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Abstract: We propose a novel approach to estimation, where each individual observation in a

random sample is used to derive an estimator of an unknown parameter using the maximum like-

lihood principle. These individual estimators are then combined as a weighted average to produce

the final estimator. The weights are chosen to be proportional to the likelihood function evaluated

at the estimators based on each observation. The method can be related to a Bayesian approach,

where the prior distribution is data driven. In case of estimating a location parameter of a unimodal

density, the prior distribution is the empirical distribution of the sample, and converges to the true

distribution that generated the data as the sample size increases.

We provide several examples illustrating the new method, argue for its consistency, and conduct

simulation studies to assess the performance of the estimators. It turns out that this straightforward

methodology produces consistent estimators, which seem to be comparable with those obtained

by the maximum likelihood method.
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1. INTRODUCTION

The method of maximum likelihood (ML) is perhaps the most widely used estimation method

in the parametric setting. However, the required optimization of the likelihood function is rarely

possible explicitly, and finding the estimators may be computationally challenging. This is often

the case when estimating a location parameter based on independent, identically distributed (IID)
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observations from a probability density function (PDF)

(1.1) f (x|θ) = h(x−θ), x ∈ R,

where h(·) is a certain symmetric and unimodal function. There are many well-documented diffi-

culties associated with the optimization of the likelihood function

(1.2) L(θ |x) =
n

∏
i=1

f (xi|θ)

in this case. A good illustration of which is the case of Cauchy distribution (see [5]),

(1.3) f (x|θ) = 1
π

1
1+(x−θ)2 , x ∈ R,

where the likelihood function is multimodal (see Figure 1) and the corresponding likelihood equa-

tion have multiple roots (see, e.g., [2]), making it computationally challenging to find the right

one. An additional difficulty with estimating the location parameter via the ML approach arises

 

FIGURE 1. The likelihood function based on a random sample of size five from

the Cauchy location model (1.3) with θ = 2.

when the function h(·) is unbounded at the mode, as in this case the likelihood function (1.2) has
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infinite values at the multiple modes that coincide with the data points (see [10]). A symmetric

gamma location model with (known) shape parameter α ∈ (0,1), given by the PDF

(1.4) f (x|θ) = |x−θ |α−1 exp(−|x−θ |)
2Γ(α)

, x ∈ R,

provides a typical example of this problem. Here, the likelihood function attains a maximum value

(of infinity) at each of the n points θ = xi, i = 1, . . . ,n, making it impossible to estimate θ by ML.

As seen above, the standard ML approach may be quite challenging. However, it is often

rather straightforward when the sample size is n = 1. Indeed, if we only have one observation,

the likelihood function in the Cauchy case (1.3) attains a maximum value with respect to θ at

θ̂ = x. The same is true in the sym-gamma case (1.4) when n = 1. With this in mind, we propose

a novel estimation paradigm, where each individual observation in a random sample, xi, is used

to derive an estimator of an unknown parameter using the ML principle, leading to θ̂i = v(xi).

These individual estimators are subsequently combined as a weighted average to produce the final

estimator,

(1.5) θ̂ =
n

∑
i=1

wiθ̂i,

where the weights {wi} add up to one and are chosen to be proportional to the likelihood function

evaluated at the estimators based on each observation, L(θ̂i|x), so that

(1.6) wi =
L(θ̂i|x)

∑
n
j=1 L(θ̂ j|x)

.

We provide several examples illustrating the new method, and conduct simulation studies to

assess the performance of the estimators. It turns out that this straightforward methodology pro-

duces consistent estimators, which seem to be comparable with those obtained by the ML method

in large sample setting.

An important aspect of this estimation method is its relation to the Bayesian paradigm, and,

in particular, to the empirical Bayes methodology. Note that θ̂ given by (1.5) is the mean value

of a discrete random variable taking values {θ̂i} with probabilities {wi} given by (1.6). The

distribution of this random variable is actually a posterior distribution in the Bayesian set-up,

where the data-driven prior distribution is also discrete, supported on the same values {θ̂i} but

with equal probabilities. In the case of estimating a location parameter of a unimodal density, the
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prior distribution is the empirical distribution of the sample. This can be seen as a non-parametric

empirical Bayes approach as described next.

Let recall that the hierarchical Bayes model can be written as

(1.7)
Xi|θ ∼ f (x|θ), i = 1, . . . ,n,

Θ|η ∼ λ (θ |η),

where the parameter η is to be decided upon. For the location problem, both, the model PDF f

and the prior PDF λ , arise from the location model driven by a function h:

(1.8) f (x|θ) = h(x−θ), λ (θ |η) = h(θ −η).

According to the standard (parametric) empirical Bayes methodology, the unknown location pa-

rameter η of the prior is estimated from the marginal PDF of X,

(1.9) m(x|η) =
∫ n

∏
i=1

f (xi|θ)λ (θ |η)dθ ,

usually by maximizing the expression in (1.9) with respect to η .

In contrast, in the proposed method, the empirical distribution of the sample approximates the

prior distribution λ (θ |η). The assumption that the prior in this setting coincides with the model

is indeed a natural one. Since the model density is symmetric in x and θ , a particular sample

value x “points” towards a likely value of the parameter θ that might have generated the x value

in the same way as a particular value of θ leads to a likely x value that may show up in a sample.

Collecting this information across the entire sample provides a clue about possible values of θ

that might have generated the sample - which in a way is a reflection of the prior. Moreover,

having f (θ |θ0) as the prior, where θ0 is the true value of the parameter θ that generated the data,

should be quite desirable, as in this case the prior would assign relatively more probability to a

neighborhood of θ0, in which case “it is intuitively plausible that a close approximation to the

asymptotic result will tend to be achieved more quickly (i.e. for smaller n)” (cf., [8], p. 493).

We note that in our ‘empirical’ formulation there is no external input of any kind with regard to

the prior distribution, and it is the random sample itself that essentially determines it. Moreover,

our aim is to obtain a consistent estimator of a certain true generic parameter that we call θ0, and

we use the Bayesian setup primarily to show consistency of this construction in the frequentist

meaning.
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In this connection, it is important to distinguish two types of prior distributions for Θ: one that

does not depend on data, denoted by dπ(θ), and the one that is data dependent (which is our case),

and denoted by dπn(θ |x), where x represents the data and n is the data size. If these priors are

re-centered at the true value θ0, we write them as π0(u) and π0
n (u|x), respectively. The posterior

distribution and its mean are expressed by means of the likelihood ratio process,

(1.10) Z0
n(u) =

fn(x|θ0 +u)
fn(x|θ0)

,

where fn(x|θ0 + u) is the PDF of X given that the parameter is θ0 + u. Straightforward alge-

bra shows that the posterior means, under these two types of priors, can be expressed using the

likelihood ratio process (1.10) as follows:

θ̂
(n)
b =

∫
(θ0 +u)Z0

n(u)dπ0(u)∫
Z0

n(u)dπ0(u)
= θ0 +

∫
uZ0

n(u)dπ0(u)∫
Z0

n(u)dπ0(u)
,

θ̂
(n)
eb =

∫
(θ0 +u)Z0

n(u)dπ0
n (u|x)∫

Z0
n(u)dπ0

n (u|x)
= θ0 +

∫
uZ0

n(u)dπ0
n (u|x)∫

Z0
n(u)dπ0

n (u|x)
.

(1.11)

There is a considerable body of literature regarding the asymptotics of θ̂
(n)
b under variety of cir-

cumstances, and frequentist properties of such a ‘Bayesian’ estimator are well understood (see,

e.g., [7]). In particular, certain regularity conditions (see Chapter 3 in [7]) for the IID case guar-

antee the asymptotic normality and efficiency of the estimator,

(1.12) lim
n→∞

√
n(θ̂ (n)

b −θ0)
d
= N(0,Σ2

0),

where Σ2
0 = I(θ0)

−1 and I(θ0) is the Fisher’s information matrix. Although these results do not

apply directly to our situation (since our empirical prior distribution is data dependent), in the

important case where π0
n (u|x) converges to a certain distribution π0(u), one can argue that θ̂

(n)
eb

inherits some asymptotic properties of θ̂
(n)
b . Such a result is indeed presented in our paper. It is

derived through an asymptotic closeness of θ̂
(n)
eb and θ̂

(n)
b , showing that the asymptotic behavior

of both estimators is similar. To the best of our knowledge, there are no readily available results

on the asymptotics of Bayesian estimators derived from data-dependent priors to be utilized in our

case. We believe that the asymptotic efficiency and normality in the context of data-driven prior

could be established as well but we leave this topic for future studies.

Another interesting question concerns the asymptotics in the case when the empirical prior is

based on the distribution of an estimator that is already consistent. The empirical prior distribution
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can be based, for example, on the leave-one-out or bootstrap distribution of the estimator. As

the sample size increases the prior should converge to a distribution having all mass concentrated

at the true parameter. Consider, for example, the ‘leave-one-out’ prior that is residing on the n

estimators θ̂i calculated using the sample without the observation xi. In the Bayesian set-up, the

discrete distribution supported on these values with equal probabilities would play the role of a

data-driven prior distribution, whose mean

(1.13) θ̂Jack =
1
n

n

∑
i=1

θ̂i

is recognized as the jackknife estimator of [11]. When this distribution is updated through the

likelihood, the resulting mean of the posterior distribution will again be given by (1.5). One would

expect that an estimator derived via Bayesian approach in this set-up will have attractive properties

in finite sample setting.

Here is the organization of our paper. In Section 2, we describe the new estimation method,

along with basic examples. Its Bayesian interpretation is discussed in Section 3, where we also

address the issue of consistency. This is followed by Section 4, where we present further examples

and numerical evidence in favor of the new method. Finally, more technical results are discussed

in the Appendix.

2. BASIC IDEAS AND EXAMPLES

Suppose that x = (x1, . . . ,xn) is a random sample from a PDF f (x|θ), where θ ∈ Ω is an un-

known parameter. The maximum likelihood estimator (MLE) of θ based on the ith data value is

the quantity θ̂i = v(xi) that maximizes the likelihood based on the individual xi only,

(2.1) θ̂i = argmax{ f (xi|θ) : θ ∈Ω}.

Using the weights, which are given in (1.6), the estimator is defined by

(2.2) θ̂ =
∑

n
i=1 θ̂iL(θ̂i|x)

∑
n
j=1 L(θ̂ j|x)

.

One advantage of this approach over the ordinary MLE is computational convenience. This is

because it is often much easier to solve the optimization problem (2.1), in contrast with optimizing

the likelihood function based on the entire sample. This is particularly true in the case of estimating
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a location parameter, discussed in the introduction. To illustrate the proposed methodology, we

present several simple examples

We start with the case of uniform distribution on [0,θ ]. The MLE of θ based on the entire

sample is the largest order statistic, θ̂MLE = x(n) = max(x1, ...,xn). Similarly, the MLE based on a

single data point xi is that point itself: θ̂i = xi, i= 1, . . . ,n. However, it is easy to see that the weight

wi assigned to θ̂i according to (1.6) is actually zero except for that corresponding to θ̂(n) = x(n).

As a result, the estimator (2.2) reduces to θ̂ = ∑
n
i=1 wiθ̂i = x(n) and thus coincides with the MLE.

Let us now consider estimating a scale parameter θ of an exponential distribution. The (full)

likelihood function (1.2) takes on the form

(2.3) L(θ |x) = θ
ne−θnx̄,

with the MLE δ (x) = 1/x̄. The maximum value of the likelihood based on a single data point xi

occurs at θ̂i = 1/xi, so that the estimator (2.2) takes on the form

(2.4) θ̂ =
∑

n
k=1 x−n−1

k e−nx̄/xk

∑
n
k=1 x−n

k e−nx̄/xk
.

We see that in the case of exponential distribution, the new estimator admits an explicit form,

albeit much more complex than that of the ordinary MLE. To assess its utility, we compared the

performance of the two methods in terms of their average estimated values as well as the mean

squared errors (MSE) based on k = 10,000 simulations, with sample sizes ranging from n = 2 to

n = 100. In each case the true value was chosen to be θ = 2 and the MSEs were computed as√
1
k ∑

k
i=1(θ̂ −θ)2. As we see from the results reported in Table 1, the two approaches result in

rather similar estimators.

These results indicate that the estimators do converge to the true value. However, the estimator

derived via the new approach, although straightforward to compute, admits an explicit value that is

a rather complex function of the data. This is not an exception: in general, the estimators obtained

by this methodology are simple to compute, but their explicit forms are complicated functions of

the data. Fortunately, their large sample properties can be approached using a Bayesian interpre-

tation and utilizing the asymptotic theory for Bayesian estimators. This is discussed in the next

section and summarized in Proposition 3.1.
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TABLE 1. The averages and MSEs for estimators of the scale parameter θ of

exponential distribution based on 10,000 simulations: NEW – the new method

and MLE – the maximum likelihood method.

NEW MLE

n θ θ̂ (MSE) θ̂ (MSE)

2 2 3.63 (45.52) 3.89 (47.41)

5 2 2.4960 (2.62) 2.4964 (2.30)

10 2 2.232 (0.80) 2.230(0.70)

50 2 2.0486 (0.096) 2.0494 (0.091)

100 2 2.0195 (0.044) 2.0197 (0.042)

In conclusion of this section, let us discuss behavior of this method under transformations of

either the parameter or the data. Consider a change of the parameter, τ = τ(θ), and transformed

observations Y = (r(X1), . . . ,r(Xn)), where both τ and r are one-to-one functions. Let θ̂ (X) be an

estimator of θ obtained via the X, given by (1.5). Similarly, let τ̂(Y) be an estimator of τ obtained

through the Y by the same methodology.

Proposition 2.1. In the above setting, suppose that θ̂ is an estimator of θ given by (1.5) with

θ̂i = v(xi), so that

(2.5) θ̂
(X) =

n

∑
i=1

wiv(xi),

where the weights {wi} are given by (1.6) and the likelihood L(·|x) is given by (1.2). Then,

(2.6) τ̂
(Y) =

n

∑
i=1

wiτ(v(xi)),

where the weights {wi} in (2.5) and (2.6) are the same.

This result follows from well-known invariance properties of the MLE on a change of

parametrization. Namely, our estimate of τ based on a single data value xi is given by τ̂i = τ(θ̂i),

where θi = v(xi) is the estimator of θ based on xi. Moreover, it is clear that the likelihoods evalu-

ated at θi and τi coincide. The data transformation part of the result follows from a routine change

of variables argument.
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3. BAYESIAN INTERPRETATION AND CONSISTENCY

As stated in the introduction, the new estimation methodology described in the previous section

can be viewed as a non-parametric empirical Bayes method. This is because the estimator defined

in (2.2) is the expectation of a discrete random variable taking on the values θ̂i = v(xi) with proba-

bilities given by the weights wi specified by (1.6). Thus our estimator becomes a Bayes estimator

under squared error loss function if the (data-driven) prior distribution is supported on the n values

θ̂i = v(xi), i = 1, . . . ,n, with equal probabilities 1/n (see the Appendix for more detailed argu-

ments). When n increases, this empirical prior distribution converges to the distribution of v(X),

where X is a generic random variable following a model with the PDF f (·|θ). The CDF of v(X)

is then given by Π(·|θ) = F(v−1(·)|θ), where F is the CDF associated with f and assuming the

function v is one-to-one. Thus, this empirical distribution can be thought of as a non-parametric

approximation to the prior distribution in the following Bayesian set-up:

(3.1)
Xi|θ ∼ F(·|θ), i = 1, . . . ,n,

Θ|η ∼Π(·|η).

In the above setup we assume that η is unknown. As noted in the introduction, in a location model

driven by a function h, the corresponding PDFs will satisfy the relations (1.8). This should be con-

trasted with the standard empirical Bayes approach, where the unknown parameter η of the prior

is estimated from the marginal PDF of X, given by (1.9). That estimated value, η̂ , is subsequently

plugged-in into a traditional Bayesian estimator derived using (3.1). Let us emphasize that the

advantage of using such a non-parametric approach in the Bayesian set-up (3.1) with unknown η

is its computational simplicity, as the marginal PDF given by (1.9) is usually difficult to evaluate

explicitly, making the estimation of η computationally intensive.

To illustrate the above discussion, let us consider a standard example of a normal location

model. For simplicity, we assume that the scale parameter is one, and we let X = X1, . . . ,Xn be

IID normal variables with an unknown mean θ ∈ R. The prior distribution is also assumed to be

normal, with standard deviation one and mean η ∈ R, so that

(3.2) π(θ |η) =
1√
2π

e−
1
2 (θ−η)2

, θ ∈ R.
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It is well known that the posterior distribution of Θ given X = x is also normal with mean

(3.3) E(Θ|x) = n
n+1

x̄+
1

n+1
η

and variance 1/(n+ 1) (cf. [8], p. 233). Consequently, under the square error loss function, the

Bayesian estimate of θ is given by (3.3). Clearly, as n→ ∞, the estimator converges to the true

value of θ , denoted by θ0, regardless of the mean η of the prior distribution. However, in finite

samples, the above Bayesian estimator may have a considerable bias, if the prior mean is not close

enough to the true parameter θ0.

On the other hand, the new method introduced in this paper does not utilize any external infor-

mation regarding θ . Instead, the empirical distribution of the sample approximates the distribution

of the prior, which is assumed to be exactly the same as the model itself (with θ = θ0). This par-

ticular prior should be quite desirable, as it is centered about the true value of θ and consequently

will minimize the Bias as seen above. Since such a prior in practice can not be used (as θ0 is

unknown), approximating it through data seems quite natural.

Assuming that the prior and the model are both normal distributions, brings us to the Bayesian

set-up (3.1), where now the parameter η ∈ R is unknown and needs to be estimated from data.

According to the classical empirical Bayes, the estimator of θ is still the posterior mean given by

(3.3), where the unknown quantity η is replaced by its (parametric) estimate η̂ , such as the MLE

obtained from the marginal distribution of the {Xi}. This case is rather exceptional, in that such

an estimate is available in an explicit form. Indeed, since the marginal PDF of X is given by

(3.4) fX(x) =
(

1√
2π

)n 1√
n+1

e
− 1

2

[
∑

n
i=1 x2

i +η2− (nx̄+η)2
n+1

]
, x ∈ Rn,

the MLE of η is the value of η that minimizes the quantity
n

∑
i=1

x2
i +η

2− (nx̄+η)2

n+1

that appears in the exponent. Since this is a simple quadratic function of η , it is easy to see that

the MLE is given by η̂ = x̄. Plugging this into (3.3) shows that the empirical Bayes estimate of θ

is actually the same, θ̂EB = x̄. Thus in this case the standard empirical Bayes approach coincides

with the maximum likelihood method

Although our new methodology in the context of this example also starts with the same

Bayesian set-up with an unknown θ , it differs from the above in the way we approximate the



11

posterior mean, which is now computed according to (2.2):

(3.5) θ̂ =
∑

n
i=1 xie−

1
2 ∑

n
j=1(x j−xi)

2

∑
n
i=1 e−

1
2 ∑

n
j=1(x j−xi)2

.

As we can see, the new estimator of the normal mean is much more complex then the standard

estimator provided by the sample mean.

To compare the performance of these two “empirical Bayes” estimators, we run a simulation

experiment where we computed the averages and the MSEs connected with the two methods based

on k = 10,000 simulations. Without loss of generality, we assumed the true value of the normal

mean was θ0 = 3 and the standard deviation was taken as 1. The results appear in Table 2. As we

TABLE 2. A comparison of two empirical Bayes methods when estimating the

mean θ = 3 of normal distribution with standard deviation equal to 1.

n µ (true) µ̂(MSE) [NEW] µ̂(MSE) [OLD]

5 3 2.995 ( 0.50) 2.999 (0.45)

11 3 2.997 (0.33) 2.999 (0.31)

25 3 2.998 (0.21) 2.998 (0.20)

51 3 3.000 (0.15) 3.000 ( 0.14)

101 3 3.003 (0.10) 3.003 (0.10)

501 3 3.000 (0.05) 3.000 (0.04)

can see, the performance of the estimators is rather close, with the new method having a slightly

larger bias and MSE.

In our approach, we utilize a Bayes estimator with the (empirical) prior distribution πn(θ |x)

obtained on the basis of a random sample θ̂i = v(Xi). This data driven distribution “points” towards

a particular prior distribution. Namely, as the sample size increases, this empirical prior converges

to that of v(X), where X is a random variable with the PDF f (x|θ) centered about the true value

θ = θ0 and that can be denoted as π(θ). It is expected that the estimates obtained by this method

will be consistent. The rationale behind this claim is provided by the well-established theory

of Baysian estimators such as the mean θ̂
(n)
b of the posterior distribution that is given by (1.11),

see, e.g, [7]). It guarantees asymptotic normality of the Bayesian estimators for a large class of
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non-data driven prior distributions. Frequently, one can assume some consistency between our

empirical and non-empirical priors, π and πn(·|x), such as

(3.6) lim
n→∞

n1/2−δ sup
θ

|πn(θ |x)−π(θ)|= 0

for each δ > 0. It is then natural to expect that θ̂
(n)
eb given in (1.11), derived on the basis of a

data-dependent prior, will behave similarly to θ̂
(n)
b .

We make these claims more precise for the special case of the location parameter. By virtue of

the the empirical central limit theorem, see, e.g., [3], (3.6) holds for the empirical distribution of

the observations that is taken as an empirical prior. Consequently, the empirical prior approximates

the prior π(θ) distributed according to f (θ |θ0). This leads to the following consistency result for

which a formal argument is sketched in the Appendix.

Proposition 3.1. Let θ̂
(n)
b be the posterior mean under the prior given by π(θ) = f (θ |θ0), for the

location problem with the true parameter θ0. We assume asymptotic normality for this estimator

as given in (1.12). Then, for each δ > 0, we have

lim
n→∞

n1/2−δ

∣∣∣θ̂ (n)
eb − θ̂

(n)
b

∣∣∣= 0.

Consequently, θ̂
(n)
eb is also a consistent estimator of θ0.

4. FURTHER EXAMPLES AND SIMULATIONS

Here we illustrate the new method in several common settings, including location and scale

families, as well as shape parameters and mixtures. Rather than presenting comprehensive analy-

ses, which are left for further studies, we want to illustrate the method with typical examples, and

check its performance through (few) selected simulation experiments.

4.1. Location families. We start with a location model (1.1), defined through a unimodal density

h(·), which is symmetric about the origin and supported on the entire real line. This generalizes

the case of normal location model, presented in Section 2. It is clear that, similarly to the normal

case, the MLE of the location parameter θ based on a single observation xi, is given by θ̂i = xi.

Moreover, the likelihood function evaluated at θ̂i is given by

(4.1) L(θ̂i|x) =
n

∏
j=1

h(x j− xi), i = 1, . . . ,n,



13

assuming the function h is bounded at the mode. Thus, according to (1.5), our estimator of θ takes

on the form

(4.2) θ̂ =
∑

n
i=1 xi ∏

n
j=1 h(x j− xi)

∑
n
i=1 ∏

n
j=1 h(x j− xi)

.

In the normal case, this reduces to (3.5) derived in Section 2.

4.1.1. Cauchy distribution. Consider a Cauchy distribution, mentioned in the introduction, given

by the PDF

(4.3) f (x|θ) = 1
π

1

1+(x−θ)2 , x ∈ R.

This location model clearly satisfies the conditions stated above, so our estimator of θ is given by

(4.2), leading to

(4.4) θ̂ =
∑

n
i=1 yi ∏

n
j=1
(
1+ | y j− yi |2

)−1

∑
n
i=1 ∏

n
j=1 (1+ | y j− yi |2)−1 .

Thus, in contrast with the MLE of θ , which may require challenging numerical approximations,

this estimator is straightforward to compute.

4.1.2. Symmetric gamma distribution. Consider a symmetric gamma location model, given in

(1.4). This density is unimodal and symmetric, with the mode at θ , whenever α ∈ (0,1]. When

α = 1, we obtain a Laplace distribution, with the PDF bounded at the mode and our estimator

simplifies to

(4.5) θ̂ =
∑

n
i=1 xie−∑

n
j=1 |x j−xi|

∑
n
i=1 e−∑

n
j=1 |x j−xi|

.

However, when α is strictly less than 1, we encounter a problem: the function h is unbounded at

the mode. Consequently, although we still have θ̂i = xi, the likelihood (4.1) evaluated at θ̂i is equal

to infinity, and so the weights (1.6) are not well defined. There is a simple remedy to address this

issue. Namely, the likelihood (4.1) is replaced by

(4.6) L̃(θ̂i|x) = ∏
j 6=i

h(x j− xi), i = 1, . . . ,n,

and the weights (1.6) are modified accordingly:

(4.7) w̃i =
L̃(θ̂i|x)

∑
n
j=1 L̃(θ̂ j|x)

.
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We then define the estimator as

(4.8) θ̂ =
n

∑
i=1

θ̂iw̃i =
∑

n
i=1 θ̂iL̃(θ̂i|x)

∑
n
i=1 L̃(θ̂i|x)

=
∑

n
i=1 xi ∏ j 6=i h(x j− xi)

∑i=1 ∏
n
j 6=i h(x j− xi)

.

Note that when the density h is bounded at the mode, so that h(xi − xi) = h(0) = c < ∞, the

estimators (4.2) and (4.8) actually coincide.

Remark 4.1. When we define the modified likelihood at θ̂i, we simply delete the observation xi

from the sample. This leave-one-out procedure is similar in spirit to that considered in [10], used

to address the issue of unbounded density when estimating a location parameter via maximum

likelihood.

With the above modification, our estimator of the location parameter θ in the symmetric gamma

case (1.4) with 0 < α < 1 becomes

(4.9) θ̂ =
∑

n
i=1 xie−∑ j 6=i |x j−xi|∏ j 6=i |x j− xi|α−1

∑
n
i=1 e−∑ j 6=i |x j−xi|∏ j 6=i |x j− xi|α−1

.

4.2. Scale families. Consider a scale family Pσ of distributions on R+, given by the PDF

(4.10) f (x|σ) = g(x/σ)/σ

where g(·) is a PDF on R+. Many standard distributions that follow this structure, including the

exponential model discussed in Section 2, satisfy the following condition:

(A) The function u→ ug(u) is unimodal on (0,∞), with the mode m ∈ (0,∞).

It is easy to see, that if a scale family (4.10) satisfies condition (A), then the MLE of σ based on

an individual value xi is given by σ̂i = xi/m. Further, the likelihood function evaluated at σ̂i is then

given by

(4.11) L(σ̂i|x) = (m/xi)
n

n

∏
j=1

g(mx j/xi), i = 1, . . . ,n,

assuming the function g is bounded. Thus our estimator of σ takes on the form

(4.12) σ̂ =
1
m

∑
n
i=1 x1−n

i ∏
n
j=1 g(mx j/xi)

∑
n
i=1 x−n

i ∏
n
j=1 g(mx j/xi)

.

Remark 4.2. Suppose we have a scale family of distributions on the entire real line rather than on

R+, with the same structure (4.10) now defined through a PDF g on R. Then, if the function g
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is symmetric with respect to the origin and satisfies condition (A), the new estimator of the scale

parameter is also given by (4.12), but with the {xi} replaced by their absolute values, so that

(4.13) σ̂ =
1
m

∑
n
i=1 |xi|1−n

∏
n
j=1 g(m|x j/xi|)

∑
n
i=1 |xi|−n ∏

n
j=1 g(m|x j/xi|)

.

Remark 4.3. If the scale family (4.10) is expressed through a parameter θ = 1/σ , and the condition

(A) holds for the function g, then, by Proposition 2.1, wi’s in the formula for θ̂ coincides with those

in the formula for σ̂ . As a result, our method produces the following estimator of θ :

(4.14) θ̂ = m
∑

n
i=1 x−1−n

i ∏
n
j=1 g(mx j/xi)

∑
n
i=1 x−n

i ∏
n
j=1 g(mx j/xi)

.

When a scale family is supported on the entire real line and is expressed through θ = 1/σ , then in

the context of our previous remark, a similar adjustment applies to (4.13).

4.2.1. Gamma distribution. Consider a gamma distribution with known shape parameter α ∈

(0,∞) and an unknown scale parameter σ ∈ (0,∞), given by the PDF (4.10) with

(4.15) g(x) =
1

Γ(α)
xα−1e−x, x ∈ R+.

Routine calculations show that the condition (A) is fulfilled with m = α . Thus, here we have

σ̂i = xi/α and the likelihood function evaluated at σ̂i is of the form

(4.16) L(σ̂i|x) =
(

αα

xα
i Γ(α)

)n
(

n

∏
j=1

x j

)α−1

e−
αn
xi

x̄
, i = 1, . . . ,n,

In turn, our estimator of the scale parameter becomes

(4.17) σ̂ =
1
α

∑
n
i=1 x1−αn

i e−
αn
xi

x̄

∑
n
i=1 x−αn

i e−
αn
xi

x̄
.

4.2.2. Cauchy distribution. Consider a Cauchy distribution with the PDF

(4.18) g(x) =
1
π

1
1+ x2 , x ∈ R.

Since the function g given above is symmetric with respect to the origin and satisfies the condition

(A) with m = 1, the above discussion (see Remark 4.2) shows that σ̂ is given by (4.13). Further

routine simplifications produce

(4.19) σ̂ =
∑

n
i=1 |yi|1−n

∏
n
j=1

(
1+ y2

j/y2
i

)−1

∑
n
i=1 |yi|−n ∏

n
j=1

(
1+ y2

j/y2
i

)−1 .
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4.2.3. Pareto distribution. Consider a Pareto II (Lomax) distribution (see, e.g., [1]), given by the

PDF

(4.20) f (x|θ ,β ) = θβ

[
1

1+θx

](β+1)

, x ∈ R+,

where θ > 0 is an unknown scale parameter and β > 0 is a given tail parameter. This family is of

the form (4.10), where σ = 1/θ and the function g is given by the right-hand-side of (4.20) with

θ = 1. Straightforward algebra shows that the function g satisfies the condition (A) with m = 1/β ,

so that according to Remark 4.3, our estimator θ̂ is given by (4.14). After routine simplifications

we obtain

(4.21) θ̂ =
1
β

∑
n
i=1 x−1−n

i ∏
n
j=1

(
1+ x j

βxi

)−1−β

∑
n
i=1 x−n

i ∏
n
j=1

(
1+ x j

βxi

)−1−β
.

Thus, we obtained an estimator of the scale parameter with an explicit form. In contrast, finding

the MLE of θ in this setting would require a numerical search.

4.3. Shape/tail parameters. Below we examine two examples other than a location or shape

parameters. The first one involving a shape parameter of gamma distribution and the other one a

tail parameter of Pareto distribution.

4.3.1. Shape parameter/gamma distribution. Without loss of generality, we consider standard

gamma distribution with shape parameter α ∈ (0,∞), given by the PDF (4.15). The derivative

of the log-likelihood function based on n values x = (x1, . . . ,xn) of a random sample from this

distribution takes on the form

(4.22) l(α|x) = ∂

∂α
L(α|x) = n

{
1
n

n

∑
j=1

logx j−ψ(α)

}
, α ∈ R+.

The quantity

(4.23) ψ(α) =
d

dα
logΓ(α), α ∈ R+,

is the digamma function, which is known to be monotonically increasing on (0,∞), with the limits

of −∞ and ∞ at 0 and ∞, respectively. It follows from (4.22) that there exists a unique MLE of α ,
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given by

(4.24) α̂MLE = ψ
−1

(
1
n

n

∑
j=1

logx j

)
,

but finding it requires a numerical search. When we apply our new method, the same analysis

shows that the MLE of α based on a single data value xi is given by α̂i = ψ−1(logxi), and requires

a similar numerical search as well. Thus, in this case the new estimation method does not seem to

have a computational advantage over the traditional approach. However, under its slight modifi-

cation, this numerical search can be avoided. Namely, as discussed at the end of the introduction,

one might follow an approach involving the jackknife, which in this case can be coupled with the

method of moments. Since the expectation of gamma distribution given by the PDF (4.15) is equal

to α , to estimate the latter one can use the sample mean, leading to α̂MM = x̄. Alternatively, for

each i ∈ {1, . . . ,n}, one can eliminate the xi from the sample and derive a moment estimate of α

based on the rest of the sample, producing

(4.25) α̂i =
1

n−1 ∑
j 6=i

x j.

The average of these would produce the jackknife estimator (see, e.g., [11]), given by (1.13) (with

α in place of θ ). This can be seen as the expectation of a data-driven prior distribution in a

Bayesian set-up, supported on the n values of {α̂i}, taken with equal probabilities. We can now

go a step further, and compute the new estimator by “updating” the prior distribution via Bayes

theorem and evaluate the posterior mean. Since the prior distribution converges to a point mass

(concentrated at the true value of the shape parameter) as the sample size increases, one might

expect that the estimator obtained through this scheme will perform well.

4.3.2. Tail parameter/Pareto distribution. Consider again a Pareto II (Lomax) distribution given

by the PDF (4.20), where this time we are interested in estimating the tail parameter β > 0 rather

than the scale parameter θ , which is assumed to be known. Since the derivative

(4.26)
∂ log f (xi|θ ,β )

∂β
=

1
β
− log(1+θxi)

is positive if and only if the value of β is less than

(4.27) β̂i =
1

log(1+θxi)
,
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the latter is the MLE of β based on a single data value xi. When we take into account the likelihood

evaluated at β̂i, we obtain an estimator of the tail parameter of the form

(4.28) β̂ =
∑

n
i=1[log(1+θxi)]

−1−n
∏

n
j=1(1+θx j)

− 1
log(1+θxi)

∑
n
i=1[log(1+θxi)]−n ∏

n
j=1(1+θx j)

− 1
log(1+θxi)

.

Remark 4.4. As we can see the tail parameter of Pareto II distribution can be estimated explicitly

by our method, although the formula is rather complicated. However, its advantage over the MLE

of β is unclear, as the latter is also available in an explicit form,

(4.29) β̂MLE =
1

1
n ∑

n
i=1 log(1+θxi)

,

which can be derived along the same lines as above. Under a close inspection, it turns out that both

estimators are essentially the same as those in the exponential case (cf. (2.4) given in Section 2),

with obvious changes in notation, when we set yi = log(1+ θxi). This is due to the fact that

methods based on the likelihood function are invariant under monotonic data transformations (see

Proposition 2.1). Indeed, the transformation turns a Pareto variable with scale θ and shape β into

an exponential variable with scale parameter β .

4.4. Mixtures. Mixture models have numerous practical applications, and offer many challeng-

ing problems for a statistician (see, e.g., [4]). Here, we consider the problem of estimating the

mixing parameter θ in

(4.30) f (x|θ) = θ f1(x)+(1−θ) f2(x),

where f1 and f2 are two given PDFs. It is well known that the likelihood equation connected with

the function (4.30) has at most one root, since the second derivative of the log-likelihood function

is negative (cf, [8], Example 4.7, p. 456). Consequently, ML approach to this problem should

always produce a solution (if there is one), which, in general, will require a numerical search.

On the other hand, our new methodology adapted to this problem is computationally much

simpler. It can be easily seen by taking the derivative, that the likelihood function (4.30) based on

a single data point is either increasing or decreasing in θ , so that θ̂i ∈ {0,1}. Moreover, we have

(4.31) θ̂i = I(0,∞)( f1(xi)− f2(xi)),
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where IA is an indicator function of the set A. Consequently, the likelihood L(θ̂i|x) takes on only

two values, denoted by C1 and C2, where

(4.32)
C1 = L(1|x) = ∏

n
i=1[1 · f1(xi)+(1−1) · f2(xi)] = ∏

n
i=1 f1(xi),

C2 = L(0|x) = ∏
n
i=1[0 · f1(xi)+(1−0) · f2(xi)] = ∏

n
i=1 f2(xi).

Let A = {i : θ̂i = 1}, and let k be the cardinality of A. Then, routine calculations show that our

estimator is

(4.33) θ̂ = ∑
i∈A

1 ·L(1|x)
∑

n
j=1 L(θ̂i|x)

=
kC1

kC1 +(n− k)C2
.

Note that if the set A is empty, so that f1(xi)< f2(xi) for each i ∈ {1, . . . ,n}, then its cardinality k

is zero and so is θ̂ . In this case the data point towards the PDF f2 alone (no mixing). Similarly, if

f1(xi)> f2(xi) for each i ∈ {1, . . . ,n} then the cardinality k of A equals n, and we have θ̂ = 1 with

no mixing as well. Otherwise, the estimator will be strictly between 0 and 1.

Remark 4.5. The estimator given above never produces a value outside of Ω = [0,1]. In contrast,

this could be the case with the moment estimator discussed in [8] (Example 4.7, p. 456), given by

(4.34) θ̃ =
x̄−µ2

µ1−µ2
,

where µi is the mean corresponding to the PDF fi.

4.5. Simulations. Here we present a handful of simulation experiments that illustrate perfor-

mance of the proposed estimator. Our focus is on location and scale parameters. Further examples

concerning a shape parameter can be found in [6]. In all examples presented below we simulated

10,000 samples of given size from a relevant distribution. These simulations led to the average

value of the estimate as well as its mean squared error (MSE) shown in the tables below.

4.5.1. Cauchy distribution. Table 3 provides the results of a simulation study concerning a

Cauchy distribution with unknown scale or location parameters. In each case, the other parame-

ter is assumed to be known. When the sample size increases, the estimated values become more

precise, as expected from the asymptotic results discussed in Section 3.

Our method can be adopted to a more general case of more than one unknown parameter. Here

we illustrate this approach using both the parameters of a Cauchy distribution. Namely, when

both θ and σ are unknown in the Cauchy case, one can proceed in an iterative manner, where
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TABLE 3. Simulation results for Cauchy distribution

n σ σ̂ (MSE) θ θ̂ (MSE)

2 3 19.33 (69847) 2 6.68 (108583)

5 3 4.55 (21.17) 2 1.95 (7.94)

10 3 3.67 (4.11) 2 2.00 (2.60)

50 3 3.12 (0.44) 2 2.01 (0.40)

100 3 3.07 (0.20) 2 2.01 (0.19)

at each step only one parameter is estimated. Thus, starting with an initial value σ̂ (0) of σ , we

first estimate the parameter θ according to (4.4), where σ is set to σ̂ (0), leading to θ̂ (1). Next,

we re-estimate σ via (4.19), where θ is set to θ̂ (1), leading to an updated estimate of σ , denoted

by σ̂ (1). This procedure is then iterated, leading to final estimates of both parameters. Table 4

presented below is a result of a simulation experiment using such iterations. It shows that the

resulting estimators are quite reasonable, even when the number of iterations is as low as 2. We

emphasize again that this is just an illustration of our methodology, and more studies are needed

for its comprehensive evaluation.

TABLE 4. Results for the Cauchy distribution when both the parameters are unknown

n Initial σ # of iterations σ θ σ̂ θ̂

50 20 1 2 2.11 3 2.43

50 20 2 2 1.97 3 2.86

50 20 50 2 1.97 3 2.87

500 10 1 2 2.07 3 3.05

500 10 2 2 2.07 3 3.08

500 10 50 2 2.07 3 3.08
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4.5.2. Symmetric gamma distribution. Our second example concerns sym-gamma location

model, given by the PDF (1.4). As discussed in the introduction, when the (known) shape pa-

rameter α is less than one, the likelihood function is unbounded at each of the data points, mak-

ing it impossible to estimate the unknown location parameter θ by traditional maximum likeli-

hood. Likelihood-based estimation of a location parameter when the PDF f (x|θ) = h(x− θ) is

unbounded at the mode, such as this one, was recently considered in [10]. In that paper, the authors

proposed a method based on maximization of a modified likelihood,

(4.35) LLOO(θ |x) =
∏

n
i=1 h(xi−θ)

h
(
xk(θ)−θ

) ,

where xk(θ) is the data point which is closest to θ . Thus, in this leave-one-out (LOO) likelihood

one of the factors is removed from the likelihood, when θ enters a neighborhood of singularity.

As shown in [10], the above procedure leads to consistent estimators of θ , although, in general, it

requires a numerical search. It is interesting to observe that in our case of sym-gamma distribution

with α < 1, the estimator of θ is actually available in closed form. Indeed, we have the following

result.

Proposition 4.6. Let x = (x1, . . . ,xn) be an observed random sample from a sym-gamma distribu-

tion given by the PDF (1.4) with α < 1. Further, let x(1) < · · · < x(n) be the ordered values of x,

and let yi = (x(i)+x(i+1))/2, i = 1, . . . ,n−1. Then, the LOO likelihood (4.35) attains its maximum

value at one of the {yi}.

Proof. Upon close examination of the LOO likelihood in this case, we find it to be a continuous

function of θ on the real line, which is increasing on the interval (−∞,y1), decreasing on the

interval (yn−1,∞), and convex on each of the intervals (yi,yi+1), i = 1, . . . ,n−1. �

According to the above result, the LOO maximum likelihood estimator of θ in the sym-gamma

case is given by that value of yi that maximizes the LOO likelihood (4.35). We now compare the

performance of this estimator with that of ours, which in this case is given in (4.9). Note that

when the sample size is n = 2, then both estimators are given by y1 = (x1 + x2)/2. For simplicity,

we examine the case n = 3, where the estimators are no longer the same. In this case, the LOO

method produces

θ̂LOO = argmax{LLOO(y1|x),LLOO(y2|x)} .
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TABLE 5. Estimated values of location parameter θ of symmetric gamma distri-

bution based on sample size n = 3

α θ (true) θ̂NEW (MSE) θ̂LOO(MSE)

0.20 5 5.0001 (0.153) 5.0005 (0.178)

0.30 5 5.0037 (0.237) 5.0043 (0.268)

0.40 5 5.0035 (0.303) 5.0040 (0.344)

0.80 5 4.9912 (0.627) 4.9924 (0.732)

0.99 5 5.0077 (0.786) 5.0111 (0.919)

0.99 35 35.0012(0.792) 34.9991 (0.927)

0.50 35 35.0055 (0.404) 35.0066 (0.468)

0.30 35 34.9952 (0.251) 34.9950 (0.285)

0.15 35 35.0019 (0.105) 35.0027 (0.118)

On the other hand, our estimator is given by (4.9) with n = 3. A comparison of the two methods

based on k = 10,000 simulations is shown in Table 5. We see the results are comparable, with our

proposed estimator performing slightly better.

4.5.3. Laplace distribution. Our final example is the Laplace distribution, which is a special case

α = 1 of the sym-gamma distribution (1.4), given by the PDF

(4.36) f (x|θ) = 1
2

e−|x−θ |, x ∈ R.

For this distribution, the likelihood function is maximized by the sample median, which becomes

the MLE of θ (see, e.g., [9]). In our approach, we maximize the likelihood based on each xi,

leading to θ̂i = xi, which produces

(4.37) θ̂NEW =
∑

n
i=1 xie−∑

n
j=1 |x j−xi|

∑
n
i=1 e−∑

n
j=1 |x j−xi|

.

In our comparison, we shall also include a third estimator of θ , derived by the method of moments.

Since the mean of the Laplace distribution (4.36) is equal to θ , the third estimator is simply the

sample mean, θ̂MME = x̄. Table 6 shows a comparison of the three methods based on k = 10,000
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TABLE 6. Simulation results concerning estimation of the location parameter θ

of symmetric Laplace distribution.

n θ (true) θ̂NEW (MSE) θ̂MME(MSE) θ̂MLE(MSE)

5 3 2.9992 ( 0.592) 3.0007 (0.634) 2.9990 (0.599)

11 3 3.0027 (0.368) 3.0041 (0.432) 3.0037 (0.374)

25 3 2.9993 (0.224) 2.9977 (0.281) 2.9997 (0.229)

51 3 2.9999 (0.153) 3.0009 (0.199) 2.9997 (0.155)

101 3 3.0013 (0.107) 3.0009 (0.141) 3.0015 (0.108)

501 3 3.0000 (0.045) 3.0010 (0.062) 3.0001 (0.0455)

simulations across several sample sizes n. It appears the new method is quite comparable with the

MLE, and they both perform better than the method of moments.

5. APPENDIX

5.1. Bayesian interpretation. Let X1, ...,Xn be a random sample from a distribution given by the

PDF f (x|θ), where θ ∈ Ω is an unknown parameter. Further, let the prior distribution π of Θ be

a discrete one, concentrated on n values ai ∈ Ω with equal probabilities. Then the joint PDF of

X = (X1, ...,Xn) and Θ is given by

(5.1) h(x,θ) =


1
n ∏

n
j=1 f (x j|θ) for x j ∈ R and θ = ai, i = 1, ...,n

0 otherwise.

Consequently, the marginal PDF of X is

(5.2) gn(x) = ∑
θ

h(x,θ) =
n

∑
i=1

1
n

n

∏
j=1

f (x j|ai), x j ∈ R, j = 1, ...,n,

while the conditional PDF of Θ given X = x, that is the posterior PDF of Θ, is given by

(5.3) π(θ |x) = h(x,θ)
gn(x)

=
∏

n
j=1 f (x j|θ)

∑
n
k=1 ∏

n
j=1 f (x j|ak)

=
L(θ |x)

∑
n
k=1 L(ak|x)

, θ = ai, i = 1,2, ...,n.

If we now formally substitute ai = θ̂i, the posterior distribution corresponds to a random variable

taking on the values θ̂i with probabilities given by the weights wi in (1.6), and the mean of this

distribution coincides with the estimator (2.2).
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5.2. Consistency argument. In this section, we sketch formal arguments for the asymptotic

behavior of θ̂
(n)
eb presented in Proposition 3.1. Let us first note that by introducing Z̃0

n(s) =

Z0
n(s/

√
I(θ0)n), the difference between an empirical Bayes and Bayes estimators can be written

as follows:

θ̂
(n)
eb − θ̂

(n)
b =

∫
u Z0

n(u) dπ
0(u)∫

Z0
n(u) dπ

0(u)
−

∫
u Z0

n(u) dπ
0
n (u|x)∫

Z0
n(u) dπ

0
n (u|x)

=
1√

I(θ0)n


∫

s Z̃0
n (s) dπ

0
(

s/
√

I(θ0)n
)

∫
Z̃0

n (s) dπ
0
(

s/
√

I(θ0)n
) −

∫
s Z̃0

n (s) dπ
0
n

(
s/
√

I(θ0)n
∣∣x)∫

Z̃0
n (s) dπ

0
n

(
s/
√

I(θ0)n
∣∣x)

 .

Thus, by denoting π̃0
n (s) = π0

(
s/
√

I(θ0)n
)

and π̃0
n (s|x) = π0

n

(
s/
√

I(θ0)n
∣∣x), we have

(5.4)
∣∣∣θ̂ (n)

eb − θ̂
(n)
b

∣∣∣≤
∣∣∣∣∫ s Z̃0

n (s) d
(
π̃

0
n (s)− π̃

0
n
(
s
∣∣x)))∣∣∣∣√

I(θ0)n
∫

Z̃0
n (s) dπ̃

0
n (s)

+

+

∫
s Z̃0

n (s) dπ̃
0
n
(
s
∣∣x)√

I(θ0)n
∫

Z̃0
n(s) dπ̃

0
n (s)

∫
Z̃0

n(u) dπ̃
0
n (s
∣∣x)
∣∣∣∣∫ Z̃0

n (s) d
(
π̃

0
n (s)− π̃

0
n
(
s
∣∣x)))∣∣∣∣ .

Recall that the central argument for asymptotic behavior of either a Bayes or maximum likeli-

hood estimators is the convergence of the likelihood ratio process Z̃0
n(s). Here, we just put down

some informal account of the corresponding fact. Under some regularity conditions (see, e.g., [7],

Chapter II, Section 1), we have the following approximation of the log-likelihood ratio process:

logZ0
n(u) =

n

∑
i=1

log f (xi|θ0 +u)− log f (xi|θ0)

≈
n

∑
i=1

[
∂ log f

∂θ
(xi|θ0)

]T

u− n
2

uT I(θ0)u.

Further, by central limit theorem, we have
n

∑
i=1

∂ log f
∂θ

(xi|θ0)≈
√

nI(θ0)Z,

where Z is a vector of IID standard normal variables of the dimension equal to the dimension of

the parameter θ . One can combine these facts to approximate the likelihood ratio process through

Z0
n(u)≈ e|Z|

2
e−|Z−

√
nI(θ0)u|2/2, so that Z̃0

n(s)≈ e|Z|
2
e−|Z−s|2/2.
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From now on we assume that we deal with a location parameter θ which is one dimensional.

Moreover, we assume that the prior π has a density p with respect to the Lebesgue measure. Then

we have

dπ̃0
n

ds
(s) = p

(
θ0 + s/

√
I(θ0)n

)
/
√

I(θ0)n.

We also assume that the density p is continuous and non-zero at θ0. Then,

√
I(θ0)n

∫
Z̃0

n (s) dπ̃
0
n (s) =

∫
Z̃0

n (s) p
(

θ0 + s/
√

I(θ0)n
)

ds

≈ p(θ0)e|Z|
2
∫

e−|Z−s|2/2ds =
√

2π p(θ0)e|Z|
2

(5.5)

and, similarly,

√
I(θ0)n

∫
sZ̃0

n (s) dπ̃
0
n (s)≈ p(θ0)e|Z|

2
∫

se−|Z−s|2/2ds = 0.(5.6)

For a differentiable function g vanishing at −∞ and a distribution function F , we have∫
g(u) dF(u) =

∫
g′(t)F̄(t) dt so that

∣∣∣∣∫ Z̃0
n (s) d

(
π̃

0
n (s)− π̃

0
n
(
s
∣∣x)))∣∣∣∣= ∣∣∣∣∫ dZ̃0

n

ds
(s)
(
π̃

0
n (s)− π̃

0
n (s|x)

)
ds
∣∣∣∣

≤
∫ ∣∣∣∣dZ̃0

n

ds
(s)
∣∣∣∣ ∣∣π̃0

n (s)− π̃
0
n (s|x)

∣∣ds

≤ sup
θ

|π(θ)−πn(θ |x)|
∫ ∣∣∣∣dZ̃0

n

ds
(s)
∣∣∣∣ ds

≈ sup
θ

|π(θ)−πn(θ |x)|
∫
|s|e−

|Z−s|2
2 ds

= 2sup
θ

|π(θ)−πn(θ |x)| .(5.7)
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Similarly,

(5.8)
∣∣∣∣∫ sZ̃0

n (s) d
(
π̃

0
n (s)− π̃

0
n
(
s
∣∣x)))∣∣∣∣≤

2sup
θ

|π(θ)−πn(θ |x)|+
∫ ∣∣∣∣sdZ̃0

n

ds
(s)
∣∣∣∣ ∣∣π̃0

n (s)− π̃
0
n (s|x)

∣∣ds

≤ sup
θ

|π(θ)−πn(θ |x)|
(

2+
∫ ∣∣∣∣sdZ̃0

n

ds
(s)
∣∣∣∣ ds

)
≈ sup

θ

|π(θ)−πn(θ |x)|
(

2+
∫

s2e−
|Z−s|2

2 ds
)

=
(

2+
√

2π

)
sup

θ

|π(θ)−πn(θ |x)| .

Upon substituting (5.5-5.8) into (5.4), we obtain

∣∣∣θ̂ (n)
eb − θ̂

(n)
b

∣∣∣/

(

2+
√

2π

)
√

2π p(θ0)e|Z|
2 +

o(n)

2π p2(θ0)e2|Z|2

sup
θ

|π(θ)−πn(θ |x)| ,

which, in view of (3.6), leads to (3.1).
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The research of Podgórski and Kozubowski has been partially supported by the Riksbankens

Jubileumsfond Grant Dnr: P13-1024:1.

REFERENCES

[1] Arnold, B.C. (1983). Pareto Distributions, International Cooperative Publ. House, Fairland, MD.

[2] Barnett, V.D. (1966). Evaluation of the maximum-likelihood estimator where the likelihood equation has multiple

roots, Biometrika 53, 151-165.

[3] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed., Wiley.

[4] Everitt, B.S. and Hand, D.J. (1981). Finite Mixture Distributions, Chapman & Hall, London.

[5] Haas, G., Lee, B. and Antle, C. (1970). Inferences for the Cauchy distribution based on maximum likelihood

estimators, Biometrika 57(2), 403-408.

[6] Hossain, M.M. (2014). A Novel Estimation Method Based on Maximum Likelihood, Thesis, University of Nevada,

Reno.

[7] Ibragimov, I.A. and Khasminskii, R.Z. (1981). Statistical Estimation: Asymptotic Theory, Springer-Verlag, New

York.

[8] Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd ed., Springer, New York.



27
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