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Abstract. This paper introduces means for fatigue damage rates estimation us-
ing Laplace distributed multiaxial loads. The model is suitable for description of
stresses containing transients of random amplitudes and locations. Explicit for-
mulas for computing the expected value of rainflow damage index as a function
of excess kurtosis are given for correlated loads. A Laplace model is used to de-
scribe variability of forces and bending moments measured at some location on
a cultivator frame. An example of actual cultivator data is used to illustrate the
model and demonstrate the accuracy of damage index prediction.
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List of symbols

a – spectrum scale parameter (dimensionless)
β – damage exponent (dimensionless)
c = (c1, . . . ,cM) – constants combining loads into stress: 106× [m−3]

(bending moments), 106× [m−2] (forces)
D(c) = DX(c) – rainflow multiaxial damage index [mβ /s]
Dobs(c) – observed multiaxial damage index [mβ /s]
D(c) = DX(c) – expected damage index [mβ /s]
Fx,Fy,Fz – forces in the principal directions [N]
F , F−1, – Fourier transform and its inverse
g(t) – kernel for scale standardized moving averages
Γ (·) – gamma function
hr f

k (c), k = 1, . . . ,K – the rainflow cycle ranges [m]
κ , κe – kurtosis and excess kurtosis of a load (dimensionless)
Mx,My,Mz – bending moments in the principal directions [Nm]
ν – shape parameter in gamma distribution
ω – angular frequency [rad]
R = [Ri] – gamma white noise
ρ – correlation in bivariate noise [W1,W2]
σ2 – variance of the load [N2m2] or [N2]
Σ – covariance matrix of the bivariate load [N2m2] or [N2]
Sa(ω) – spectrum of bending moment load [N2m2/rad]
S(ω) – normalized spectrum of a load [rad−1]
t, T – running time, total time, respectively, [s]
X(t) = (X1(t), . . . ,XM(t)) – vector of loads: bending moments [Nm], forces [N]
Xobs(t) – observed loads: bending moments [Nm], forces [N]
X(t) – scale normalized dimensionless load
Yc(t) – stress [MPa]
W = [Wi] – white noise (independent equally distributed random

variables)
[W1,W2] – white noise in the bivariate case
Z = [Zi] – Gaussian white noise



1 Introduction

Stochastic modeling of loads is usually done with stationary Gaussian processes. Well-
developed numerical tools for computing the probabilities of interests are available, see
e.g. [1]. However, many of the environmental loads that act on for example ground
vehicles are far from being Gaussian. Nevertheless, Gaussian models are often used,
and this sometimes leads to serious underestimation of risks for fatigue.

Estimations of component durability often requires a customer or market specific
load description. One is interested in having models that are capable of describing the
correct variability of loads with a relatively small number of parameters. These models
can then be used to describe the long term loading by means of a distribution of the
parameter values, specific for a given market or encountered by specific customers.

The severity of environmental loads can be measured by means of damage indexes.
In the case when Gaussian models are used for stresses, there are many methods for
estimating the expected damage indexes from the power spectrum density, psd, see
eg. [2] for a review of different approaches. Much less is known for loads containing
transients. In this paper, explicit formulas for computing expected value of rainflow
damage index as a function of excess kurtosis will be given, for a special case of equally
distributed although correlated Laplace loads.

A Gaussian model can be seen as the result of smoothing Gaussian white noise, i.e
a sequence of independent standard Gaussian variables, by a suitable kernel. When a
cultivator is operating in light sandy soils where stones are frequent, the vibrations have
a larger spread of variation that can not be modeled by solely Gaussian processes. The
Laplace white noise is used to model the larger spread by letting Gaussian white noise
have variable variance. This is achieved by multiplying the Gaussian variables by the
square root of gamma distributed factors. The factors have mean value one, and hence,
loads derived by smoothing Gaussian or Laplace noise with the same kernel will have

Fig. 1. Measured forces and bending moments at one location of cultivator frame



identical power spectrum densities (psd). However, in contrast to the Gaussian process,
the Laplace process will have visible transients at times when factors take large values.

In this paper, we present models for loads, which are forces and bending moments,
measured at some point of a stiff mechanical structure.For example, the method is used
to asses the durability of welds in a stiff frame of a cultivator. Hence accurate description
of stress variability at welds are needed. For a stiff frame, stresses are linear combina-
tions of environmental loads. This property makes modeling using Gaussian processes
very convenient, since linear combinations of Gaussian loads are Gaussian processes as
well and any probability of interest can in principle be computed when the psd of the
loads are available.

In Figure 1, six loads, measured on one tine, are presented. In the figure one can
see that transients appearing in different forces and bending moments are often close
in time. Since stress is a linear combination of the loads this may result in very large
stresses which may greatly amplify the damage accumulation rate. The proposed mul-
tiaxial Laplace model for load will have the property of high frequency of simultaneous
occurrences of large transients. Table 1 shows statistics for the dominating signals.

Load St. deviation Kurtosis Parameter a in (3) Damage index Dobs(1)

Fy 0.72 11.4 0.012 369
Fz 0.77 9.4 0.009 518
Mx 0.39 20.1 0.015 56

Table 1. Statistics of loads presented in Figure 1.

2 Fatigue damage

In this paper, multivariate random processes X(t) = (X1(t), . . . ,XM(t)) are used to rep-
resent multi-axial loads, being forces and bending moments acting on a structure at
different locations. For a stiff structure, stresses, used to predict fatigue damage, are
linear combinations of forces and moments. For this reason, it is important to model the
multi-axial load so that a stress, i.e. a linear combination of loads

Yc(t) =
M

∑
r=1

crXr(t), t ∈ [0,T ], (1)

yields accurate fatigue accumulation. In the examples in this paper we focus on the
situation where the sum above is over forces and moments measured at one position. If
there are forces and moments in several positions, the sum should be over all of them.
Since the vector c=(c1, . . . ,cM) may vary between locations in a structure experiencing
the same loads X(t) one requires good accuracy for any choice of constants c. These are
typically evaluated using finite elements method and depend on geometry and material
properties and transfer external loads to stresses at a point in the structure of interest.
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Fig. 2. Left: Logarithms of empirical psd of Fz(t) (thin irregular line) and fitted exponential psd
(thick straight line). Right: Plot (a) - one minute of one measured force on a cultivator frame.
Plot (b) - one minute of simulated LMA model of the force. Plot (c) - zoomed plot (a). Plot (d)
zoomed plot (b).

The fatigue damage accumulated in the material is expressed using a fatigue (damage)
index defined by means of the rainflow method which is computed in the following
two steps. First, rainflow ranges hr f

k (c), k = 1, . . . ,K, in Yc(t) are found. Here K is the
number of rainflow cycles which equals the number of local maxima. Then the rainflow
damage is computed according to Palmgren-Miner rule [3], [4], viz.

D(c) =
1
T

K

∑
k=1

(hr f
k (c))β , (2)

see also [5] for details of this approach. Various choices of the damage exponent β

can be considered. The value is an empirical constant estimated by means of regression
from experiments involving constant amplitude loads. In this paper β = 3, which is the
standard value for the crack growth process in a welded frame. The index D(c) is often
called multi-axial damage index and was introduced in [6].

The proposed model for the multi-axial loads X(t) is validated by using measured
loads and comparing the ensuing damage index with the expected value of the damage
index following from the model fitted to the data. In this, first the model parameters are
estimated using measured loads Xobs(t). Then the expected theoretical damage index
D(c) = E[D(c)] is estimated by means of Monte Carlo (MC) method and compared
with Dobs(c) for a suitably chosen vector of factors c, where Dobs(c) is computed by
means of (2) with rainflow ranges obtained in the observed records. In our notation,
we do not explicitly indicate that the expected damage index D(c) depends also on the
properties and defining parameters of the process X. In what follows, whenever this
dependence needs to be exhibited, we write DX(c) and DX(c) for the damage and the
expected damage, respectively.

3 Uniaxial load

Power spectral density (psd) is an important characteristics of stationary stress (load).
For Gaussian stress the fatigue damage index is a function of psd alone. Even for
Laplace processes, psd remains an important characteristic. However, it in general does



not determine the damage index completely. In this paper, a very simple, yet often used,
reparametrization of the model for psd is used

Sa(ω) = σ
2 aS(aω) a > 0, (3)

where
∫

S(ω)dω = 1, σ2 is the variance of the load, while a is a spectrum scale param-
eter. A load with psd given in (3) can be written as

Xa(t) = σ X(t/a), (4)

where X(t) = X1(t)/σ , having psd S(ω), is a scale normalized load. The psd (3) and
process (4), where X(t) is Laplace moving average, have found applications, for ex-
ample, in road roughness classifications, where a is the velocity a vehicle travels while
S(ω) depends on the linear filter that has been used to model responses and the spectral
properties of a road profile, see [7].

The proposed model is applicable to an arbirtrary form of spectrum S(ω). For mod-
eling cultivator loads, the following psd proves to be useful

S(ω) = 0.5exp(−|ω|), (5)

see Figure 2, left plot, where the observed psd of the force Fz(t) is compared with the
exponential psd. In the right plot a simulation using the Laplace model for the force
is presented. Although not all visual properties of Fz(t) can be found in the simulated
signal, the damage index of the measured load is very close to the expected damage
index of the Laplace model, see Table 2 for values of the two indexes.

DAMAGE INDEX

Data Fy Fz Mx

observed 369 518 56
Laplace model 335 497 56
Gaussian model 151 245 19

Table 2. Observed damage index for loads Fy, Fz, Mx compared with the expected damage indexes
for Laplacian and Gaussian models. The loads have psd (5) defined by parameters (aFy,aFz,aMx)
equal to (0.012,0.09,0.015) and kurtosis and variances given in Table 1

There are many ways to generate a random process X having psd S(ω). The most
direct way is by smoothing white noise W (t), with kernel g(t) = F−1(

√
2πS(ω)),

where F is the Fourier transform. For the particular case of exponential spectrum this
leads to

g(t) =
2/
√

π

1+4t2 . (6)

Approximately, using discretization, a simulated load X = [X(ti)], where ti+1− ti = dt,
is the convolution of a vector g = [g(ti)] with sampled white noise W = [Wi] multiplied
by
√

dt, viz.
X =
√

dt ·g∗W, (7)
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Fig. 3. Illustration of the evaluation of the load having psd (5). Dashed line in plots (b) are Gaus-
sian load while solid line in the plot (b) is the Laplace load. Left: Gaussian model; Right: Laplace
model with kurtosis κ = 8.

where “∗” is the convolution of two vectors. Here Wi are independent equally distributed
random variables having mean zero and variance one.

3.1 Gaussian model

A Gaussian load is obtained by using Gaussian white noise, i.e. Wi = Zi where Zi are
standard Gaussian variables. A thus defined Gaussian load X has approximately the psd
given in (5), with mean zero, variance one and kurtosis κ = E[X4

i ] = 3.
In Figure 3, left plot, an illustration of the construction of the Gaussian load using

the model given in Eq. (7) is presented. In plot (a) a sampled white noise W is plotted
while in plot (b) the Gaussian load X is given. The plots (c) and (d) illustrate how the
values of loads, marked as dots in plot (b), are evaluated. These are derived by first
extracting the noise around the locations and then multiplying it by the kernel g, which
gives the two signals presented in plots (d). Secondly the Gaussian load is obtained by
calculating the total sum of the signals from plot (d).

3.2 Laplace model

A Laplacian load is obtained using (7) with Wi being Laplace distributed variables, see
[8] for the properties of the Laplace distribution. The Laplace noise can be constructed
using Gaussian noise Zi and multiplying Zi by the square root of a gamma distributed
random factor Ri, viz. Wi =

√
Ri Zi. We consider the gamma probability density function

parametrized by k so that

f (x) =
kkx(k−1)

Γ (k)
exp(−kx), k > 0, x≥ 0 (8)

where Γ (k) is the gamma function Γ (k) =
∫

∞

0 tk−1e−tdt. The parameters in the distri-
bution of Ri are defined by means of two conditions; that the mean value of Ri has to be



Fig. 4. Left: Standardized force Fy compared with Gaussian model having psd (5). Right: The
force Fy compared with Laplace model having psd (5) and kurtosis κ = 11.

one and that kurtosis κ of the Laplace model has to agree with kurtosis of the observed
load. These two conditions leads to the following parameter values

k =
dt
ν
, where ν = 0.42(κ−3)a, (9)

see [9] for more detailed presentation. Note that as κ tends to 3 the Laplace model
approaches the Gaussian model.

In Figure 3, right plot, illustration of the construction of the Laplace load, defined
in (7) is given. In plot (a) gamma distributed factors Ri are shown while in plot (b) the
Gaussian load X (dashed line) is compared with the Laplace load computed using (7)
and noise Wi =

√
RiZi. The values of Zi are given in left plot figure (a). The plots (c) and

(d) illustrate how the values of the Laplace load, marked as dots in plot (b), are evalu-
ated. These are derived by extracting the factors Ri around the locations, taking square
root of the factors, multiplying those pointwise with the Gaussian noise presented in
left plot figure (c) and finally the resulting Laplace noises are multiplied by the kernel
g. These operations gave two signals presented in figure (d). Finally the Laplace loads
were obtained by summing the signals.

3.3 Damage index

The expected damage index (10) for the Laplace load having psd (5) has been derived
in [9] by means of (4) and regression fit to MC simulations of damages for different
values of kurtosis κ . The multiplicative structure of (10) makes it very convenient for
studying uncertainties in fatigue life predictions, viz.

DX (c)≈ a−1 (c ·σ)3 · (4.84+0.025κe +3.486κ
1/2
e −2.158κ

1/3
e ), (10)

where κe = κ−3 is the excess kurtosis. For Gaussian load κe = 0.
For illustration of applicability of the formula (10) we consider the simple case

where we only have the force Fy presented in Figure 1 (c = 1). The force is normalized
to have zero mean and variance one and is presented in Figure 4 in blue. The observed
damage index is Dobs(1) = 989. The fitted model gives the estimated parameter a =
0.012 and kurtosis κ = 11.4. Evaluating (10) the expected damage index is D(1) =
897. The value is very close to the observed damage index. Using the Gaussian model
having κ = 3 and the same spectral parameter a = 0.012 the approximation (10) gives



Fig. 5. Left: Simulation of the Laplace model for standardized loads (Fy,Fz,Mx), having mean
zero and variance one. The loads have individual power spectrums (5) defined by parameters
(aFy,aFz,aMx) equal to (0.012,0.009,0.015). The kurtosis of the loads are (κFy,κFz,κMx) equal
to (11.4,9.4,20.1). The loads are correlated. Correlation between Mx and Fy is 0.9; Mx and Fz is
0.3; correlation Fy and Fz is 0.5.

D(1) = 403. In this case it is clear that the Gaussian model severely underestimates the
damage index.

In Figure 4 the Gaussian and Laplacian simulations are compared with the observed
force Fy. The red line in the left plot is the simulation using the Gaussian model and the
red line in the right plot is the simulation using the Laplacian model of the force. The
blue line is the observed load in both plots. One can see that the transients observed in
the load are missing in the simulation using the Gaussian model while these are present
when using the Laplace model.

For completeness we list the expected damage indexes, given by (10), for loads
presented in Table 1. The results are presented in Table 2. One can see that the Laplace
model have expected damage indexes close to the observed ones while the Gaussian
model severely underestimates the damages.

4 Multiaxial load

Independent Laplace loads can be simulated by means of the methods given in Sec-
tion 3.2, using independent Gaussian noises and gamma factors. However, as men-
tioned before, an important property of the measured loads is that the transients tend
to occur simultaneously in the loads. This is an important property that the multiaxial
model of loads should possess.(Obviously the independent Laplace loads are lacking
the property.) In [10] the general multiaxial Laplace model was given. An example of
multiaxially simulated forces Fy,Fz and moment Mx can bee seen in Figure 5.

The general construction of multiaxial Laplace loads is more complex than the uni-
axial loads and hence here we shall limits ourself to the simplest special case of bi-axial
Laplace loads (X1(t),X2(t)). A further restriction is that both loads have the same psd
(5) and have equal kurtosis. Under the assumed limitations the Laplace loads will be
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Fig. 6. Illustration of simulation of standardized loads (Fy,Fz) having psd (5) with a = 0.01,
kurtosis κ = 10 variance one and mean zero. The loads have correlation ρ = 0.5. Figure (a)
shows sequence of factors Ri. Figure (b) presents two Gaussian white noise sequences having
correlation 0.5. Figure (c) shows the kernel g. Figure (d) shows the simulated correlated Laplace
loads.

generated using kernel g given in (6) convoluted with two correlated series of Laplace
noises, see (7). In order to assure that the transients will often occur simultaneously
in the loads, a common sequence of factors Ri is used in construction of the noises.
Two correlated Gaussian noises are generated. Then the Laplace noises are derived by
scaling the correlated Gaussian white noises by the square root of the common factors
Ri. An example of the construction of correlated Laplace noises is given in Figure 6. In
the figure plot (a) shows the common factors. The correlated series of Gaussian white
noises are shown in plot (b). The kernel g can be found in plot (c) and finally the two
Laplace loads are shown in plot (d).

For completion an algorithm to construct correlated Laplace white noise sequences
is given. Let Z1 and Z2 be two independent Gaussian white noise sequences. The cor-
related Laplace white noise sequences W1 and W2 are defined as follows

W1i =
√

Ri (a1 Z1i +a2 Z2i) , W2i =
√

Ri (a2 Z1i +a1 Z2i) , (11)

where

a1 =
(√

1+ρ +
√

1−ρ

)
/2, a2 =

(√
1+ρ−

√
1−ρ

)
/2 (12)

and ρ is correlation between the loads, see [10] for more details.
In [10] it is also proved that for Laplace loads with common parameters a and kur-

tosis κ the expected damage index for damage exponent k = 3 can be approximated as
follows
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[cos(θ) sin(θ)]. Dashed line: average D(c) (simulated) using individual parameters for the 18
multiaxial measured loads. Thin solid line: the approximation D(c), average kurtosis, average
psd were and average correlation between the measured loads used. The variances of the forces
was also estimated by the average values in the eighteen measured loads.

D(c)≈ a−1 · (cΣ cT )3/2(4.84+0.025κe +3.486κ
1/2
e −2.158κ

1/3
e ), (13)

where Σ is the covariance matrix of the loads, i.e. Σ has the variances of the loads on
the diagonal and covariances between the loads out of the diagonal.

5 Example

In this section the accuracy of the formula (13) for the expected damage index is
investigated. We consider the forces Fy(t), Fz(t). The constants c = [cos(θ) sin(θ)],
0≤ θ < 2π , representing all possible linear combinations, are used.

In the real world observation experiments 18 multiaxial loads were registered at the
same field but at different locations. (One of them is presented in Figure 1.) It is assumed
that the field is homogeneous and hence an average of observed damage indexes Dobs(c)
is computed and taken as the damage index for the whole field. In Figure 7 average
observed damage index Dobs(c) is shown as thick solid line.

One interesting question is whether parameter values of the Laplace model vary
in the field. In order to investigate this question the psd parameters aFy,aFz, kurto-
sis κFy,κFz and covariance matrices Σ were estimated, for each of the 18th measure-
ments. Using the 18 Laplace models the average damage index was estimated using
MC method. The resulting index is given in Figure 7 as the dashed line. Finally D(c)



was computed using (13) with average value of parameters a,κ , and matrix Σ . The
result is shown in the figure as a thin solid line. The three indexes are very close to
each other and we conclude that Laplace model with common values of parameters is
representative for the whole field.

6 Conclusions

The multivariate Laplace model proves to be useful for studying damages resulting
from multiaxial loads. It summarizes in a very small number of parameters important
features of the loads that are affecting damage. This efficiency in parameters allows for
description of customer (market) variability by means of probability distributions of the
parameters. The model is suitable for modeling loads containing transients.
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