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ABSTRACT. The spectral representation of a moving average pro-
cess obtained as a convolution of a kernel with a general noise mea-
sure is studied. A proof of the spectral theorem that yields explicit
expression for the spectral measure in terms of the noise measure
is presented. The main interest is in noise measures generated
by second order Lévy motions. For practical considerations, such
measures are easily available through independent sampling. On
the other hand spectral measures are not since their increments are
dependent, with the notable exception of the Gaussian noise case.
For this reason the issue of approximating the spectral measure by
independent increments of the noise is also addressed. For the pur-
pose of approximating the moving average process through sums
of trigonometric functions, the mean square error of discretization
of the spectral representation is assessed. For a specified accuracy,
the coefficients of approximation are explicitly given. The method
is illustrated for moving averages processes driven by Laplace mo-
tion.

Keywords: generalized Laplace distribution; moving average processes; weakly station-

ary second order processes; spectral representation

AMS Subject Classification: 60G10, 60G12

1. INTRODUCTION

Despite being one of the most fundamental results in the theory of weakly stationary
processes, the spectral representation has not been explored outside the class of Gaussian
processes. In fact, we are not aware of any explicit presentation of the spectral measure for
non-Gaussian processes. However in engineering sciences, mostly due to the efficiency of
the Fast Fourier Transform technique, spectral theory has played a central role in study-
ing random signals. The interest in the method, driven mainly by stochastic problems in
signal processing, engineering mechanics and structural engineering led to a large body of
work where transformed Gaussian models were utilized to construct new classes of weakly
stationary processes. We refer to [5] and [6] and references therein for recent develop-
ments in the area. In particular, in [6] a construction based on the spectral representation
that consists of a superposition of harmonics with uncorrelated but dependent random
amplitudes is proposed. In [5], memoryless transformations of Gaussian processes, and
transformations with memory of the Brownian and Lévy processes were introduced. The
difficulty with this method, as pointed in [7], is that the spectral density and the marginal
distribution are linked together through the underlying transformation, i.e., the spectral
density of the Gaussian process is not the same as the spectral density of the transformed
process. A different class of models constructed in [7], using the spectral representation
but with the sinusoidal frequencies being modeled as random variables, disentangled the
spectral density from the marginal distribution. However, the actual spectral representa-
tion of this model is not known as of now.

An alternative approach to constructing non-Gaussian processes is based on stochastic
integration with respect to Lévy motions. For example, a new type of processes that are
expressed as moving averages with respect to Lévy measure driven by Laplace noise, and
shorty referred to as Laplace moving average (LMA) processes are introduced and studied
in [I] and [2]. Our main goal in this paper is to provide with explicit forms of both the
spectral measure and the spectral representation for these LMA processes.
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In the first part of the paper we focus on general properties that hold for any moving
average process with respect to orthogonal stochastic measures on the real line. After we
establish notation we give a direct proof of the spectral representation for a LMA process
and with an explicit form of its spectral measure in terms of the kernel functions. Next,
we approximate the stochastic spectral measure by means of the stochastic orthogonal
measure that appears in the definition of the LMA process. This allows effective approx-
imation of vectors of independent increments of the spectral measure and therefore mean
square approximation of the original LMA process through its spectral representation.
Finally, the paper concludes by remarking how the Laplace stochastic measure can be
obtained either by independent increment property or by pure jump series representation
of Laplace motion. All these results combined together provide an effective approach
to approximate stochastic processes using decomposition to harmonics as in the spectral
representation theorem.

2. SPECTRAL REPRESENTATION OF MOVING AVERAGE PROCESSES

One of the most popular classes of weakly stationary processes are the moving averages
defined as

(1) X(t) = Jf(t +s) dA(s).

The kernel f is in L2 (R) — the Hilbert space of complex-valued square integrable functions
on the real line with inner product § f(s)g(s) ds and corresponding norm | f|2. Further A
is an orthogonal stochastic measure on the Borel sets on the real line R, denoted B(R), that
is controlled by the Lebesgue measure A so that, for each Borel set A € B(R), A(A) is in
the Hilbert space of complex-valued random variables with finite second moments on some
probability space, and Var(A(A)) = A(A). Recall that the mapping g € L*(R) — {g dA
is an isometry between L2 (R) and the closure in the mean square sense of the linear space
spanned of random variables A(A), A € B(R), that from now on is denoted by L?*(A).

Each weakly stationary process has a spectral representation, i.e. a representation of
the form

(2) X(t) = f et dZ(w)

where Z is a stochastic spectral measure. While one can obtain directly this spectral
representation from Bochner’s theorem, here for the sake of introducing notation, we
sketch the argument for the spectral representation through the Fourier transform of the
kernel in a moving average process. In certain cases, working with the Fourier transform
instead of directly with the problem is advantageous. See for example [3]|, where the
authors studied the crossings of the shot noise process with jumps by working on the
Fourier transform of the function that maps each level to its mean number of crossings.

We initiate this presentation by introducing some rather standard notation. For any
f € L*(R), define the Fourier transform by

(3) flw)= =

= % € f(S) dS,

while f is the inverse Fourier transform so that f = f and

Flo) = [ .

For any Borel set A let 14 denote its indicator function. Finally we define a continuous
operator T4 on L*(R) valid for any function ¢ € L?(R) through

(4) faxd=14-0.
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The most fundamental properties of the so defined family of operators are presented in
Appendix [A] We turn now to the spectral representation of the so-called Laplace moving
average process.

For a fixed kernel f € L?(R), we introduce now a random measure Z; that will be later
identified as the spectral measure for the moving average process . For a Borel set A,
we define

5) 24(A) = L 1(5) an(o).
Notice that the integral in is well defined since the operator ﬁA % f is in L2(]R), see
Lemma [I]in Appendix [A]

Theorem 1.  The function A — Z;(A) given by @ defines a o-additive orthogonal
stochastic measure on Borel sets. This measure is controlled by vs(A) = 2§, | f(w)]* dw.
Moreover, for each f € L*(R) we have

Var ([ azy@) = 171,
i.e. for each t € R the mapping f — Jeim dZ;(w) is an isometry from L*(R) to L*(A).

Proof. Since the mapping g € L*(R) — §gdA e L?(A) is an isometry, the orthogonality
and o-additivity of Z; both are direct consequences of Lemma [I] of Appendix [A] We also
have

Var (Z;(A)) = [La # f13 = 27[La |3,

while the isometric identity follows from

Var ( [ dzf(w)) — us(R) = 21| FI2 = |72

Let us note the following fundamental fact:

Proposition 1. For each f € L*(R) we have the equality of the following two L*(A)
elements

fﬂs) dA(s) = Z;(R).

Proof. By , for a function f in L?*(R) we have

T () = Ta - F0) = ) = £(5) = [ ") d
so that
J 1) ds) = [Tex f5) dns) = 24w,
where the last equality follows from (F)). O

We are now ready to formulate the spectral theorem for the moving average process.
We note that the presented approach to the spectral theorem is a consequence of the
properties of the Fourier transform and does not rely on less explicit argument following
from the Bochner theorem (which is not used here). This approach through explicitelly
defined stochastic spectral measure Z; allows us to write approximations to the moving
average process as discussed in Section
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Theorem 2. Let f be a function in L*(R) and Z; be defined in (@ The moving average
process given in can be represented as

X(t) = Jeim dZ(w),

where for each t € R the equality is of elements of L*(A).

Proof. To prove the theorem we shall establish an isomorphism between three Hilbert
spaces. The first one, Hx, is the space spanned by linear combinations of the random
variables X (), t € R and all their limits in the mean square sense. In Hx, we consider
the usual inner product (Y1,Y2) = E(Y1 ~72). The second space, H,,, is defined for a
fixed f € L? (R) as the space that is spanned by the non-random complex-valued functions
g such that

J|g(w)|2 dvy(w) < 0,

where vy is defined in Theorem E This forms a Hilbert space when equipped with the
inner product

(6) (g1, 2)0, = fm (©)92(@) dvs(w) = 2 f 1) g2@)| ()2 dw.

The third space, H; (for the same fixed f) contains all elements in L?(R) of the form
Ex f(s) = § e+ f(w) dw, their finite linear combinations and limits in the L?(R)-norm.
The inner product is the standard one in L*(R), see Appendix [Al We note also that

g J(s) = S+ 5),
since f(t+s) = f(t + ).

The isomorphism between Hx and H; maps X (t) to the element & * f(s) = f(t + s)
which in turn is mapped to z¢(w) = €™, to establish an isomorphism between H; and
H,,f. Note that from the properties of the Fourier transform z; € 7—[,,,f since S \ei“’t \2 dvy =
27 § | F(w)|? dw < o0.

The corresponding inner products are preserved as shown

(XW.X(M) = B(X0)-X0) =12 ft =) = frft-7) = [0 4 ) do =

=

= ZWJew(t_T)f(w)f(—w) dw = QWJeiw(t_T)f(w) (w) dw =

= (xt?:l’.T)Vfﬂ

where f(u) = f(—u), and since f is real f(—w) = A(w).
On the other hand,

(Er# f&rnf) = Jf(t+8)f(7+8)d5=f*f(t—7) = (X (1), X(7)).

These correspondences, which are one to one, can be extended to both finite linear
combinations and limits with respect to the respective norms, which shows that the spaces
Hx, Hv, and Hy are isomorphic.

For a measurable set A c R, the operator:

(7) Loxf(s) = [ e flw) do

A
is an element in Hy, while

(8) 7;(A) = ﬁA « £(5) dA(s)
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is an element in Hx. The following argument is standard but for completeness in pre-
sentation we sketch it. By Stone-Weierstrass Theorem (plus some standard arguments),
there is a sequence hi,7(w) of linear combinations of x4, (w) that is uniformly bounded for
all (k,T) by a constant M > 1 for which for any fixed T' > 0:

(9) lim [La(w) = hi (@)1 F (@) Pde = 0.

k—o0 [-T,T]
From that we can find kr that converges to infinity as T increases without bound such
that

J s =@ fertas <an | fefa

+ f A (@) = g ()2 | F(w)]2deo
[—T,T]

and the first term in the right hand side converges to zero with 7' increasing without
bound because f (w) is square integrable while the second term converges to zero because
of @ and a proper choice of k7. This shows that [4(w) is an element in Hl,f and by the
isometries the corresponding elements in H; and Hx must be the ones given in and
respectively.

Thus if a simple function h = > a;l4, approximates z; in Hl,f, then, due to the
isometry, Sh dZ; approximates both Sxt dZ¢ and X (t), implying that these last two must
be equal in Hx, and the result of the theorem follows immediately by the choice z; = e'’.

O

3. APPROXIMATION OF THE SPECTRAL MEASURE

A method to obtain the values of the spectral measure Zy becomes a fundamental
issue when one intends to approximate moving average processes. While independently
scattered measure A is typically available through independent sampling from the cor-
responding infinitely divisible distribution, Z;(A)’s are uncorrelated but not necessarily
independent and the issue of sampling is therefore non-trivial. In this section we discuss
how to approximate Z;(A) by some linear function of A(B1), ..., A(Bm) for appropriately
chosen disjoint sets Bi, ..., By. In this and the following sections, we assume that the
independently scattered measures have finite second moments, like it is the case with the
generalized Laplace measures related to Laplace motion, see [I] and Section

We start by remarking that since the spectral measures are expressed as integrals with
respect to an independently scattered measure, it is in principle possible to obtain such
approximation by discretizing the integrals. However, this would not provide with an
obvious explicit expression for the coefficients of approximation in terms of the kernel.
In this section given the kernel and accuracy of approximation we obtain explicit form
of coefficients. The method is based on the two lemmas that are placed in Appendix [B]
together with the proof of the following result.

Proposition 2. For e > 0, and kernel f there exists a grid S = (sk)ﬁith such that for

each interval A C R there is a sequence of complex numbers (i) ne_ ;s such that

1/2
M 2\ Y/

E|Z;(A) = > wA(sk, sk41] <e
k=—M

Remark 1. It is of interest, for example for computational purposes, to extract from the
proofs of Lemmas and Proposition [2] an explicit form of 7. In fact we have

>

iulek _ eiulLsk

J
e
— )¢ h—_M,... M,
Yk 1:21 (@) o

~



MOVING AVERAGES VIA SPECTRAL REPRESENTATION 7

where the intervals (uf,uf'], s; and 4, are obtained as follows. Let W = (w]-);V:th be a

grid such that

o [ o rYIND N2 2
3 f 1Flw) - wnwm+f Fw)Pdw < &,
Fi [wnwNt1]©

j==N e

where @; = (w; + wj+1)/2. Let also § be the minimum step of grid WW. Additionally let
us select 01 > 0 and K > 0 such that for every finite partition U = (ux),_"",, of [-K, K]
with diameter less than d1:

© [sinu M sinug, ’
2
(10) J ( - Z H(”kv“kJrl](u)) dr <€
o\ u u

k=—M

Further let 62 > 0 be chosen so that for each z € C with |z| < d2:

. €
(11) 1—¢€"] < YW
Finally, with this choice of K, §, 61, d2, w—n, wn+1, the grid § = (sk)ﬁith is chosen over
[-K /0, K /0] with the diameter smaller than min(d; /6, d2/ max(|w—_n|, |wn+1])). We note
that the choice of S is independent of A.

Then (uf,uf’], dependent on A, are non-empty intervals among A N (wj, w;+1], i.e. if
there is J of them, and enumerate them as (ulL, qu] and take @, = @; for l =1,...,J, see
Appendix [B] for further details.

4. SPECTRAL APPROXIMATION OF MOVING AVERAGE PROCESS

A general moving average process can be approximated in two essentially different ways.
The first one is based on its formulation as a moving average given in and involves
discretized convolution of the kernel with the increments of the random measure

M
(12) X(t)~ Xs®)E N ft+si) dis,

i=——M
where dA; = A((si, si+1]). The second one can use the spectral representation given in
and approximate the process through a sum of trigonometric functions with random
coefficients

N
(13) X(t)~ Xw(t) e Y ertaz],

j=—N

where def = Z¢((wj,wjs1]) and ©; = (wj + wjy1)/2. In general, the second method
represents weakly stationary approximation of the process and thus is non-trivial over
its entire domain, while the first one limits applicability of the representation only to a
certain compact domain. This can be seen by evaluating the mean square errors.

The first approximation has mean square error given by

M Si+1
D f £t 4 5) — F(t 4+ s0)I? ds,

i=—M vVSi

EIX() - Xs(t)? = f F(t+ 9)|? ds +
(s—nr>snm41]°

where the second term on the right hand side can be made arbitrarily small by choosing a
fine grid. However, the first term will be large whenever t is large enough in absolute value
to move the main mass of the mapping s > |f(t + s)|> beyond the interval (s_ar, sar].
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The mean square error for the second approximation is given by
(14)

E|X(t) — Xw(t))? = 27rf @) do+2r ) f

(w_NswN41]° =N Jw;

it idgt]?
—e

F (@) dw.

The first term on the right hand side is independent of ¢ and can be made small by
taking sufficiently large interval [w_n,wn]. Assuming a kernel f such that its Fourier
transform is continuous on the real line, then for M; = max,e(w;,w; 1] | f(w)]?:

Noorwisng 2 N ~ wjt1 o 2
Z J et — et | f(w)]? dw < Z max |f(w)\2f 1—e @it gy
SN Jw; j:—NWG(w-j’wj+1] w;
N Wi+l
=2 2 M; | wjt1 — wj fj cos((@; —w)t) dw
j=—N wj
Y ———
PV (wWj+1 —wj)t/2
WN 41 ~g
<2 f 1712 (w) du + € | M8, 1),
e N
where € is the absolute error of approximation of Sif; |£1? (u) du by Zf;fN M;j(wj+1—wj)
and
(15) 0= max (wjt1—wj;)/2, M(d,t) =su I—M
TN N T T ugg ut ’

We can summarize this in the following result.

Theorem 3. Let f be in L*(R) and W = (wj)jv:fN be a finite grid. Denote fyy =
I Lo ywnir) and My = maXee(w;,w;i] |f(@)|?. Let § > 0 and M(5,t) be given as in
@. Then for each t € R:

EIX () = Xw(®)” <27 (I = fwl* +2M(6,) (Ifwl” +¢))
where € is the absolute value of difference between waﬂ2 and Z;'szzv Mj(wjs1 — wj).

Although we have shown that for both approximations the mean square error can be
made arbitrarily small only over argument values in a compact set, there is a fundamen-
tal difference between the two approximations. The first one is not stationary and the
approximating process eventually dies out when the argument increases in absolute value
— the approximation holds within a compact domain but fails when the entire range of
the argument is considered. However, while the second approximation is also valid only
within a compact set if one considers the mean square error as a criterion of the closeness
between the two processes, the process is additionally stationary. Thus, while the mean
square error is not small over the entire real domain, due to the weak stationarity of the
original process and its approximation, they are close to each other in the distributional
sense over the entire domain. We conclude that the second approximation is advantageous
because it is not limited in representing random behavior of the approximated process only
to an interval.
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Remark 2. Using the above bound, the two processes X (¢) and Xy (t) can be made
arbitrarily and uniformly close in the mean square sense over [—T,T1], for a certain T', by
first chosing the end points w_x and wn41 of the grid so that ||f, fNH2 is small. By
continuity of 1 — sinz/z at zero, for a fixed T there is § > 0 such that M(J,t) is small for
all t € [T, T]. It is also clear that ¢ can be selected so small that € is small for each grid
with the diameter smaller than 24.

5. SAMPLING FROM RANDOM LAPLACE MEASURE

All the results presented in the previous sections were independent of the choice of the
second order stochastic measure with respect to which the moving average process was
defined. However, our main interest is in the non-Gaussian models called Laplace moving
averages that are obtained by filtering an asymmetric Laplace noise dL(t) through a kernel.
The asymmetric Laplace motion L(t) is best described as a gamma mean and variance
model, i.e.

(16) L(t) = ul(t) + BT (1)),

where I'(t) has a gamma distribution with shape ¢/v and scale 1, and B(¢) is Brownian
motion with parameter o. These processes have been extensively discussed in [I] and [§].
However, for reader’s convenience and completeness of presentation, we briefly discuss
methods of generating the random vector A = (A(sk,sk+1])£4:7M. This is equivalent
to providing a method of generating the values of the Laplace motion since A(a,b] =
L(b) — L(a) for an interval (a,b] < [0,00). This can be done in two different ways.

5.1. Approximation by increments. Using is probably the most straightforward
way to approximate the Laplace motion as summarized in the following algorithm.
e Pick a grid S = (s)21Y,.
e Approximate 2M +1 i.i.d. I'(sx/v, 1) random variables and store them in a vector
G.
e Approximate 2M +1i.i.d. zero mean Gaussian random variables having variances
%G, =1,...,2M + 1 and store them in a vector B.
e Compute X = -G + B.

5.2. Approximation by series expansion. An alternative method of approximating
Laplace motion is to use series representations. Here we give a short account of such an
approach. Recall, the shot-noise series expansion of a Gamma process as given in [4]

0
F(t) = Z eiV’Y]‘/TWjH(o,t](Uj)v 0 <t< T
j=1

where {W;} is a sequence of i.i.d standard exponential random variables independent of
{~;},the arrival times of a Poisson process with intensity 1, and of {U;} a sequence of
independent uniformly distributed random variables in (0,7].

By using this representation in we obtain the following series expansion of the
asymmetric Laplace motion

0 [ee]
A7) L) =p Y, e TWilon(U)) + Y. ZinJe 3 TWilon(U;), 0<t<T.
j=1 J=1
Taking a finite sum instead of the infinite series results in removing the small jumps of
the Lévy process. Therefore a simple simulation algorithm is given by:
e Pick a grid S = (s)pt',, and J the number of terms in the series .
e Approximate (2M + 1) x J i.i.d. zero mean Gaussian random variables having

variances o2 and store them in a matrix B.
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e Approximate (2M + 1) x J ii.d. standard exponential random variables and
store them in a matrix W.

e Approximate (2M + 1) x J values from a Poisson process with intensity 1 and
store them in a matrix G.

e Approximate (2M + 1) x J i.i.d. uniform on (s—as, Sm+1] random variables and
create a matrix U = [u;;] where for every j the entry w;. is 1 if s;—1 < u;. < 85
and 0 otherwise.

e Compute X = B.# y/exp(—v * G/T).* W. % U, where .x denotes coordinate
multiplication, and store them in a matrix X.

e Sum the elements of matrix X along each row to obtain an approximation of
L(sg),k=—-M,...,M + 1.

APPENDIX A. VECTOR VALUED MEASURES THROUGH FOURIER TRANSFORM

For a relatively compact set A on R and any function ¢ € L?(R) the following relation
is true o -
Ia-¢=14ax%0.
This relation can be in a certain sense extended to an arbitrary Borel set A. Namely,
there is an operator on L?(R) that can be denoted as Ia% corresponding to the bounded
operator ¢ — l[a¢. This operator can be written in the following more explicit way

(18) Taxf(s)=1a-f(s) = JA e f(w) dw.

The following facts about the above defined operator are almost immediate.

~ ~

For a real-valued function f, we have f(—w) = f(w), and thus

(19)  Toaxf(-s) :f

—A

~

e fw) dw = J € Fw) dw = * f(s).
A
For a complex-valued function f we have

(20) Tax f(s) = j

A

e f(w) dw = f €5 fw) dw = 1_4 * f(s),

—A
where the overline denotes the conjugate of a complex number.

The following lemma is a standard fact from the spectral theory for operators on Hilbert
spaces. For completeness, we include its proof.

Lemma 1. The function of a Borel set with values in the algebra of continuous operators
on LQ(]R) that is given by FEq. defines an additive orthogonal projector valued measure
that is pointwise o-additive on the entire line, i.e. for each f € L*(R) the vector valued
set function A — Tax f is o-additive.

Proof. We start with showing that for each Borel A the operator Tax is a continuous
(bounded) orthonormal projection, i.e. that

~ 2 ~
(HA*) :]IA*,
[Ea x| < 1.

The first condition follows from the following

Tasla ® f :f e T 4 * f(w) dw
A

j € Iy - f(w) dw
A

:ﬁA*f.
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We remind that L?(R) is equipped with the usual inner product defined as
(.9) = | F&)aGs

for any f and g in L?(R), and with the norm given by

IfIE = (£, f)

for any f in L?(R).
Then the second one is a direct consequence of the fact that the Fourier transform is
an isometry on L?(R):

ILa * fll2 = V2r|La - fll2 < V27| fll2 = [ f]o-

Let A, B be two disjoint Borel sets on the real line. Then T4 and I5 are projecting on
orthogonal subspaces of L?(R). Indeed, for each f e L*(R):

(21) JL % f(s) 1p * f(s) ds = 2nf}1A(w)f(w) g (W) f(w) dw = 0,

where the equality of the integrals is again a result of the isometric property.

Since the additivity of A — \]fA* follows from the additivity of the Fourier transform and
its inverse, in order to show the o - additivity, it is enough to show the continuity condition.
More specifically, for an increasing sequence {A,} of Borel subsets with A = [ J7_, A, we

need to show convergence of iAn * f to Ta f as n goes to infinity. This follows from
(22) |La s f —La, * fl2 = vV2r[Lava, - fl2 < | f]2

and the convergence of |I4\4,, - 1| |2 is assured by the dominated convergence theorem,
since f (and thus also f) is a square integrable function. O

APPENDIX B. TECHNICAL LEMMAS AND PROOFS

Lemma 2. Lete>0, and W = (wj)j.v:_lN be a grid such that for

~

fw(w)= Z f(wj)]l(“’ja“’jJrl](w)?

j=—N
with @; = (wj + wj+1)/2, we have
@ -, <
Then for each measurable A:
N o\ 1/2
E|Zs(A) — ZN f(@j)ﬁ(wj,wm]ﬁA(s) dA(s) <e
G
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Proof. Let us fix a measurable set A, then

2\ 1/2

E

N
HA * f - Z f((‘:]j)]l(wj,wj+1]r\A
j=—N

20 = 3} 7@ [Tayiayr1na(e) dAo)

= 27rf
A

where the first equality is a result of the isomorphism between L?*(A) and L?*(R), the
second equality is the isomorphism between functions and their Fourier transforms, and
the third relation results by replacing A by R. O

2
2 1/2

dw|  <Vor|f-fwl<e

N
flw) = Z f(‘:)j)]l(wjawj+1](w)
J=——N

Lemma 3. For each € > 0, 6 > 0, and real endpoints wr,, wr there exists a finite grid
S = (Sk),iwzth such that

L L 2\ 1/2
M ez(w+6)s;C _ ez(wfé)sk

J‘\E(w—g,wﬁ—g](s) dA(S) - Z - A(Sk,8k+1] < €.

Vs 1Sk

sup E
welwr,wr]
5e(0,8]

Proof. Let us fix ¢ > 0 and § > 0. From the square integrability of sinwu/u, there is
81 > 0 and K > 0 such that for every finite partition, say U = (ux)it_,; of [~ K, K| with
diameter less than d1:

2
© (sinu M sinug
(24) J ( - Lugoup 11 (w) | du < €2/16.

—o \ U k=—nm Uk

From now on we assume that 61 and K are chosen so that the above holds.
By the continuity of e* and since {sin® z/z* dx = 7, there exists > > 0 such that for
each z € C with |z| < d2:

€
25 l—e’| < ——.
(25) | | 4/6ém

Let us choose a grid S = (sx)aL_,, of the interval (—K /8, K/§) with diameter smaller
than min(81/9, 62/ max(|wr|, |we])), fix an arbitrary w € [wr,wr] and take 6 < §. Then
notice that

ﬁ(w_g,m](s) dA(s) — fr+_6 ¢ dy dA(s) = 2 Je“’@ dA(s).

w—04
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Consequently, by the isometry and then the triangle inequality

~ B 1/2
o M 6i(w+6)sk _ ei(wfé)sk 2
5 | B[ Tesem@ are - 3 (M) —AGs)| | =
k=—M
8 " B} 2\ 1/2
& f e S09) gy 3 eSO (A | =
S k=—M Sk
.z M .z 2\ /2
(B[ e O angs) -y e IO ) A | -
S Py Sk
~ I ~ ) 1/2
iws SIN(0S) iws,, Sin(dsk)
= (J. e . Z e kT]I[Sk’SkH)(s) ds
k=—M
M TN 12
iws iws sin 63
g(f Z (e —e ")]I[sk,sk“)(s) E} ) ds +
k=M

sin(ds) _ f sin(@si)

S Sk

J k=—M
M
tw(sp—s 2 Sln
Z(J 2 '1_6 e s 5040 (8) >
k=—M

o\l
where u = ds,. By and since |w(sk — )| < max(Jwr|, |wr|)|sk — s| < &2, and

SSinZ# ds = o7 the term in the second last hne of the above can be bounded by €/4.

Further, since |us — uri1| = 6|sp — Sk41]| < 0|sk — skr1| < 61, the last term is smaller than
€/4 by , which concludes the proof. O

5k15k+1)

sin(u) i sin(uk)]I
u S [“kuk+1

Proof of Proposition[4 Let W be chosen as in Lemmawith €/2. Next, consider §, equal
to the radius of W and wyr,wr to be the smallest and biggest value of W, respectively.

For such W, §, wr, and wgr consider the grid S in Lemmawith W

Clearly, it is enough to consider half-open interval A = (a,b] that intersects with some
(wj,wjt1]’s. These non-empty intersections form a sequence of half-open intervals, say
(ulL,ul ] l=1,...J, and we take 4; = ©; from the corresponding (w;,w;+1]. Then, for

Z f ul zuﬁsk _ eiU«LLSk)
==

isk
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the following inequalities hold

u o\ 1/2
E|Zj(A) = > wA(sk, sk41] <
=M
N o\ 1/2
< (Bl - Y F@) [To0nals) dae)
j=—N
N ~ 5 M 2 1/2
+ | E Z f(wj)JH(WjaWj+1]ﬁA(s) dA(s) — 2 Y A(sk, Sk+1]
j=—N k=—M
e - Mo iuflsy, _ giubsy, 2\
<5+ D If@)l | B ( [Tupundae - Y : s, 5541]
=1 k=—M 1Sk
ceLe. _J max|f@) _

22 2N+1 max|f(@)

The first inequality is a result of the triangle inequality which is also used in the second
inequality together with Lemma [2] Finally the last inequality is a result of Lemma [3] and
the facts that M < 2N +1 and max; |f(@)| < max; | f(@;)|. This completes the proof. O
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