1990 to 31 December
2013. The S&P500 data often serves as a benchmark data with very heavy tail be-
havior (see also [13] and references therein). The other data sets are milder in terms
of heavy tailed behavior but still far from being Gaussian. In the following we discuss
effectiveness for both general and constrained maximum quasi-likelihood methods.

Table 2: Estimated parameters of the APARCH model.

Data Estimates Kurtosis

α̂0 α̂ β̂ θ̂ δ̂ κ̂emp κ̂theo

S&P500 10e−6 (1e−6) .086 (.072) .914 (.911) .34 (.29) 1.544 (2) 26.1 12.5 (13.6)

France 2e−5 (3e−6) .073 (.063) .906 (.904) .54 (.45) 1.584 (2) 9.1 5.6 (6.3)

Germany 1e−5 (4e−6) .078 (.073) .890 (.891) .41 (.36) 1.815 (2) 11.6 4.9 (5.2)

Greece 7e−6 (6e−6) .110 (.107) .877 (.877) .08 (.07) 1.982 (2) 7.5 7.5 (12.9)

Italy 7e−6 (4e−6) .087 (.084) .896 (.895) .26 (.23) 1.875 (2) 7.8 6.0 (7.8)

Spain 3e−5 (4e−6) .079 (.069) .904 (.904) .38 (.29) 1.563 (2) 8.9 4.7 (4.9)

Switzerland 2e−5 (4e−6) .074 (.066) .890 (.887) .49 (.43) 1.694 (2) 7.7 4.5 (4.4)

UK 2e−4 (2e−6) .060 (.061) .910 (.910) .37 (.36) 2.037 (2) 11.9 4.6 (4.7)

Maximum likelihood for the APARCH model

First we consider the estimated parameters of the APARCH model with Gaussian
distribution for the noise process obtained through the standard (Gaussian) maximum
likelihood method. In Table 2, the parameter estimates are presented. All parameters
are found to be significant at 95% level (for brevity the p values are not reported here).
A mild level of leverage, as described by parameter θ̂, is noticed and the estimate of
the power parameter δ̂ are in all cases closer to 2 than to 1. There is no analytical
formula for the theoretical kurtosis for fractional values of δ, thus one has to resort
to numerical approximation. Here we use the Monte Carlo method based on 1000
simulated samples from the model and resulted mean values are listed in the last
column, while the empirical kurtoses are reported in the second last column. We
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Table 3: Estimated parameters of the extended APARCH model.

Data Estimates Kurtosis

α̂0 α̂ β̂ θ̂ δ̂ λ̂ κ̂emp κ̂theo

S&P500 8e−6 0.082 0.922 0.361 1.402 0.020 26.12 12.76

France 4e−3 0.065 0.925 0.590 1.300 0.017 9.08 5.05

Germany 7e−3 0.067 0.926 0.556 1.179 0.015 11.58 4.74

Greece 6e−3 0.081 0.925 0.117 1.544 0.002 7.46 8.25

Italy 1e−3 0.082 0.913 0.281 1.550 0.018 7.84 5.70

Spain 3e−3 0.070 0.925 0.454 1.224 0.029 8.92 4.73

Switzerland 2e−3 0.069 0.904 0.549 1.476 0.019 8.92 4.29

UK 1e−3 0.058 0.933 0.551 1.396 0.022 11.89 4.85

have seen before that for large values of kurtosis, the empirical kurtosis tends to be
very biased and underestimates the true one, so our MC simulation is also affected by
this. To provide more accurate approximation of the true kurtosis one would have to
correct for bias that is not explored in the present work. It should be also noted that
for fractional δ, we do not have explicit conditions for the existence of kurtosis, so,
in principle, our estimated parameters my lead to the infinite kurtosis. However, in
our simulations, we checked for the stability of the estimates that suggested that the
existence condition does not appear to be violated for any of the data set.

For comparison we have also run the estimation by constraining δ = 2. The reason
for this choice of δ is the explicit expression for the kurtosis, see the discussion in
Example 4. Those estimates and theoretically evaluated kurtoses are reported in the
parentheses.

It can be easily observed that none of the data seems to satisfy the assumption of
normality – all the empirical kurtosis are beyond the nominal level of 3. Moreover, it
is worth noticing that the kurtosis (κ̂theo) captured by the estimated parameters is far
from the empirical kurtosis. The same applies to the model with δ fixed to 2, which
also shows very similar fit of the parameters. This indicates again that the parameter
δ is not that influential. At the same time, it shows the fit parameters do not fully
translate into the heavy-tailedness exhibited in the data.

Maximum likelihood for the extended APARCH model

In another study, we estimate our extended model defined in (29) and investigate
the effect of introducing a scale parameter λ. The results in Table 3 summarize the
parameter estimates of the extended APARCH model. There are few interesting points
to be made. Firstly, the estimated values of λ̂ are close of 0 so the assumed value of 1
in the original model is not supported by the data. Secondly, by introducing λ a drop
in the values of δ̂ is noticed and this drop is quite significant for some of the series.
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Table 4: Estimates for the extended APARCH model with δ = 1 (δ = 2)

Data Estimates Kurtosis

α̂0 α̂ β̂ θ̂ λ̂ κ̂emp κ̂theo

S&P500 6e−3 (4e−5) .085 (.070) .924 (.914 ) .42 (.29) .019 (.027) 26.1 19.6 (15.4)

France 1e−2 (2e−4) .066 (.056) .930 (.916) .64 (.45) .018 (.013) 9.1 5.0 (6.3)

Germany 1e−2 (2e−4) .068 (.057) .928 (.916) .59 (.40) .016 (.011) 11.6 4.9 (5.2)

Greece 4e−2 (2e−3) .073 (.072) .936 (.917) .14 (.11) .003 (.002) 7.7 8.6 (6.9)

Italy 1e−2 (2e−4) .078 (.077) .922 (.906) .37 (.23) .018 (.018) 7.8 4.9 (8.9)

Spain 9e−3 (9e−5) .070 (.064) .927 (.913) .51 (.31) .028 (.034) 8.9 4.8 (5.8)

Switzerland 1e−2 (2e−4) .072 (.061) .912 (.894) .61 (.47) .022 (.016) 7.7 4.2 (4.6)

UK 8e−3 (7e−5) .059 (.051) .939 (.926) .66 (.41) .012 (.023) 11.9 5.1 (5.4)

Thirdly, the theoretical kurtosis are evaluated through the estimated parameters.
In the next analysis, we proceed by fixing the parameter δ to be either 1 or 2 and

estimating the rest of the parameters of the extended model. Table 4 summarizes
the results with estimated values for the case of δ = 2 reported in parentheses. It
shows that the parameter δ is not contributing much to the tail when parameters are
estimated through the standard maximum likelihood method. This is in contrast to
what was argued in [5] and shows that in the extended model the role of δ is, to some
extent, played by λ. In Tables 3 and 4, however, the estimated model parameters lack
the capability of accounting for the kurtosis observed in data, in all except one cases
the later being bigger than the ones evaluated through the theoretical formula (or the
MC method).

In the nutshell, we conclude that using estimated δ makes analytical formulas for
kurtosis unavailable. Moreover, as seen in Figure 10, evaluating the kurtosis by using
the Monte Carlo method is difficult due to its bias and large variance. On the other
hand if instead the actual estimate one uses δ = 1 or δ = 2, then both the original
and extended models perform well and have explicit analytical formulas available. To
capture the sample kurtosis even better one can resort to the constrained method that
is applied to the data next.

Constrained maximum likelihood estimation

To illustrate how to use the constrained method to account for the heavy tails in the
considered data sets, we restrict ourselves to λ = 1, δ = 2 and θ = 0. This choice
brings us to simplicity of the formulas derived in the last part of Section 5.2.

Table 5 summarizes the results obtained through two different estimation strategies
(see Section 5). The first three columns of the table report the estimates of parameters
obtained through the standard likelihood method. The next three columns present
the estimates via the proposed hybrid method. It can been seen that the parameter
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Table 5: Estimation of the APARCH model through constrained likelihood

Data Standard Likelihood Constrained Likelihood Kurtosis
Estimates Estimates

α̂0 α̂ β̂ α̂0 α̂1 β̂ κ̂emp κ̂theo κ̂c,theo

S&P500 1e−6 0.0832 0.9061 10e−7 0.0841 0.9079 26.12 8.58 26.70

France 3e−6 0.0870 0.8991 3e−6 0.0979 0.8877 9.08 6.64 9.10

Germany 3e−6 0.0906 0.8913 3e−6 0.0983 0.8886 11.58 5.53 11.64

Greece 6e−6 0.1049 0.8816 6e−6 0.0974 0.8866 7.46 16.92 7.46

Italy 3e−6 0.0929 0.8952 4e−6 0.0970 0.8877 7.84 11.09 7.88

Spain 3e−6 0.0835 0.9025 3e−6 0.0867 0.9019 8.92 6.02 8.90

Switzerland 3e−6 0.0858 0.8901 4e−6 0.1198 0.8565 7.71 4.34 7.74

UK 2e−6 0.0815 0.9030 2e−6 0.0900 0.8991 11.89 5.28 11.86

estimates obtained by these two methods are very close to each other. However, their
effect on accounting for the observed kurtosis is significantly different. The last part
of the table shows the empirical kurtosis (κ̂emp), the theoretical kurtosis obtained via
the estimates from standard log-likelihood method (κ̂theo) and the theoretical kurtosis
obtained via the estimates from the constrained log-likelihood method (κ̂c,theo). The
results clearly show the improvement that has been achieved in accounting for the
true tail behaviour of data. Explanation for the parameter estimates of not being
significantly apart for the two methods, while the kurtoses being noticeably different,
lies in the sensitivity of the tail heaviness near the boundary of the model existence
region.

7 Conclusions

Our detailed study of the extended APARCH model allows us to quantify the effect
of the model parameters on the dependence and the distributional tails. In particular,
we obtain conditions for the existence of the model as well as an explicit formula for
the correlation, moments, and leverage effect. From these explicit conditions, one can
determine the range of the parameters for which particular characteristics, such as
kurtosis, leverage correlation or autocorrelation, are formally meaningful. By using
the derived results, we have been able, firstly, to analyze importance of the parameters
and, secondly, to implement the constrained likelihood method of data fitting that
allows us to preserve accurately the selected ‘stylized facts’.

Additionally, we have assessed the role of the power parameter δ. We show that the
obtained formulas are particularly useful for the case of δ = 1 and δ = 2, when they
allow for evaluation of important theoretical characteristics of the model. For other
values of δ, they yield explicit results only for the δ powers of returns and volatility.
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Consequently, the effect of δ parameter is difficult to assess because the effect seen for
the δ powers may differ significantly from that for the actual returns. For example,
the presented Monte Carlo studies show that the dependence in the actual returns as
measured by the correlation coefficient can be at the level 0.6 while for the δ power the
correlation is nearly one, when δ approaches the value of two.

In the literature, it was argued that the power parameter seem to play a similar role
in controlling the tails of the distribution as the power in the Box-Cox transformation.
We did not found any conclusive evidence of this and the effect on the tails seem to be
rather moderate. However, the parameter δ does seem to play a dual role as it affects
both the kurtosis and autocorrelation of ρt. Based our findings, we recommend limiting
the model to two natural values of δ: one and two, and using our extended model
with the additional parameter λ to control the time dependence in the volatility. For
practical reasons, this model seems to be equally flexible in accounting for the features
in the data, while analytically and numerically it is more trackable and easier to study.
This was also demonstrated in our analysis of empirical data by showing that both the
parameters and the kurtoses are not greatly affected by simply setting δ to the fixed
value of either one or two.

We considered two conditionally Gaussian likelihood-based methods of evaluation.
The first one is the standard maximum (conditional) likelihood. The second method
additionally takes into account empirical characteristics of the data such as sample
kurtosis and leverage to constrain the parameter space over which the likelihood is
maximized. Both the methods seem to perform well for data simulated from the model
but the constrained method may prove beneficial in practice. More detailed statistical
analysis of the method and of effects of the choice of constraints is needed.

The obtained results on the APARCH model provide concrete technical tools both
for further theoretical studies and for utilization of the model to investigate financial
time series. Our studies demonstrate the importance of careful theoretical investigation
of the model in order to draw accurate conclusions about its ability to account for
features and the so-called ‘stylized facts’ observed in the real data.

Appendix

Recurrent formula for moments of λt

To evaluate moments of the model, we use the integer moments of λt defined by

λt = α
[
(1− θ)δe+δt + (1 + θ)δe−δt

]
+ β. (35)

Our formula involves e(p) = Ee+pt = Ee−pt given in the following

e(p) =
2(p−1)/2
√

2 π

∫ ∞
0

x(p−1)/2e−xdx =
2p/2−1√

π
Γ

(
p+ 1

2

)
. (36)

We formulate this as a lemma and skip the proof which is straightforward.
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Lemma 1. The integer valued moments mk = E(λkt ) of λt can obtained from the
following recurrent relation

mk =
k∑
r=0

(
k

r

)
αr
(
(1− θ)rδ + (1 + θ)rδ

)
e(rδ)βk−r.

Corollary 1. Let m1 and m2 be the first and second moment of λt. Then

m1 =Γ

(
δ + 1

2

)
α
[
(1− θ)δ + (1 + θ)δ

]
2δ/2−1

√
π

+ β,

m2 =
2δ−1α2

√
π

(
(1− θ)2δ + (1 + θ)2δ

)
Γ

(
δ +

1

2

)
+

+
2δ/2αβ√

π

(
(1− θ)δ + (1 + θ)δ

)
Γ

(
δ + 1

2

)
+ β2.

Moreover, variance σ2 of λt is given as

σ2 =
2δ−1α2

π
Γ2

(
δ + 1

2

)((√
π

Γ
(
δ + 1

2

)
Γ2
(
δ+1
2

) − 1

2

)(
(1− θ)2δ + (1 + θ)2δ

)
−
(
1− θ2

)δ)

Stationarity condition for the volatility model

We provide with the conditions for the existence of a stationary solution to the following
series, which also satisfies the recurrence relation (3):

ρδt = α0

(
λ+

∞∑
k=1

λt−1 · · ·λt−k

)
. (37)

We consider convergence of the above series in the mean-square sense and, more
generally, in Lq-sense, where q > 0 and Lq is the space of random variables with the
finite q moment. It is well known that the Lq-spaces are Banach spaces and thus the
absolute convergence of the series implies its convergence in the Lq-norm. We note
that by proving the Lq convergence for ρδt we show that ρt belongs to Lp space with
p = qδ. The absolute convergence means that

∞∑
k=1

(E(λt−1 · · ·λt−k)q)1/q <∞

and since E(λt−1 · · ·λt−k)q = mk
q , where mq = Eλqt , the condition for convergence

reduces to mq < 1. By Hölder’s inequality, we note that if 0 < p < q, then mp < 1 is
less restrictive than mq < 1.

Note that by the triangle inequality for the q-norm

(E(λqt ))
1
q ≤ α

(
(1− θ)δ + (1 + θ)δ

)
e

1
q (p) + 2β.

From this observation we obtain immediately the following result.
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Proposition 2. A sufficient condition for existence of the strictly stationary solution
ρt in (1) such that it belongs to Lp is given by the inequality

α
(
(1− θ)δ + (1 + θ)δ

)
e

1
q (p) + 2β < 1, (38)

where q = p/δ and α, β, δ and θ are parameters in the model given in (1), while m(p)
is given in (36). We note that for a symmetric case (θ = 0) we obtain simply

α e
1
q (p) + β <

1

2
. (39)

For the important special case of q = 1, we have the explicit value for E(λt)
q given

in Corollary 1. This allows to obtain the sufficient and necessary condition for the
absolute convergence of the series defining ρδt in the Lp-norm. Namely, we have the
followng result.

Proposition 3. A sufficient and necessary condition for the existence of a strictly
stationary solution ρt to (1) that belongs to Lδ (in the absolute convergence of the
series) is given by the inequality for the parameters α > 0, β ∈ [0, 1], and δ > 0:

(1− θ)δ + (1 + θ)δ <
√
π

1− β
α

21−δ/2

Γ
(
δ+1
2

) . (40)

We also note two important special cases. Firstly, δ = 1 yields the condition that does
not depend on θ:

1 <

√
π

2

1− β
α

. (41)

Secondly, the case of δ = 2 yields

1 + θ2 <
1− β
α

. (42)

Similarly, we can obtain a stronger sufficient and necessary condition for the case
q = 2, for which we have also exact value for the moment in Corollary 1.

Proposition 4. A sufficient and necessary condition for the existence of a strictly
stationary solution ρt to (1) that belongs to L2δ (in the absolute convergence of the
series) is given by the inequality

2δ/2−1Γ

(
δ +

1

2

)
α
(
(1− θ)2δ + (1 + θ)2δ

)
+ Γ

(
δ + 1

2

)
β
(
(1− θ)δ + (1 + θ)δ

)
<

<

√
π

2δ
1− β2

α
. (43)
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We note two important special cases. Firstly, δ = 1 yields the condition

α
(
1 + θ2

)
+

23/2

√
π
β <

1− β2

α
(44)

Secondly, the case of δ = 2 yields

3α(1 + 6θ2 + θ4) + 2β(1 + θ2) <
1− β2

α
. (45)

In our estimation strategies, we have emphasized the importance to limit the range
of parameters so appropriate moments (the kurtosis, for example) exist. It is clear
that the nthe moment of yt exists whenever the nthe moment of ρt is finite. The
fourth moment is needed to capture tails through kurtosis. For δ = 1, we can use
Proposition 2 with p = 4 that leads to

2α
4

√
3

2
+ 2β < 1. (46)

However, in order to have flexibility in modeling kurtosis and thus tails of the data,
we provide a stronger result for this case that is based on exact formula for the fourth
moment given in (18) to obtain a lengthy but elementary sufficient condition.

Proposition 5. For the case δ = 1, volatility ρt exists in the L4 sense if

β4 + 4αβ3

√
2

π
+ 6α2β2(1 + θ2) + 8α3β(1 + 3θ2)

√
2

π
+ 3α4(1 + 6θ2 + θ4) ≤ 1.

On the other hand, for δ = 2 one can use the sufficient condition for finite kurtosis
given in (45) listed in Proposition 4.

For the leverage effect, restrictions on the parameters depend on what measure of
the leverage is considered. This was discussed in Subsection 4.2. There for δ = 1, two
convenient characteristics were explicitly evaluated: r(ρt, εt−1) and r(ρ2t , εt−1). They
require only the second and third moment of ρt, respectively. Thus the condition fol-
lowing from the existence of kurtosis implies existence of both leverage characteristics.
For δ = 2, the convenient characteristics are r(ρ2t , r

2
t−1) and r(ρ4t , r

2
t−1). For the first one

the existence of the kurtosis suffices, while for the second the sixth moment is needed.
For the latter one can write the parameter restriction using Proposition 2.

Moments of ρt

Here we collect some results on the moments of ρt that are used throughout the pa-
per. First, by the power of a sum algebraic formula we have a relation between these

moments and moments of the series L =
∞∑
k=1

λ−1 . . . λt.
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Proposition 6. We have

E(ρkδt ) = αk0

k∑
r=0

(
k

r

)
λrMk−r,

where Mk is the k-th moment of the series L.

For computing moments explicitely in terms of the actual parameters of the model
one can utilize the following lemma together with Lemma 1.

Lemma 2. Let mk be the k-th moment of λt. Then

M1 = p1,

M2 = p2(1 + 2p1),

M3 = p3

(
1 + 3(p1 + p2) + 6p1p2

)
,

M4 = p4

(
1 + 4(p1 + p3) + 6p2 + 12(p1p2 + p1p3 + p2p3) + 24p1p2p3

)
,

where pk = mk/(1−mk).

Proof. The proof of the first and second moments can be seen from the previous results.
For the sake of brevity, we just present the fourth moment argument – the third
moment can be obtained in a similar fashion. We note that after some combinatorics
and algebra, the fourth moment can be simplified as

L4 =
∞∑

kjlm=1

(λ−1 . . . λ−k) (λ−1 . . . λ−j) (λ−1 . . . λ−l) (λ−1 . . . λ−m) =
∞∑
i=1

(λ−1 . . . λ−i)
4 Li,

where

Li = 1 + 4
∞∑
m=1

λ3−i−1 . . . λ
3
−i−m + 4

∞∑
m=1

λ−i−1 . . . λ−i−m + 6
∞∑
m=1

λ2−i−1 . . . λ
2
−i−m

+ 12

( ∞∑
m=1

λ2−i−1 . . . λ
2
−i−m

∞∑
n=1

λ−i−m−1 . . . λ−i−m−n

+
∞∑
m=1

λ3−i−1 . . . λ
3
−i−m

∞∑
n=1

λ−i−m−1 . . . λ−i−m−n

+
∞∑
m=1

λ3−i−1 . . . λ
3
−i−m

∞∑
n=1

λ2−i−m−1 . . . λ
2
−i−m−n

)
+ 24

∞∑
m=1

λ3−i−1 . . . λ
3
−i−m

∞∑
n=1

λ2−i−m−1 . . . λ
2
−i−m−n

∞∑
l=1

λ−i−m−n−1 . . . λ−i−m−n−l
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Applying the expectations we get,

L4 =
∞∑
i=1

mi
4

(
1 + 4

∞∑
m=1

mm
3 + 4

∞∑
m=1

mm
1 + 6

∞∑
m=1

mm
2 + 12

( ∞∑
m=1

mm
2

∞∑
n=1

mn
1

+
∞∑
m=1

mm
3

∞∑
n=1

m1 +
∞∑
m=1

mm
3

∞∑
n=1

mn
2

)
+ 24

( ∞∑
m=1

mm
3

∞∑
n=1

mn
2

∞∑
l=1

ml
1

))

=
m4

1−m4

[
1 + 4

(
m3

1−m3

+
m1

1−m1

)
+ 6

m2

1−m2

+ 12

(
m1

1−m1

m2

1−m2

+
m1

1−m1

m3

1−m3

+
m2

1−m2

m3

1−m3

)
+ 24

m1

1−m1

m2

1−m2

m3

1−m3

]
.

Autocorrelation of volatility and heteroskedastic innovations

It is important for both theoretical and practical considerations to have insight into
time dependence in our volatility model ρt as well as in the conditionally heteroskedastic
(CH) innovations εt = ρtet. The explicit formulas for the correlations of these two
process are not trackable for arbitrary δ. However one can get relatively simple formulas
for autocorrelations of ρδt and εδt . Some results on the autocorrelation of εt for the
Gaussian innovation can be found in [11]. Our derivation here are more general since
they cover our extended scale-location model (2), including non-Gaussian innovations.
Moreover, we give the autocorrelation of the powers of volatility ρt.

Proposition 7. Let random variables λi’s in (2) be iid such that σ2 +m2 < 1, where
m and σ2 are their mean and variance, respectively. Then for t ≥ 0 the correlation of
ρδt is given by r(ρδt , ρ

δ
0) = mt.

Proof. It is enough to consider the case α0 = 1 for which we have

Cov(ρδt , ρ
δ
0) =Cov

(
∞∑
k=1

λt−1 · · ·λt−k,
∞∑
k=1

λ−1 · · ·λ−k

)

=Cov

(
t∑

k=1

λt−1 · · ·λt−k +
∞∑

k=t+1

λt−1 · · ·λt−k,
∞∑
k=1

λ−1 · · ·λ−k

)

=Cov

(
t∑

k=1

λt−1 · · ·λt−k,
∞∑
k=1

λ−1 · · ·λ−k

)
+

+ Cov

(
∞∑

k=t+1

λt−1 · · ·λt−k,
∞∑
k=1

λ−1 · · ·λ−k

)
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=E (λt−1 · · ·λ0) Var

(
∞∑
k=1

λ−1 · · ·λ−k

)
= mt Var(ρδt ),

where the last two equations are due to independence between λi’s.

We can also give the correlation structure for the δ power of the absolute value of
the innovations εt = ρtet in APARCH models with unspecified noise et.

Proposition 8. Let random variables λi’s be as in (2). By m and σ2 we denote
their mean and variance, respectively. Additionally we assume that λt is a non-random
function of et, where et are iid random variables. Denote γδ = Cov(λ0, |e0|δ) and
νδ = E(|e0|δ). Then the autocorrelation of |εt|δ = ρδt |et|

δ is given

r(|εt|δ , |ε0|δ) =
(1−m2) γδ + σ2m νδ

σ2 ν2δ + (λ+m(1− λ))2 (1− σ2 −m2) (ν2δ − ν2δ )
νδm

t−1,

and

Var
(
|εt|δ

)
=

(
α0

1−m

)2
σ2 ν2δ + (λ+m(1− λ))2 (1− σ2 −m2) (ν2δ − ν2δ )

1− σ2 −m2
.

Proof. Let us start with computing variance of |εt|δ. By independence of ρ0 and e0 we
have

Var(ρδ0|e0|δ) = Eρ2δ0 E|e0|2δ −
(
Eρδ0
)2 (

E|e0|δ
)2

= Var
(
ρδ0
)
ν2δ + (ν2δ − ν2δ )

(
Eρδ0
)2

=

(
α0

1−m

)2
σ2 ν2δ + (λ+m(1− λ))2 (1− σ2 −m2) (ν2δ − ν2δ )

1− σ2 −m2
.

To compute autocovariance note that for t ≥ 1

Cov(|εt|δ , |ε0|δ) =Cov(ρδt |et|δ, ρδ0|e0|δ)

=E
(
|et|δ

)
Cov

(
ρδt , ρ

δ
0|e0|δ

)
=νδ

(
Cov(ρδt , ρ

δ
0ẽδ) + νδCov(ρδt , ρ

δ
0)
)
,

where ẽδ = |e0|δ − νδ. From Proposition 7:

Cov(ρδt , ρ
δ
0) = Var(ρδ0) m

t

=

(
α0

1−m

)2
σ2

1− σ2 −m2
mt
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Note that for t ≥ 1 we can write

∞∑
k=1

λt−1 · · ·λt−k =
t∑

k=1

λt−1 · · ·λt−k + λt−1 . . . λ0

(
1 +

∞∑
j=1

λ−1 . . . λ−j

)
,

with the first term be independent of both ẽδ and ρ0. Thus we have for t ≥ 1:

Cov(ρδt , ρ
δ
0ẽδ) =α2

0 Cov

(
∞∑
k=1

λt−1 · · ·λt−k,

(
1 +

∞∑
k=1

λ−1 · · ·λ−k

)
ẽδ

)

= α2
0 Cov

(
λt−1 . . . λ0

(
1 +

∞∑
k=1

λ−1 · · ·λ−k

)
,
∞∑
k=1

λ−1 · · ·λ−kẽδ

)

+ α2
0 Cov

(
λt−1 . . . λ0

(
1 +

∞∑
k=1

λ−1 · · ·λ−k

)
, ẽδ

)

= α2
0m

t−1 Cov

(
λ0

(
1 +

∞∑
k=1

λ−1 · · ·λ−k

)
,
∞∑
k=1

λ−1 · · ·λ−kẽδ

)

+ α2
0m

t−1 Cov

(
λ0

(
1 +

∞∑
k=1

λ−1 · · ·λ−k

)
, ẽδ

)

= α2
0m

t−1γδ

E

(
∞∑
k=1

λ−1 · · ·λ−k

)2

+ E

(
∞∑
k=1

λ−1 · · ·λ−k

)
+ α2

0m
t−1

(
Cov (λ0, ẽδ) + Cov

(
λ0

∞∑
k=1

λ−1 · · ·λ−k, ẽδ

))

= α2
0m

t−1γδ

(
Var

(
∞∑
k=1

λ−1 · · ·λ−k

)
+

m

1−m

(
1 +

m

1−m

))
+

+
α2
0m

t−1γδ
1−m

=

(
α0

1−m

)2

mt−1γδ

(
σ2

1− σ2 −m2
+m

)
=

α2
0

(1−m)2
(1−m2)

1− σ2 −m2
γδ m

t−1.

Thus combining the two results we obtain the formula for the autocovariance function

Cov(|εt|δ , |ε0|δ) =

(
α0

1−m

)2
(1−m2) γδ + σ2mνδ

1− σ2 −m2
νδm

t−1.
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Corollary 2. Let us assume that e0 has a symmetric distribution around zero. Then

γδ =
α

2

(
(1 + θ)δ + (1− θ)δ

) (
ν2δ − ν2δ

)
and

m =
α

2

(
(1 + θ)δ + (1− θ)δ

)
νδ + β,

σ2 =
α2

4

(
2ν2δ

(
(1 + θ)2δ + (1− θ)2δ

)
− ν2δ

(
(1 + θ)δ + (1− θ)δ

)2)
.

Proof. Be the assumed symmetry of e0, we have

Cov(λ0, |e0|δ) = α
(
(1 + θ)δ + (1− θ)δ

)
Cov(e+0

δ
, |e0|δ)

=
α

2

(
(1 + θ)δ + (1− θ)δ

)
Var(|e0|δ)

=
α

2

(
(1 + θ)δ + (1− θ)δ

) (
ν2δ − ν2δ

)
.

Let ρt be the time varying volatility process, yt be the returns in the APARCH model

(1) with a constant function f and the δ-powers returns be defined as rδt = y+t
δ − y−t

δ
.

Then the correlation between the δ-powers of volatility, ρδt , and lagged centered returns,

ε
(δ)
t−1, can be regarded as a measure of the leverage effect. Alternatively, one can view the

square of standard deviation (variance) as the measure of volatility, so that the leverage
effect can be described through the correlation between of ρ2δt and the lagged returns.
Denote as before γδ = Cov(λ0, |e0|δ). The explicit relations for these correlation are
given in the following result.

Proposition 9. Let us assume that the random variables et have a distribution that is
symmetric around zero. With the notation introduced above we have

r(ρδt , ε
(δ)
t−1) = α

√
ν2δ(1 + cv1

−2)
(1− θ)δ − (1 + θ)δ

2
,

r(ρ2δt , ε
(δ)
t−1) = 2r(ρδt , ε

(δ)
t−1)

cv1

cv2

(
α0 +

(
α

(1− θ)δ + (1 + θ)δ

2

ν3δ
ν2δ

+ β

)
E
(
ρ3δ0
)

E
(
ρ2δ0
)) E

(
ρδ0
)

E
(
ρ2δ0
) ,

where cv1 is the coefficient of variation for ρδ0 while cv2 is the coefficient of variation
of ρ2δ0 .

Proof. We note that because the expected value of εt−1 is zero (the symmetry of e0):

Cov(ρkδt , ε
(δ)
t−1) = Cov

((
α0 + ρδ0λ0

)k
, ρδ0

(
e+0

δ − e−0
δ
))

= E
(
ρδ0 Cov

(
(α0 + ρδ0λ0)

k, e+0
δ − e−0

δ
))
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For k = 1 and through conditioning on ρ0 that is independent of e0 and of λ0, we have

E
(
ρδ0 Cov

(
α0 + ρδ0λ0, e

+
0
δ − e−0

δ
))

= αE
(
ρ2δ0
)

Cov
(

(1− θ)δ e+0
δ

+ (1 + θ)δ e−0
δ
, e+0

δ − e−0
δ
)

= αE
(
ρ2δ0
)

E
(

(1− θ)δ e+0
2δ − (1 + θ)δ e−0

2δ
)

=
α

2
E
(
ρ2δ0
) (

(1− θ)δ − (1 + θ)δ
)
ν2δ.

The first part of the result follows if we note that

Var(ρδ0) = E(ρ2δ0 )
cv2

1

1 + cv2
1

,

Var(rδ0) = E(ρ2δ0 )ν2δ.

For k = 2, let us note that

E
(
ρδ0 Cov

((
α0 + ρδ0λ0

)2
, e+0

δ − e−0
δ
))

= α0αE
(
ρ2δ0
) (

(1− θ)δ − (1 + θ)δ
)
ν2δ+

+ E
(
ρ3δ0
)

E

((
α
(

(1− θ)δ e+0
δ

+ (1 + θ)δ e−0
δ
)

+ β
)2 (

e+0
δ − e−0

δ
))

= αν2δ

(
(1− θ)δ − (1 + θ)δ

) (
α0E

(
ρ2δ0
)

+ βE
(
ρ3δ0
))

+

+
α2

2
ν3δE

(
ρ3δ0
) (

(1− θ)2δ − (1 + θ)2δ
)

=
α

2
E
(
ρ2δ0
)
ν2δ

(
(1− θ)δ − (1 + θ)δ

)
×

×

(
2α0 +

(
2β + α

(
(1− θ)δ + (1 + θ)δ

) ν3δ
ν2δ

)
E
(
ρ3δ0
)

E
(
ρ2δ0
)) .

We also observe that √
Var (ρ2δ) =

√
Var (ρδ)

cv2

cv1

E
(
ρ2δ
)

E (ρδ)
.

This combined with the first part completes the proof.

Remark 6. The coefficients of covariation that are presented in the above result and
other moments of ρ0 can be computed explicitly in terms of the model parameters
using Proposition 6 and, in particular, Lemma 1, Lemma 2, Remark 2 and Corollary 2.
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[12] F. Javed and K. Podgórski. Leverage effect for volatility with generalized laplace
error. Economic Quality Control, 29(2):157–166, 2014.

[13] M. B. Jensen and A. Lunde. The NIG-S&ARCH model: A fat-tailed, stochas-
tic, and autoregressive conditional heteroskedastic volatility model. Econometrics
Journal, 4:167–342, 2001.

[14] E. Jondeau and M. Rockinger. Conditional volatility, skewness, and kurtosis:
existence, persistence, and comovements. Journal of Economic Dynamics and
Control, 27(10):1699–1737, 2003.

[15] B. B. Mandelbrot. The variation of certain speculative prices. Journal of Business.,
36:392–417, 1963.

44



[16] M. McKenzie and H. Mitchell. Generalized asymmetric power ARCH modelling
of exchange rate volatility. Applied Financial Economics, 12:555–564, 2002.

[17] Gabriel Perez-Quiros and Allan Timmermann. Business cycle asymmetries in stock
returns: Evidence from higher order moments and conditional densities. Journal
of Econometrics, 103:259–306, 2001.

[18] Nityananda Sarkar. Arch model with box–cox transformed dependent variable.
Stat. Prob. Lett.,, 50:365–374, 2000.

[19] N. Shephard. Statistical aspects of arch and stochastic volatility. In O.E.
Barndorff-Nielsen D.R. Cox, D.V. Hinkley, editor, Time series models. In econo-
metrics, finance and other fields, pages 1–67. Chapman & Hall, London, 1995.

[20] P. Verhoeven and M. McAleer. Fat tails and asymmetry in financial volatil-
ity models. Mathematics and Computers in Simulation, 64(3-4):351–361, 2004.
MSSANZ/IMACS 14th Biennial Confernece on Modelling and Simulation.

[21] Christina D. Wang and Per A. Mykland. The estimation of leverage effect
with high-frequency data. Journal of the American Statistical Association,
109(505):197–215, 2014.

45


	Introduction
	Scale-location extended volatility model
	Existence and stationarity conditions

	Moments and tail behavior
	Moments of volatility
	Moments of returns

	Dependence structure
	Autocorrelations
	The leverage effect

	Estimation strategies
	The likelihood method
	The constrained likelihood method

	Empirical data analysis
	Conclusions

