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Abstract

In this paper we consider the estimation of the weights of optimal portfolios from the

Bayesian point of view under the assumption that the conditional distribution of the

logarithmic returns is normal. Using the standard priors for the mean vector and the

covariance matrix, we derive the posterior distributions for the weights of the global mini-

mum variance portfolio. Moreover, we reparameterize the model to allow informative and

non-informative priors directly for the weights of the global minimum variance portfolio.

The posterior distributions of the portfolio weights are derived in explicit form for al-

most all models. The models are compared by using the coverage probabilities of credible

intervals. In an empirical study we analyze the posterior densities of the weights of an

international portfolio.

Keywords: global minimum variance portfolio, posterior distribution, credible interval,

Wishart distribution

1. Introduction

Starting with the seminal paper of Markowitz (1952) the classical mean-variance port-

folio theory has drawn much attention in academic literature. Generally speaking, the

theory allows us to determine the optimal portfolio weights which guarantee the lowest

risk for a given expected portfolio return. Under Gaussian asset returns, the problem is

equivalent to minimizing the expected quadratic utility of the future wealth. In prac-

tice, however, the model frequently led to investment opportunities with modest ex-post

profits and high risk. To clarify this and to develop improved trading strategies several

issues were addressed (cf., Okhrin and Schmid (2006), Okhrin and Schmid (2008), Bodnar

and Schmid (2009), Bernard and Vanduffel (2014), Bodnar et al. (2013), Castellano and

Cerqueti (2014), Simaan (2014)). The first strand of research analyses the estimation
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risk in portfolio weights, which arises if we replace the unknown parameters of the distri-

bution of asset returns with their sample counterparts. The results on the finite sample

distributions can be used in different ways. First, we can develop a test to check if the

weights of a particular asset significantly deviate from prespecified values, e.g. test for

efficiency (see Jobson and Korkie (1989), Stambaugh (1997), Britten-Jones (1999), Ang

and Bekaert (2002), Bodnar and Schmid (2008)). Second, we can test the significance

of the investment in a given asset, e.g. significance of international diversification (see

French and Poterba (1991)). Third, we may assess the sensitivity of portfolio weights to

changes in the parameters of the asset returns as in Best and Grauer (1991), Chopra and

Ziemba (1993), Bodnar (2009), etc.

The main contribution of Markowitz from the financial perspective is the recognition

of the importance of diversification. From a statistical point of view the portfolio theory

stresses the importance of the variance as a measure of risk and particularly the impor-

tance of the structure of the covariance matrix for diversification purposes. Markowitz’s

approach allows us to determine the minimum variance set of portfolios and the sets of

efficient portfolios. While the minimum variance set consists of those portfolios which

possess the minimum variance for a chosen level of the expected return, the efficient set

contains the portfolios with the highest level of the expected return for each level of risk.

As a result, the choice of an optimal portfolio depends on the investor’s attitude towards

risk, i.e. on his/her level of risk aversion.

The global minimum variance (GMV) portfolio is a specific optimal portfolio which

possesses the smallest variance among all portfolios on the efficient frontier. This portfolio

corresponds to the fully-risk averse investor who aims to minimize the variance without

taking the expected return into consideration. The importance of the GMV portfolio

in financial applications was well motivated by Merton (1980) who pointed out that the

estimates of the variances and the covariances of the asset returns are much more accurate

than the estimates of the means. Later, Best and Grauer (1991) showed that the sample

efficient portfolio is extremely sensitive to changes in the asset means, whereas Chopra

and Ziemba (1993) concluded for a real data set that errors in means are over ten times

as damaging as errors in variances and over twenty times as errors in covariances. For

that reason many authors assume equal means for the portfolio asset returns or, in other

words, the GMV portfolio. This is one reason why this is extensively discussed in literature

(Chan et al. 1999). Moreover, the GMV portfolio has the lowest variance of any feasible

portfolio. Further evidences about the practical application of the GMV portfolio can be

found in Haugen (1999).

The second strand of research opts for the Bayesian framework. The Bayesian setting

resembles the decision making of market participants and the human way of information

utilization. Similarly, investors use the past experiences and memory (historical event,

trends, etc.) for decisions at a given time point. These subjective beliefs flow into the
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decision making process in a Bayesian setup via specific priors. From this point of view

the Basesian framework is potentially more attractive in portfolio theory (see Avramov

and Zhou (2010)). The first applications of Bayesian statistics in portfolio analysis were

completely based on uninformative or data-based priors, see Winkler (1973), Winkler

and Barry (1975). Bawa et al. (1979) provided an excellent review on early examples of

Bayesian studies on portfolio choice. These contributions stimulated a steady growth of

interest in Bayesian tools for asset allocation problems. Jorion (1986), Kandel and Stam-

baugh (1996), Barberis (2000) , Pastor (2000) used the Bayesian framework to analyze

the impact of the underlying asset pricing or predictive model for asset returns on the op-

timal portfolio choice. Wang (2005), Kan and Zhou (2007), Golosnoy and Okhrin (2007),

Golosnoy and Okhrin (2008), Bodnar et al. (2015) concentrated on shrinkage estimation,

which allows to shift the portfolio weights to prespecified values, which reflect the prior

beliefs of investors. Brandt (2010) gives a state of the art review of the modern portfolio

selection techniques, paying a particular attention to Bayesian approaches.

In the majority of the mentioned papers the authors defined specific priors for the

model parameters and the subsequent evaluation of posterior distributions or asset al-

location decisions was performed numerically. The reason is that the involved integral

expressions are too complex for analytic derivation. In this paper we derive explicit for-

mulas for the posterior distributions of the global minimum-variance portfolio weights for

several non-informative and informative priors on the parameters of asset returns. Fur-

thermore, using a specific reparameterization we obtain non-informative and informative

priors for the portfolio weights directly. This appears to be more consistent with the de-

cision processes of investors. The corresponding posterior distributions are presented too.

The established results are evaluated within a simulation study, which assesses the cover-

age probabilities of credible intervals, and within an empirical study, where we concentrate

on the posterior distributions of the weights of an internationally diversified portfolio.

The rest of the paper is structured as follows. Bayesian estimation of the GMV

portfolio using preliminary results is presented in Section 2. The posterior distributions

for the GMVP are derived and summarized in Theorem 1. In Section 3 we propose

informative and non-informative prior distributions for the weights of the GMVP and

the corresponding posterior distributions (Theorem 2 and Theorem 3). In Section 4 the

credible intervals and credible sets for the previous posterior distributions are obtained.

The results of numerical and empirical studies are given in Section 5, while Section 6

summarizes the paper. The appendix (Section 7) contains the proof of Theorem 1 and

additional technical results.

2. Bayesian vs. frequentist portfolio selection

We consider a portfolio of k assets. Let Xi = (X1i, ..., Xki)
T be the k-dimensional

random vector of log-returns at time i = 1, ..., n. For small values of returns, the simple
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and the log-returns behave similarly. Let w = (w1, ..., wk)
T be the vector of portfolio

weights, where wj denotes the weight of the j-th asset, and let 1 be the vector of ones.

It has to be emphasized that if log-returns are close to 0, then we can approximate the

portfolio return as a weighted sum of individual log-returns very accurately leading to

(see Lai and Xing (2008), p. 66) Xw ≈
∑k

i=1wiXi.

Furthermore, it is common in portfolio theory to assume that the asset returns are

independently and normally distributed with mean vector µ and covariance matrix Σ.

The assumption is frequently violated for more frequently sampled returns, for example

daily or intra-day returns, but appears to be rather precise for returns over longer horizons,

for example, weekly or monthly. Additionally, the normal distribution is more suitable

for log-returns since the simple returns are bounded from below by -1.

Let Σ be a positive definite matrix. The GMV portfolio is the unique solution of the

optimization problem

wTΣw→ min s.t. wT1 = 1. (1)

In general we allow for short sales and therefore for negative weights. The solution of (1)

is given by

wGMV =
Σ−11

1TΣ−11
. (2)

Since Σ is an unknown parameter, the formula in (2) is infeasible for practical purposes.

Given a sample of size n of historical returns x1, ...,xn, we can compute the sample

covariance matrix

S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T ,

where x = 1
n

∑n
i=1 xi. The sample estimator of the GMV portfolio weights is constructed

by replacing Σ with S in (2) and it is given by

ŵGMV =
S−11

1TS−11
. (3)

In this paper we take a more general setup by considering arbitrary linear combinations

of the GMV portfolio weights. Let L be an arbitrary p × k matrix of constants, p < k,

and define

θ = LwGMV =
LΣ−11

1TΣ−11
. (4)

The sample estimator of θ is given by

θ̂ = LŵGMV =
LS−11

1TS−11
. (5)
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In practice, the investors concentrate on the point estimators θ̂ without realizing

the estimation risk induced by estimated parameters x and S. This risk is extremely

damaging for asset allocation since it renders wrong or misspecified portfolios (see Best

and Grauer (1991)). In order to assess the estimation risk we must consider ŵGMV and

θ̂ as a random quantity. As x and S deviate from the true parameters µ and Σ, so can

the estimated portfolio deviate from the weights of the true optimal portfolio leading to

poor out-sample performance in practice. The variation in the parameters can also have

others sources than pure estimation reasons. In the time series framework it is frequently

observed that the parameters are not constant over time. Frequently these dynamics are

modeled either by an appropriate time series process or by a regime switching process.

Although this type of dynamics is difficult to implement here directly, it allows for some

additional information which should be exploited for portfolio decisions.

Thus a very important objective is not only to quantify and formalize the information

about the parameters, but also to take it into account already while computing the opti-

mal portfolio composition. Methodologically the Bayesian framework offers a convenient

and appropriate set of tools. Within this framework we rely on our beliefs or prior in-

formation about the parameters of the model and formalize these beliefs in form of prior

distributions. The most frequently applied priors for µ and Σ in the financial literature

are the diffuse prior (see, e.g., Barry (1974), Brown (1976), and Klein and Bawa (1976)),

the conjugate prior (Frost and Savarino (1986)), and the hierarchical prior (Greyserman

et al. (2006)) which we introduce next. The diffuse prior is an uninformative prior, which

implies that the statistician has no additional information about the stochastic nature of

the unknown parameters. The conjugate prior is an informative prior and we assume that

the mean returns follow a normal distribution and the covariance matrix follows a inverse

Wishart distribution. These assumptions are reasonable, since the priors coincide with

the distributions of x and S. The hierarchical prior is a more complex prior which allows

for additional distributional assumptions about the precision of the priors for µ and Σ.

For every prior we can compute the posterior distributions of the portfolio weights,

which takes the prior distributions of the parameters into account. This means that we

provide not only the point estimate of the optimal portfolio weights as it is usual done

in practice, but the whole distribution. The mean of this distribution provides us with

a new Bayesian estimator of the portfolio weights, which accounts for the priors beliefs

of the investor. These results allow us to run tests for portfolio weights and construct

credible sets. The latter are the confidence intervals where the true portfolio weights lies

with high probability. We can use these findings to test the significance of the investment

in a particular asset. Detailed discussion and results are provided in Section 3.

From financial perspective it might be difficult to formulate and to motivate a specific

prior for the parameters but it is common to have some beliefs about the optimal portfolio

composition. For example one might formulate the prior beliefs in form of the equally
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weighted portfolio, which shows superior out-of-sample long-term performance as reported

frequently. Alternatively, the prior portfolio composition might be proportional to the

market capitalizations of the underlying assets or some prespecified portfolio targeted

by an investment fund. This valuable information shall complement the mean-variance

portfolio. The second contribution of this paper is that we develop the Bayesian estimation

of the GMV portfolio with priors for the portfolio weights. By formalizing the beliefs

regarding the desired portfolio in form of a prior distribution of portfolio weights, we

provide methodology for constructing the posterior distribution of the GMV portfolio

weights. The next section provides details on the assumptions and the main results on

posterior distributions.

3. Priors for the parameters of the asset returns

In this section we provide details on priors for the parameters of the asset returns and

derive the posterior distribution of the GMV portfolio weights and give expressions for

the point estimates.

Diffuse prior: We start with the standard diffuse prior on µ and Σ, applied in

portfolio theory by Barry (1974), Brown (1976), and Klein and Bawa (1976). The prior

densities of this non-informative prior is given by

pd(µ,Σ) ∝ |Σ|−
k+1
2 . (6)

The Bayesian models based on the diffuse prior are usually not worse in comparison

to the classical methods of portfolio selection. However, when some of the k risky assets

have longer histories than others, then Bayesian approaches may exploit this additional

information and lead to different results (see Stambaugh (1997)).

Conjugate prior: The second considered prior is the conjugate prior. In contrast

to the diffusion prior (6), the conjugate prior is an informative prior which considers a

normal prior for µ (conditional on Σ) and an inverse Wishart prior for Σ. It is expressed

as

pc(µ|Σ) ∝ |Σ|−1/2 exp
{
−κc

2
(µ− µc)Σ−1(µ− µc)

}
and

pc(Σ) ∝ |Σ|−νc/2 exp

{
−1

2
tr[ScΣ

−1]

}
,

where µc is the prior mean; κc is a parameter reflecting the prior precision of µc; νc is a

similar prior precision parameter on Σ; Sc is a known prior matrix of Σ. Then the joint

prior for both parameters is

pc(µ,Σ) ∝ |Σ|−(νc+1)/2 exp

{
−κc

2
(µ− µc)TΣ−1(µ− µc)−

1

2
tr[ScΣ

−1]

}
. (7)
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Frost and Savarino (1986) proposed an interesting application of the conjugate prior

where all securities possess identical expected returns, variances and pairwise correlation

coefficients - the so-called 1/N rule. They showed that the conjugate prior works better

than a non-informative prior as well as better than the strategies obtained from the fre-

quentist point of view.

Hierarchical prior: Next, we consider the hierarchial Bayes model which was

suggested by Greyserman et al. (2006). They demonstrated that a fully hierarchical

Bayes procedure produces promising results warranting more study. The priors are given

by

ph(µ|ξ, η,Σ) ∝ |Σ|−1/2 exp
{
−κh

2
(µ− ξ1)Σ−1(µ− ξ1)

}
ph(Σ) ∝ η−k(νh−k−1)/2

|Σ|νh/2
exp

{
− 1

2η
tr[ShΣ

−1]

}
ph(ξ) ∝ 1

ph(η) ∝ η−ε1−1 exp

{
−ε2
η

}
,

where κh is a parameter reflecting the prior precision of µ; νh is a similar prior precision

parameter on Σ; Sh is a known prior matrix of Σ; ε1 and ε2 are prior constants.

Then the joint prior of µ, Σ, ξ, and η is expressed as

ph(µ,Σ, ξ, η) ∝ |Σ|−1/2 exp
{
−κh

2
(µ− ξ1)TΣ−1(µ− ξ1)

}
× η−k(νh−k−1)/2

|Σ|νh/2
exp

{
− 1

2η
tr[ShΣ

−1]

}
× η−ε1−1 exp

{
−ε2
η

}
∝ |Σ|−(νh+1)/2 exp

{
− 1

2η
tr[ShΣ

−1]

}
× η−k(νh−k−1)/2−ε1−1 exp

{
−κh

2
(µ− ξ1)TΣ−1(µ− ξ1)− ε2

η

}
. (8)

Let tp(m, a,B) and ftp(m,a,B)(·) denote the distribution and the density of p-dimensional

t-distribution with m degrees of freedom, location vector a, and dispersion matrix B. In

Theorem 1 we present the posterior distributions of θ under the diffuse, the conjugate

and the hierarchial priors.

Theorem 1. Let X1, ...,Xn|µ,Σ be independently and identically distributed with X1|µ,Σ ∼
Nk(µ,Σ). Let L be a p× k matrix of constants, p < k and 1 denotes the vector of ones.

Then

(a) Under the diffuse prior pd(µ,Σ) the posterior for θ is given by

θ|X1, ...,Xn ∼ tp

(
n− 1; θ̂;

1

n− 1

LRdL
T

1TS−11

)
, (9)
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where Rd = S−1 − S−111TS−1/1TS−11.

(b) Under the conjugate prior pc(µ,Σ) the posterior for θ is given by

θ|X1, ...,Xn ∼ tp

(
νc + n− k − 1;

LV−1c 1

1TV−1c 1
;

1

νc + n− k − 1

LRcL
T

1TV−1c 1

)
, (10)

where

rc =
nX + κcµc
n+ κc

,

Vc = (n− 1)S + Sc + (n+ κc)rcr
T
c + nX X

T
+ κcµcµ

T
c ,

Rc = V−1c −V−1c 11TV−1c /1TV−1c 1.

(c) Under the hierarchial prior ph(µ,Σ, ξ, η) the posterior for θ is given by

ph (θ|X1, ...,Xn) ∝
∫ +∞

−∞

∫ +∞

0

f
tp

(
νh+n−k−1;

LV−1
h

1

1TV−1
h

1
; 1
νh+n−k−1

LRhLT

1TV−1
h

1

)(θ)

× η−k(νh−k−1)/2−ε1−1 exp

{
−ε2
η

}
dξdη, (11)

where

rh = rh(ξ) =
nX + κhξ1

n+ κh
,

Vh = Vh(ξ, η) = (n− 1)S + η−1Sh − (n+ κh)rhr
T
h + nX X

T
+ κhξ

211T ,

Rh = Rh(ξ, η) = V−1h −V−1h 11TV−1h /1TV−1h 1.

The results of Theorem 1 shows that under the diffuse and the conjugate priors the

posterior distributions for the linear combinations of the GMV portfolio weights are mul-

tivariate t-distributions. Also, the posterior for the linear combinations of the GMV

portfolio weights under the hierarchial prior is presented by using a two-dimensional in-

tegral and the well-known univariate density functions. Moreover, using (11) we get the

stochastic representation of θ expressed as

θ
d
=

LV−1h (ξ, η)1

1TV−1h (ξ, η)1
+

1√
νh + n− k − 1

(
LRh(ξ, η)LT

1TV−1h (ξ, η)1

)1/2

t0, (12)

where ξ ∼ Uniform(−∞,+∞), η ∼ Inverse−Gamma(ε1, ε2), t0 ∼ tp(νh + n− k− 1,0, I)

and ξ, η, t0 are mutually independent. The symbol
d
= denotes equality in distribution.

Applying the properties of the multivariate t-distribution we obtain that the Bayesian

estimators of θ under the diffuse prior (5) and under the conjugate prior (6) are

θ̂d = θ̂ and θ̂c =
LV−1c 1

1TV−1c 1
, (13)
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respectively. Under the hierarchial prior the Bayesian estimator of θ is given by

θ̂h =

∫
Rp

∫ +∞

−∞

∫ +∞

0

θph(θ|X1, ...,Xn)dθdξdη

=

∫ +∞

−∞

∫ +∞

0

η−k(νh−k−1)/2−ε1−1 exp

{
−ε2
η

}
LV−1h (ξ, η)1

1TV−1h (ξ, η)1
dξdη. (14)

The last integral can be computed numerically. Alternatively, θ̂h can be approxi-

mated by using the stochastic representation (12). This is performed by generating a

sample of independent pseudo random variables ξ and η with ξ ∼ Uniform(−∞,+∞)

and η ∼ Inverse−Gamma(ε1, ε2), calculating θ for each repetition using (12), and then

taking the average.

Objective-based prior: Next, we consider the objective-based prior on (µ,Σ)

suggested by Tu and Zhou (2010). It is given by

pob(µ|Σ) ∝ |Σ|−1/2 exp

{
− s2

2σ2
ob

(µ− γΣwob)
TΣ−1(µ− γΣwob)

}
pob(Σ) ∝ |Σ|−νob/2 exp

{
−1

2
tr[SobΣ

−1]

}
,

where γ is the coefficient of relative risk aversion; wob is suitable prior constant; σ2
ob is a

scale parameter that indicates the degree of uncertainty about µ; s2 is the average of the

diagonal elements of Σ; νob and Sob are prior constants. Then the joint prior distribution

of (µ,Σ) is given by

pob(µ,Σ) ∝ |Σ|−(νob+1)/2 exp

{
−1

2
tr[SobΣ

−1]

}
× exp

{
− s2

2σ2
ob

(µ− γΣwob)
TΣ−1(µ− γΣwob)

}
, (15)

which leads to the posterior distribution of (µ,Σ) expressed as

pob(µ,Σ|X1, ...,Xn) ∝ L(X1, ...,Xn|µ,Σ)pob(µ,Σ)

∝ |Σ|−(νob+n+1)/2 exp

{
−1

2
tr[(Sob + (n− 1)S)Σ−1]

}
× exp

{
− s2

2σ2
ob

(µ− γΣwob)
TΣ−1(µ− γΣwob)

− n

2
(µ−X)TΣ−1(µ−X)

}
,

where (see Appendix A)

L(X1, ...,Xn|µ,Σ) ∝ |Σ|−n/2 exp

{
−n

2
(X− µ)TΣ−1(X− µ)− n− 1

2
tr[SΣ−1]

}
.
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Integrating out µ we get the posterior distribution of Σ expressed as

pob(Σ|X1, ...,Xn) ∝ |Σ|−(νob+n)/2 exp

{
−1

2
tr[(Sob + (n− 1)S)Σ−1]

}
× exp

{
−1

2

[
nX

T
Σ−1X +

s2

σ2
ob

wT
obΣwob −

(
n+

s2

σ2
ob

)
rTobΣ

−1rob

]}
, (16)

where

rob =

s2

σ2
ob
γΣwob + nX

s2

σ2
ob

+ n
.

Unfortunately, using the objective-based prior (15) we are not able to derive the an-

alytical expression for the posterior distribution for θ. Theoretically, the posterior of θ

can be obtained by making the transformation

Σ 

(
θ

v

)
,

where θ ∈ Rp and v ∈ R
k(k−1)

2
−p, and integrating out v. However, because pob(Σ|X1, ...,Xn)

is a complicated function of θ, this leads to a difficult multiple integral with respect to v.

As a result, the Bayesian estimation of θ is obtained via simulations based on (16).

Tu and Zhou (2010) demonstrated that the portfolio strategies based on the objective-

based prior work better than the strategies under other priors. In particular, they pro-

posed the application of the objective-based prior to the portfolio weights of the general

mean-variance portfolio and reported good results.

4. Priors for the GMV portfolio weights

In the previous section we concentrated on statistical models for µ and Σ, which

were subsequently used to derive the posterior distributions of a linear combination of

portfolio weights. Thus we specified prior information on k + k(k + 1)/2 parameters to

make an inference about θ of dimension p. In this section we reparameterize the model

to make statements directly about the priors of the portfolio weights. This procedure

is also more natural from a decision making perspective since investors sometimes have

some perception of the optimal or preferred portfolio composition.

More specifically, we consider a reparameterized model for the asset returns which is

used to derive an informative prior and a non-informative prior for the linear combina-

tions of the GMV portfolio weights. We provide explicit formulas for the corresponding

posterior distributions in the next step. It is noted that the posteriors derived under the

reparameterized model are usually the same as the posteriors obtained from the original

model since for any one-to-one mapping ϕ = ϕ(θ), the posterior p(ϕ|X1, ...,Xn) obtained

from the reparameterized model p(X1, ...,Xn|ϕ,λ) must be coherent with the posterior

p(θ|X1, ...,Xn) calculated from the original model p(X1, ...,Xn|θ,λ). Moreover, if the
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model has a sufficient statistic t = t(X), then the posterior p(θ|X1, ...,Xn) derived from

the full model p(X1, ...,Xn|θ,λ) is the same as the posterior p(θ|t) obtained from the

equivalent model p(t|θ,λ) (cf. Bernardo (2005), p.5)).

4.1. Non-informative Prior

We begin with the Jeffreys non-informative prior. Using this prior we derive the

posterior distribution for the weights of the GMV portfolio. Let L̃ = (LT ,1)T , Σ̃ =

L̃Σ−1L̃T , ζ = 1TΣ−11, S̃ = L̃S−1L̃T , and Ψ = LΣ−1LT − LΣ−111TΣ−1LT

1TΣ−11
. Because

Σ̃ =

[
LΣ−1LT LΣ−11

1TΣ−1LT 1TΣ−11

]
= ζ

[
Ψ/ζ + θθT θ

θT 1

]
(17)

we get that

|Σ̃| = ζ

∣∣∣∣LΣ−1LT − LΣ−111TΣ−1LT

1TΣ−11

∣∣∣∣ = ζ|Ψ|. (18)

Since (n − 1)S|Σ ∼ Wk(n − 1,Σ) (k-dimensional Wishart distribution with n − 1

degrees of freedom and covariance matrix Σ) and rank(L̃) = p+ 1 we get from Theorem

3.2.11 of Muirhead (1982) that

(n− 1)S̃−1|Σ ∼ Wp+1

(
n+ p− k, Σ̃−1

)
.

From the properties of the Wishart distribution (see Muirhead (1982)) it holds that

(n− 1)−1S̃|Σ ∼ IWp+1

(
n− k + 2(p+ 1), Σ̃

)
.

This shows that S̃ is a sufficient statistic for Σ̃. Then the posterior pn(θ|X1, ...,Xn)

obtained from the full model coincides with the posterior pn(θ|(n − 1)−1S̃) calculated

from the equivalent model (cf. Bernardo (2005), p. 5)).

Next, we rewrite the likelihood function in terms of (θ,Ψ, ζ). It holds that

L
(

(n− 1)−1S̃ |θ,Ψ, ζ
)
∝ |Σ̃|(n−k+p)/2etr

[
−n− 1

2
Σ̃S̃−1

]
. (19)

Using (18) and

tr[S̃−1Σ̃] = ζtr

([
S̃
(−)
11 S̃

(−)
12

S̃
(−)
21 S̃

(−)
22

][
Ψ/ζ + θθT θ

θT 1

])
= tr[S̃

(−)
11 Ψ] + ζ(tr[S̃

(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22 ),

where

S̃
(−)
11 =

(
LS−1LT − LS−111TS−1LT

1TS−11

)−1
,

S̃
(−)
12 = −S̃

(−)
11

LS−11

1TS−11
, S̃

(−)
21 =

[
S̃
(−)
12

]T
,

S̃
(−)
22 = (1TS−11)−1 +

1TS−1LT S̃
(−)
11 LS−11

(1TS−11)2
,

11



we get

logL((n− 1)−1S̃|θ,Ψ, ζ) ∝ n− k + p

2
log |Ψ|+ n− k + p

2
log ζ − n− 1

2
tr[S̃

(−)
11 Ψ]

− ζ(n− 1)

2

(
tr[S̃

(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22

)
. (20)

Let φ = (θT ,vech(Ψ)T , ζ)T . Then the Fisher information matrix I(θ,Ψ, ζ) for the

parameters (θ,Ψ, ζ) is given by (see Appendix B)

I(θ,Ψ, ζ) = −E

[
∂2 logL((n− 1)−1S̃|θ,Ψ, ζ)

∂φ∂φT

]

=

 (n− k + p)ζΨ−1 0p×p(p+1)/2 0p

0p(p+1)/2×p
n−k+p

2
GT
p (Ψ−1 ⊗Ψ−1)Gp 0p(p+1)/2

0Tp 0Tp(p+1)/2
n−k+p

2
ζ−2

 ,
where Gp is the duplication matrix defined by vec(B) = Gpvech(B) for any symmetric

B(p× p); vec denotes the operator which transforms a matrix into a vector by stacking

the columns of the matrix; vech stands for the operator that takes a symmetric p × p

matrix and stacks the lower triangular half into a single vector of length p(p+ 1)/2; 0p×p

is the p× p null matrix and 0p denotes the p-dimensional null vector.

since (see, e.g. Magnus and Neudecker (2007))

|(GT
p Gp)

−1GT
p (Ψ−1 ⊗Ψ−1)Gp(G

T
p Gp)

−1| = 2−p(p−1)/2|Ψ|−(p+1)

we get that

|I(θ,Ψ, ζ)| ∝ ζp−2|Ψ|−p−2.

Hence, the Jeffreys prior for (θ,Ψ, ζ) is given by

pn(θ,Ψ, ζ) ∝ ζp/2−1|Ψ|−p/2−1. (21)

Using the Jeffreys prior (21) we obtain the posterior distribution of (θ,Ψ, ζ) expressed as

pn

(
θ,Ψ, ζ| (n− 1)−1S̃

)
∝ L

(
(n− 1)−1S̃ |θ,Ψ, ζ

)
pn (θ,Ψ, ζ)

∝ ζ(n−k+2p)/2−1exp

{
−ζ(n− 1)

2

(
tr[S̃

(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22

)}
× |Ψ|(n−k)/2−1etr

{
−n− 1

2
S̃
(−)
11 Ψ

}
.

Integrating out Ψ and ζ the posterior distribution for θ equals

pn
(
θ| (n− 1)−1S̃

)
∝

(
tr[S̃

(−)
11 θθT ] + 2tr[S̃

(−)
12 θT ] + S̃

(−)
22

)−(n−k+2p)/2

∝
(
S̃
(−)
22 −

(
S̃
(−)
12

)T (
S̃
(−)
11

)−1
S̃
(−)
12 +

(
θ +

(
S̃
(−)
11

)−1
S̃
(−)
12

)T
S̃
(−)
11

(
θ +

(
S̃
(−)
11

)−1
S̃
(−)
12

))−(n−k+2p)/2

∝ tp

n− k + p;−
(
S̃
(−)
11

)−1
S̃
(−)
12 ;

S̃
(−)
22 −

(
S̃
(−)
12

)T (
S̃
(−)
11

)−1
S̃
(−)
12

n− k + p

(
S̃
(−)
11

)−1

 .
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Rewriting the location vector and the dispersion matrix of the multivariate t-distribution

by using

−(S̃
(−)
11 )−1S̃

(−)
12 = θ̂, (22)

S̃
(−)
11 = (LRdL

T )−1, (23)

S̃
(−)
22 −

(
S̃
(−)
12

)T (
S̃
(−)
11

)−1
S̃
(−)
12 = (1TS−11)−1 (24)

leads to the following result.

Theorem 2. Let X1, ...,Xn|µ,Σ be independently and identically distributed with Xi|µ,Σ ∼
Nk(µ,Σ). Let L be a p × k matrix of constants with p < k. Then the posterior for the

GMV portfolio weights θ under the Jeffreys non-informative prior pn(θ,Ψ, ζ) is given by

θ|X1, ...,Xn ∼ tp

(
n− k + p; θ̂;

1

n− k + p

LRdL
T

1TS−11

)
. (25)

Theorem 2 shows that the posterior for the GMV portfolio weights under the Jeffreys

non-informative prior pn(θ,Ψ, ζ) has a p-variate t-distribution with n− k + p degrees of

freedom, location vector θ̂ and dispersion matrix 1
n−k+p

LRdL
1TS−11

. This result is similar to

the one obtained for the diffuse prior. The difference is present in the degrees of freedom

of the t-distribution only.

Applying the properties of the multivariate t-distribution we get that the Bayesian

estimation of θ under the non-informative prior (21) is

θ̂n = θ̂,

which is the same as under the diffuse prior (6).

4.2. Informative Prior

Here we consider an informative prior for the GMV weights obtained under a hierar-

chical Bayesian model. Tunaru (2002) developed a multiple response model for counts

which is specified hierarchically and belongs to the fully Bayesian family. Here we consider

a similar hierarchical model.

The suggested informative prior is given by

θ ∼ Np

(
wI ,

1

ζ
Ψ−1

)
Ψ ∼ Wp(νI ,SI)

ζ ∼ Gamma(δ1, 2δ2),

where wI is the prior mean; νI is a prior precision parameter on Ψ; SI is the known

matrix; δ1 and δ2 are prior constants. The joint prior is expressed as

pI (θ,Ψ, ζ) ∝
∣∣∣∣1ζΨ−1

∣∣∣∣−1/2 exp

{
−ζ

2
(θ −wI)

TΨ(θ −wI)

}
× ζδ1−1|Ψ|(νI−p−1)/2 exp

{
−1

2
tr[S−1I Ψ]− ζ

2δ2

}
. (26)
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Then the posterior distribution under the informative prior (26) is given by

pI

(
θ,Ψ, ζ

∣∣∣(n− 1)−1S̃
)
∝ L

(
(n− 1)−1S̃

∣∣∣θ,Ψ, ζ
)
pI (θ,Ψ, ζ) ,

where the likelihood function is given in (20). Thus,

pI

(
θ,Ψ, ζ

∣∣∣(n− 1)−1S̃
)
∝ |Ψ|(n−k+νI)/2 etr

{
−1

2
AΨ

}
× ζ(n−k+2p+2δ1−2)/2 exp

{
−ζ(n− 1)

2

(
δ−12

n− 1
+ tr[S̃

(−)
11 θθ

T ]

+ 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22

)}
,

where

A = A(θ, ζ) = ζ(θ −wI)(θ −wI)
T + S−1I + (n− 1)(LRdL

T )−1.

Integrating out Ψ and using the equalities (cf. Harville (1997), p. 205)

|A| = |S−1I + (n− 1)(LRdL
T )−1|

× [1 + ζ(θ −wI)
T (S−1I + (n− 1)(LRdL

T )−1)−1(θ −wI)],

tr[S̃
(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22 =

(
θ + (S̃

(−)
11 )−1S̃

(−)
12

)T
S̃
(−)
11

(
θ + (S̃

(−)
11 )−1S̃

(−)
12

)
− (S̃

(−)
12 )T (S̃

(−)
11 )−1S̃

(−)
12 + S̃

(−)
22

together with (22)-(24) we get

pI

(
θ, ζ

∣∣∣(n− 1)−1S̃
)

(27)

∝ |A|−(n−k+p+νI+1)/2ζ(n−k+2p+2δ1−2)/2

× exp

{
−(n− 1)ζ

2

(
2
δ−12

n− 1
+ tr[S̃

(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22

)}
∝ [1 + ζ(θ −wI)

T (S−1I + (n− 1)(LRdL
T )−1)−1(θ −wI)]

−(n−k+p+νI+1)/2

× ζ(n−k+2p+2δ1−2)/2 exp

{
−(n− 1)ζ

2

(
δ−12

n− 1
+ 1TS−11

+
(
θ − θ̂

)T
(LRdL

T )−1
(
θ − θ̂

))}
. (28)

Let U(a, b, z) denote the confluent hypergeometric function Abramowitz and Stegun

(1972) expressed as

U(a, b, z) =
1

Γ(a)

∫ ∞
0

ta−1 exp{−zt}(1 + t)b−a−1dt

for a = (n− k + 2p+ 2δ1)/2, b = (p+ 2δ1 − νI + 1)/2, and z = g(θ) with

g(θ) =
n− 1

2

((
θ − θ̂

)T
(LRdL

T )−1
(
θ − θ̂

)
+ (1TS−11)−1

)
+

δ−1
2

n−1

(θ −wI)T (S−1I + (n− 1)(LRdLT )−1)−1(θ −wI)
. (29)
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Then, the posterior for θ is given by

pI(θ|(n− 1)−1S̃)

∝
∫

[1 + ζ(θ −wI)
T (S−1I + (n− 1)(LRdL

T )−1)−1(θ −wI)]
−(n−k+p+νI+1)/2

× ζ(n−k+2p+2δ1−2)/2 exp

{
−(n− 1)ζ

2

((
θ − θ̂

)T
(LRdL)−1

(
θ − θ̂

)
+ (1TS−11)−1 +

δ−12

n− 1

)}
dζ

∝ [(θ −wI)
T (S−1I + (n− 1)(LRdL

T )−1)−1(θ −wI)]
(n−k+2p+2δ1)/2

× U((n− k + 2p+ 2δ1)/2; (p+ 2δ1 − νI + 1)/2; g(θ)).

This result is summarized in Theorem 3.

Theorem 3. Let X1, ...,Xn|µ,Σ be independently and identically distributed with Xi|µ,Σ ∼
Nk(µ,Σ). Let L be a p × k matrix of constants with p < k. Then the posterior for θ

under the informative prior pI(θ,Ψ, ζ) is given by

pI(θ|X1, ...,Xn) ∝ [(θ −wI)
T (S−1I + (n− 1)(LRdL

T )−1)−1(θ −wI)]
(n−k+2p+2δ1)/2

× U((n− k + 2p+ 2δ1)/2; (p+ 2δ1 − νI + 1)/2; g(θ)) (30)

where g(θ) is given in (29).

Theorem 3 shows that the posterior for the GMV portfolio weights under the infor-

mative prior pI(θ,Ψ, ζ) is given using a well-known special mathematical function. Using

(30), the Bayesian estimator of θ is obtained

θ̂I =

∫
Rp
θpI(θ|X1, ...,Xn)dθ, (31)

which is a p-dimensional integral. This integral can be evaluated numerically.

Next, we derive another expression for θ̂I which is based on a one-dimensional integral

independent of p. Using

b−a ∝
∫ +∞

0

τa−1e−bτ/2dτ

and (27), the posterior distribution under the informative prior is given by

pI

(
θ, ζ

∣∣∣(n− 1)S̃
)
∝

∫ +∞

0

τ (n−k+p+νI−1)/2ζ(n−k+2p+2δ1−2)/2

× exp

{
− (n− 1)ζ

2

(
δ−12

n− 1
+ 1TS−11 +

(
θ − θ̂

)T
(LRdL

T )−1
(
θ − θ̂

))}
× exp

{
−τ

2
[1 + ζ(θ −wI)

T (S−1I + (n− 1)(LRdL
T )−1)−1(θ −wI)]

}
dτ.
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Let

P1 = (S−1I + (n− 1)(LRdL
T )−1)−1,

P2 = (n− 1)(LRdL
T )−1,

r = δ−12 + (n− 1)(1TS−11)−1,

VI(τ) = (τP1 + P2)
−1,

rI(τ) = (τP1 + P2)
−1(τP1wI + P2θ̂),

hI(τ) = r + τwT
I P1wI + θ̂

T
P2θ̂ − rI(τ)T (VI(τ))−1rI(τ).

Then

pI(θ, ζ, τ |(n− 1)−1S̃) ∝ exp

{
−1

2
(θ − rI(τ))T

(
1

ζ
VI(τ)

)−1
(θ − rI(τ))

}

× ζ(n−k+2p+2δ1−2)/2 exp

{
−ζ

2
hI(τ)

}
× τ (n−k+p+νI−1)/2 exp

{
−τ

2

}
. (32)

Using (32) we get a very useful stochastic representation for θ expressed as

θ
d
= rI(τ) + ζ−1/2(VI(τ))1/2z0, (33)

where

z0 ∼ Np(0p, Ip), (34)

ζ|τ ∼ Gamma

(
(n− k + 2p+ 2δ1)/2,

2

hI(τ)

)
, (35)

τ ∼ Gamma ((n− k + p+ νI − 1)/2, 2) . (36)

The application of (33) leads to

θ̂I = E(θ|X1, ...,Xn) = E(E(θ|τ, ζ,X1, ...,Xn)|X1, ...,Xn)

= E(rI(τ)|X1, ...,Xn)

=

∫ +∞

0

(τP1 + P2)
−1(P2θ̂ + τP1wI)fGamma((n−k+p+νI+1)/2,2)(τ)dτ,

which is a one-dimensional integral and can easily approximated numerically. Finally, we

note that θ̂I ca also be approximated by using the stochastic representation (33). This

is achieved by drawing a sample of z0, ζ, and τ with the joint distribution as specified in

(34)-(36), calculating θ from (33), and then taking the average.

5. Credible Sets

In this section we derive credible sets for the GMV portfolio weights based on the

posterior distributions obtained in the previous sections.
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5.1. Credible Intervals for a GMV Portfolio Weight

Without loss of generality we deal with the first weight of the GMV portfolio only

and note that the credible intervals for other weights can be obtained similarly. Let L =

eT1 = (1, 0, ..., 0). Then under the diffuse prior (6) the posterior for θ = eT1 Σ−11/1TΣ−11

is expressed as

θ|X1, ...,Xn ∼ t

(
n− 1;

eT1 S−11

1TS−11
;

1

n− 1

eT1 Rde1

1TS−11

)
. (37)

Let tm;β be the β-quantile of the t-distribution with m degrees of freedom. The ap-

plication of (9) leads to the (1 − α)-credible interval Cd for the first weight of the GMV

portfolio given by

Cd =

eT1 S−11

1TS−11
− 1√

n− 1

√
eT1 Rde1
√

1TS−11
tn−1;α/2;

eT1 S−11

1TS−11
+

1√
n− 1

√
eT1 Rde1
√

1TS−11
tn−1;1−α/2

 . (38)

Similarly, under the conjugate prior (7) the (1− α)-credible interval Cc of θ is

Cc =

[
eT1 V−1c 1

1TV−1c 1
− 1√

νc + n− k − 1

√
eT1 Rce1√
1TV−1c 1

tνc+n−k−1;α/2;

eT1 V−1c 1

1TV−1c 1
+

1√
νc + n− k − 1

√
eT1 Rce1√
1TV−1c 1

tνc+n−k−1;1−α/2

]
, (39)

while under the non-informative prior (21) it is given by

Cn =

[
eT1 S−11

1TS−11
− 1√

n− k + p

√
eT1 Rde1√
1TS−11

tn−k+p;α/2;

eT1 S−11

1TS−11
+

1√
n− k + p

√
eT1 Rde1√
1TS−11

tn−k+p;1−α/2

]
. (40)

Under the hierarchial prior (8) and the informative prior (26) the (1 − α)-credible

intervals Ch and CI for the GMV portfolio weight are given by

Ch =
[
qh;α/2(θ|X1, ...,Xn); qh;1−α/2(θ|X1, ...,Xn)

]
(41)

and

CI =
[
qI;α/2(θ|X1, ...,Xn); qI;1−α/2(θ|X1, ...,Xn)

]
, (42)

where qh;β(θ; X1, ...,Xn) is the β-quantile of the posterior for a GMV portfolio weight

(11) under the hierarchial prior (8); qI;β(θ; X1, ...,Xn) is the β-quantile of the posterior

for a GMV portfolio weight (30) under the informative prior (26). The quantiles for both

posteriors ph(θ|X1, ...,Xn) and pI(θ|X1, ...,Xn) are obtained via simulations by using the

stochastic representations (12) and (33), respectively.
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5.2. Elliptical Credible Sets

Let Fi,j denote the F -distribution with i and j degrees of freedom. In Theorem 1a we

prove that θ follows a p-variate multivariate t-distribution with n− 1 degrees of freedom,

location parameter θ̂ and scale parameter 1
n−1

LRdL
T

1TS1
under the diffusion prior (6). This

result provides a motivation for considering the following elliptical credible set expressed

as {
r ∈ Rp :

n− 1

p
(1TS−11)(θ̂ − r)T

(
LRdL

T
)−1

(θ̂ − r) ≤ Fp,n−1;1−α

}
,

where Fi,j;β denotes the β-quantile of F -distribution with i and j degrees of freedom.

The above result follows from the fact that θ|X1, ...,Xn ∼ tp

(
n− 1, θ̂, 1

n−1
LRdL

T

1TS1

)
and consequently Td = n−1

p
(1TS−11)(θ̂ − r)T

(
LRdL

T
)−1

(θ̂ − r) ∼ Fp,n−1.

Similarly, the elliptical credible set under the conjugate prior (7) is given by{
r ∈ Rp :

νc + n− k − 1

p
(1TV−1c 1)(θ̂ − r)T

(
LRcL

T
)−1

(θ̂ − r) ≤ Fp,νc+n−k−1;1−α

}
,

while under the non-informative prior (21) it is given by{
r ∈ Rp :

n− k + p

p
(1TS−11)(θ̂ − r)T

(
LRdL

T
)−1

(θ̂ − r) ≤ Fp,n−k+p;1−α

}
.

Finally, using the stochastic representations (12) and (33) for θ under the hierarchial

prior (8) and under the informative prior (26), the elliptical credible sets are obtained

numerically by applying the bootstrap method (see Davison and Hinkley (1997), p.174).

6. Numerical and empirical illustrations

6.1. Numerical study

In this section we assess the performance of different priors within a numerical study.

We compute the coverage probabilities of credible intervals for the portfolio weights based

on the posterior distributions from the previous sections. For this purpose we compute

the 95% credible intervals explicitly if the corresponding quantiles come from a known

distribution. Alternatively, as in the case of hierarchical and informative priors, the

quantiles are computed via simulations using the respective stochastic representation.

The number of repetitions is set to 1000. In the next step we simulate 10000 samples

of asset returns, compute the corresponding portfolio weights and count the fraction of

times the weights are covered by the credible intervals.

The comparison is done for p = 1, L = eT1 , µ = 0.01 · (1, 2, ..., k)T and Σ =

(ρ|i−j|)i,j=1,..,k, where ρ takes values between -1 and 1. Since dimension of the portfo-

lio is particularly of interest we consider k ∈ {5, 10, 20, 50}. The sample size n is set to

50, which is a typical value in financial literature and corresponds to roughly two months
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Figure 1: Coverage probabilities for 95% credible intervals based on different priors as a function of ρ in

different dimensions k.

of daily data or a year of weekly data, respectively. In all considered cases we take the

following parameters for the conjugate prior νc = κc = n, µc = 0k and Sc = Ik; for the

hierarchial prior ε1 = 0.0001, ε2 = 0.0001 (as in Greyserman et al. (2006)), κh = νh = n

and Sh = Ik; for the informative prior δ1 = 1 and δ2 = 0.5, νI = n, wI = 1/k, SI = 1.

The coverage probabilities as functions of ρ for different values of k are plotted in

Figure 1. The informative and the hierarchical priors in particular obviously lead to

too wide credible intervals, causing the coverage probability to be almost one. This

holds in all dimensions and for all values of ρ in case of the hierarchical prior, whereas

an extreme behaviour of the informative prior is present only for large values of k and

negative correlation. The conjugate prior causes too narrow credible intervals leading to

coverage probabilities much lower than 95%. The higher is k, the larger is the discrepancy.

The diffuse prior shows a stable behavior with respect to ρ and heavily undershoots the

true coverage probability only for high k. In contrast to the previous priors, the non-

informative prior does uniformly the best job with a minor bias even for k = 50.

6.2. Empirical illustration

Within the empirical illustration we consider the weekly logarithmic returns for four

international financial indices DAX, NIKKEI, S&P500 and FTSE for the period from
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22.01.1985 till 27.01.2015 resulting in 1567 observation points. The empirical study is

twofold. First, we assess the posterior distribution of the GMV portfolio weights. Second,

we evaluate a trading strategy based on Bayesian estimates for the weight. Within the

study we consider both the priors for the asset returns and the priors for portfolio weights.

To diversify the study and to show the robustness of the results we choose two types of

priors. The first prior mimics the classical statistical approach when a historical sample is

used to estimate the parameters of priors relying on the empirical Bayes approach. Here

we use a sample of length 255 (5 years of weekly data) preceding the estimation period.

The second type of the prior utilizes the evidence that the equally weighted portfolio shows

a good performance out-of-sample. Thus here we take the equally weighted portfolio as

the second prior in our study. In the case of priors for the parameters of asset returns this

corresponds to equal mean returns, equal variances and equal correlations for all assets.

To assess the posterior distribution we take the observation from 16.03.2010 till 27.01.2015

as the in-sample period, and the data form 26.04.2005 till 09.03.2010 as a prerun. The

mean, the covariance matrix and the corresponding global minimum variance portfolio

weights for the prior sample are equal to

µprior = (12.505, −3.120, −1.195, 4.792)′ × 10−4,

Sprior = 10−4 ×


8.743 6.361 6.380 6.614

6.361 13.144 5.123 6.460

6.380 5.123 6.892 5.367

6.614 6.460 5.367 6.955

 .

These parameters are used as input parameters in the prior distributions, i.e. µc =

µprior, Sc = Sh = Sprior, wI = wprior, etc. For the working sample the corresponding

parameters are equal to:

X̄ = (23.176, 20.377, 22.604, 7.665)′ × 10−4,

S = 10−4 ×


8.620 5.072 4.920 5.814

5.072 10.041 3.564 3.907

4.920 3.564 4.225 3.942

5.814 3.907 3.942 5.165

 .

Note that the prior period covers the global financial crisis, which was followed by a

relatively calm period starting from 2010. This is mirrored in the estimated parameters.

The average returns in the crisis period are much lower and for two markets even negative.

The volatilities appear to reflect the turmoil performance of financial markets heavily.

Keeping other hyperparameters as in the simulation study, we compute the posterior

densities for each weight, thus setting L being equal to basis vectors ei for i = 1, ..., 4.

20



−0.5 0.0 0.5 1.0

0
2

4
6

8
Posterior densities: diffuse prior

DAX
NIKKEI
S&P500
FTSE

−0.5 0.0 0.5 1.0

0
2

4
6

8

Posterior densities: conjugate prior

DAX
NIKKEI
S&P500
FTSE

−0.5 0.0 0.5 1.0

0
2

4
6

8

Posterior densities: non−informative prior

DAX
NIKKEI
S&P500
FTSE

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

Posterior densities: informative prior

DAX
NIKKEI
S&P500
FTSE

Figure 2: Posterior densities for the portfolio weights of DAX, NIKKEI, S&P500 and FTSE for the

period from 16.03.2010 till 27.01.2015 based on the diffuse (top left), the conjugate prior (top right),

the non-informative (bottom left), and the informative prior (bottom right). The priors are based on

historical observations from 26.04.2005 till 09.03.2010

Due to poor coverage of the hierarchical prior we drop it from the analysis here. The

plots of all densities based on non-informative and informative priors are given in Figure

2 for the historical prior and in 3 for the prior based on the equally weighted portfolio.

Due to low dimension, both priors lead obviously to very close posteriors centered around

the sample weights. We expect stronger deviation with increasing k. The conjugate prior

fails to incorporate the prior information appropriately and leads to the density similar to

the density of the non-informative prior. In contrast to this observation, the informative

prior clearly utilizes the prior information leading to shifted and wider densities. This is

consistent with our expectations. The densities with the equally weighted portfolio as a

prior show clearly the shift in the weights to 0.25. The same is however not observed for

the conjugate prior. Here the large sample size reduces the influence of the prior.

To evaluate the goodness of the suggested estimators we simulate a real trading strat-

egy. Compared are the estimators based on the conjugate, hierarchical, non-informative

and informative priors for the weights. The prior information reflects our belief into the

equally weighted portfolio, which is our benchmark. The diffuse priors lead to numeri-

cally identical point estimates as the non-informative prior and thus is dropped from the
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Figure 3: Posterior densities for the portfolio weights of DAX, NIKKEI, S&P500 and FTSE for the period

from 16.03.2010 till 27.01.2015 based on the the conjugate prior (left) and the informative prior (right).

The priors correspond to the equally weighted portfolio.

analysis here. At each moment of time we estimate the required parameters using the

previous 51 observations (one year of weekly data). The portfolio is hold one time period,

i.e. one week. At the beginning of the next week we compute the realized portfolio return.

This procedure is repeated for the complete data set. Using the obtained time series of

portfolio returns, we compute the following performance measures: mean portfolio re-

turn, standard deviation of the portfolio return, Sharpe ratio, Value-at-Risk (VaR) and

expected shortfall (ES) at 95% and 99% levels. The results are summarized in Table 1.

The equally weighted portfolio has the highest average return, but clearly underperforms

the remaining alternatives in terms of risk. Among the Bayesian strategies the estimators

based on the conjugate prior seem to have the best risk measures, but the lowest average

return. To assess the dynamics of the weights we plot the corresponding times series in

Figure 4. The behavior of the weights captures the volatile periods on financial markets

with rapid drops in more risky assets. The hierarchical prior leads to extremely volatile

portfolio weights, leading to an unrealistic and expensive strategy. The informative prior

for the weights utilizes the equally weighted prior and results in portfolio weights which

are much closer to 0.25 (weight of the equally weighted portfolio). Note that the estimator

with non-informative prior numerically coincides with the classical frequentist estimator

of the portfolio weights.

7. Summary

In this paper we analyse the global minimum variance portfolio within a Bayesian

framework. This setup allows us to incorporate prior beliefs of the investors and to incor-

porate these into the portfolio decisions. Assuming different priors for the asset returns

we derive explicit formulas for the posterior distributions of linear combinations of GMV

portfolio weights. In particular, we consider non-informative (diffuse) and informative

(conjugate and hierarchical) priors. Furthermore, relying on a suitable model transfor-

22



conjugate hierarchical non-inf informative eq

µ̂p × 10−4 8.7145 9.2926 9.0381 9.2451 10.0631

σ̂p × 10−2 2.1293 2.2394 2.1446 2.1596 2.8007

Sharpe ratio ×10−2 4.0927 4.1496 4.2143 4.2809 4.4135

VaR 95% ×10−2 -6.0889 -6.6330 -6.0865 -6.9071 -7.0855

VaR 99% ×10−2 -3.3035 -3.4347 -3.3142 -3.3805 -3.5642

ES 95% ×10−2 -9.3079 -10.0754 -9.3323 -9.4014 -9.4391

ES 99% ×10−2 -5.3715 -5.5685 -5.3862 -5.4119 -5.7093

Table 1: Performance measures of the alternative trading strategies based on different estimates of

the portfolio weights from 22.01.1985 till 27.01.2015. The estimation window is set to 51. The priors

correspond to the equally weighted portfolio.
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Figure 4: Time series of alternative estimators of optimal portfolio weights. Length of the estimation

window is set to 51. The priors correspond to the equally weighted portfolio.
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mation, we suggest a prior directly for the portfolio weights. The results are evaluated

within a numerical study, where we assess the coverage probabilities of credible intervals,

and within an empirical study, where we consider the posterior densities for the weights

of an international portfolio. Additionally, we run a simulated trading strategy with real

data and evaluate the strategies with a series of performance measures. Both studies

showed good results of the suggested priors and revealed the need for further analysis,

particularly the extension to the general mean-variance portfolio.

8. Appendix

8.1. Appendix A: Proof of Theorem 1

First, we present an important lemma which is used in the proof of Theorem 1.

Lemma 1. Let

Σ|X1, ...,Xn ∼ IWk(τ0,V0)

with V0 = V0(X1, ...,Xn) and let L be a p× k matrix of constants. Then

LΣ−11

1TΣ−11

∣∣∣∣X1, ...,Xn ∼ tp

(
τ0 − k − 1;

LV−10 1

1TV−10 1
;

1

τ0 − k − 1

LR0L
T

1TV−10 1

)
,

where R0 = V−10 −V−10 11TV−10 /1TV−10 1.

Proof of Lemma 1: From Theorem 3.4.1 of Gupta and Nagar (2000) it holds that

Σ−1|X1, ...,Xn has a k-dimensional Wishart distribution with (τ0 − k − 1) degrees of

freedom and the covariance matrix V−10 .

Let L̃ = (LT ,1)T and A = L̃Σ−1L̃T = {Aij}i,j=1,2 with A11 = LΣ−1LT , A12 =

LΣ−11, A21 = 1TΣ−1LT , and A22 = 1TΣ−11. Similarly, let H = L̃V−10 L̃T = {Hij}i,j=1,2

with H11 = LV−10 LT , H12 = LV−10 1, H21 = 1TV−10 LT and H22 = 1TV−10 1.

Since Σ−1|X1, ...,Xn ∼ Wk(τ0− k− 1,V−10 ) and rank(L̃) = p+ 1 ≤ k, the application

of Theorem 3.2.5 by Muirhead (1982) leads to A ∼ Wp+1(τ0− k− 1,H). Moreover, using

Theorem 3.2.10 of Muirhead (1982) , we obtain

LΣ−11

1TΣ−11
=

A12

A22

∣∣∣∣A22,X1, ...,Xn ∼ Np(H12H
−1
22 ,H11·2A

−1
22 ), (43)

where H11·2 = H11 −H12H21/H22.

The application of Theorem 3.2.8 by Muirhead (1982) leads to A22

H22
∼ χ2

τ0−k−1. Conse-

quently,

A22|X1, ...,Xn ∼ Γ((τ0 − k − 1)/2; 2H22),

i.e. A22 is gamma distributed with shape parameter (τ0 − k − 1)/2 and scale parameter

2H22.
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Hence, the posterior distribution of LΣ−11
1TΣ−11

is given by

p LΣ−11

1TΣ−11

∣∣∣X1,...,Xn
(y) =

∫ +∞

0

p LΣ−11

1TΣ−11

∣∣∣A22,X1,...,Xn
(y|A22 = z)pA22|X1,...,Xn(z)dz

=
(2π)−p/2|H11·2|−1/2

Γ((τ0 − k − 1)/2)(2H22)(τ0−k−1)/2

∫ ∞
0

z(p+τ0−k−1)/2−1

× exp
{
−z

2

[
H−122 + (y −H12H

−1
22 )TH−111·2(y −H12H

−1
22 )
]}

dz

=
Γ((p+ τ0 − k − 1)/2)

Γ((τ0 − k − 1)/2)

∣∣∣ 1
τ0−k−1

H11·2
H22

∣∣∣−1/2
[π(τ0 − k − 1)]p/2

×

[
1 +

1

τ0 − k − 1

(
y − H12

H22

)T [
1

τ0 − k − 1

H11·2

H22

]−1(
y − H12

H22

)](p+τ0−k−1)/2
,

where the last expression is the density of p-dimensional t-distribution with (τ0 − k − 1)

degrees of freedom, location vector H12H
−1
22 , and scale matrix 1

τ0−k−1H11·2H
−1
22 . Noting

that

H12H
−1
22 =

LV−10 1

1TV−10 1
and H11·2H

−1
22 =

(
LV−10 LT − LV−10 11TV−10 LT

1TV−10 1

)
1

1TV−10 1

completes the proof of Lemma 1 �

Proof of Theorem 1: First, we rewrite the expression of the likelihood function

which is then used in the calculation of the posteriors. It holds that

L(X1, ...,Xn|µ,Σ) ∝ |Σ|−n/2 exp

{
−1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

}

∝ |Σ|−n/2 exp

{
−n

2
(X− µ)TΣ−1(X− µ)− n− 1

2
tr[SΣ−1]

}
a) In the case of the standard diffuse prior pd(µ,Σ), the posterior distribution of

(µ,Σ) is given by

pd(µ,Σ|X1, ...,Xn) ∝ L(X1, ...,Xn|µ,Σ)pd(µ,Σ).

Integrating out µ leads to

pd(Σ|X1, ...,Xn) ∝
∫
Rk
L(X1, ...,Xn|µ,Σ)pd(µ,Σ)dµ

∝ |Σ|−(n+k+1)/2 exp

{
−n− 1

2
tr[SΣ−1]

}
×

∫
Rk

exp
{
−n

2
(X− µ)TΣ−1(X− µ)

}
dµ

∝ |Σ|−(n+k)/2 exp

{
−n− 1

2
tr[SΣ−1]

}
.
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The application of Lemma 1 with τ0 = n+ k and V0 = (n− 1)S completes the proof

of Theorem 1a.

b) The posterior distribution of (µ,Σ) under the conjugate prior is given by

pc(µ,Σ|X1, ...,Xn) ∝ L(X1, ...,Xn|µ,Σ)pc(µ,Σ).

Integrating out µ leads to

pc(Σ|X1, ...,Xn) ∝
∫
Rk
L(X1, ...,Xn|µ,Σ)pc(µ,Σ)dµ

∝ |Σ|−(νc+n+1)/2 exp

{
−1

2
tr[((n− 1)S + Sc)Σ

−1]

}
×

∫
Rk

exp
{
−n

2
(Xn − µ)TΣ−1(Xn − µ)

− κc
2

(µc − µ)TΣ−1(µc − µ)
}

dµ

∝ |Σ|−(νc+n+1)/2 exp

{
−1

2
tr[VcΣ

−1]

}
×

∫
Rk

exp

{
−n+ κc

2
(rc − µ)TΣ−1(rc − µ)

}
dµ

∝ |Σ|−(νc+n)/2etr

{
−1

2
VcΣ

−1
}
,

where

rc =
nXn + κcµc
n+ κc

,

Vc = (n− 1)S + Sc + (n+ κc)rcr
T
c + nXnX

T

n + κcµ0µ
T
0 .

The rest of the proof follows from Lemma 1 with τ0 = νc + n and V0 = Vc.

c) Under the hierarchial prior ph(µ,Σ, ξ, η), the conditional posterior distribution of

(µ,Σ) given ξ, η,X1, ...,Xn is

ph(µ,Σ|ξ, η,X1, ...,Xn) ∝ L(X1, ...,Xn|µ,Σ)ph(µ,Σ|ξ, η)

∝ |Σ|−(νh+n+1)/2 exp

{
−1

2
tr[η−1ShΣ

−1]

}
× η−k(νh−k−1)/2 exp

{
−κh

2
(µ− ξ1)TΣ−1(µ− ξ1)

}
× exp

{
−n

2
(X− µ)TΣ−1(X− µ)− n− 1

2
tr[SΣ−1]

}
.

Integrating out µ leads to

ph(Σ|ξ, η,X1, ...,Xn) ∝
∫
Rk
ph(µ,Σ|ξ, η,X1, ...,Xn)dµ

∝ η−k(νh−k−1)/2|Σ|−(νh+n)/2 exp

{
−1

2
tr[VhΣ

−1]

}
,
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where

rh = rh(ξ) =
nX + κhξ1

n+ κh
,

Vh = Vh(ξ, η) = (n− 1)S + η−1Sh − (n+ κh)rhr
T
h + nX X

T
+ κhξ

211T .

The application of Lemma 1 with τ0 = νh + n and V0 = Vh and the integration over

ξ, η lead to the expression presented in Theorem 1c.

8.2. Appendix B: Derivation of the Fisher information matrix

Let φ = (θT ,vech(Ψ)T , ζ)T . Then the Fisher information matrix I(θ,Ψ, ζ) is given

by

I(θ,Ψ, ζ) = −E
[

∂2

∂φ∂φT
logL((n− 1)−1S̃|θ,Ψ, ζ)

]
,

where (see (20))

logL((n− 1)−1S̃|θ,Ψ, ζ) ∝ n− k + p

2
log |Ψ|+ n− k + p

2
log ζ

− n− 1

2
tr[S̃

(−)
11 Ψ]− ζ(n− 1)

2

(
tr[S̃

(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22

)
.

It holds that

∂

∂θ
logL((n− 1)−1S̃|θ,Ψ, ζ) = −(n− 1)ζS̃

(−)
11 θ − (n− 1)ζS̃

(−)
12 ,

∂2

∂θ∂θT
logL((n− 1)−1S̃|θ,Ψ, ζ) = −(n− 1)ζS̃

(−)
11 ,

∂

∂ζ
logL((n− 1)−1S̃|θ,Ψ, ζ) =

n− k + p

2
ζ−1

− n− 1

2

(
tr[S̃

(−)
11 θθ

T ] + 2tr[S̃
(−)
12 θ

T ] + S̃
(−)
22

)
,

∂2

∂2ζ
logL((n− 1)S̃|θ,Ψ, ζ) = −n− k + p

2
ζ−2,

∂2

∂θ∂ζ
logL((n− 1)−1S̃|θ,Ψ, ζ) = −(n− 1)S̃

(−)
11 θ − (n− 1)S̃

(−)
12 .

From the properties of the differential of a determinant (cf. Magnus and Neudecker

(2007)) we obtain

d|Ψ| = |Ψ|(vec(Ψ−1))Tdvec(Ψ).

Using the relationship between vec and vech operators (see Harville (1997), p. 365)

we get

vec(Ψ) = Gpvech(Ψ),
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and, hence,

d|Ψ| = |Ψ|(vech(Ψ−1))TGT
p Gpdvech(Ψ).

The last equality leads to

∂|Ψ|
∂vech(Ψ)

= |Ψ|(GT
p Gp)

Tvech(Ψ−1)

and, consequently,

∂ ln |Ψ|
∂vech(Ψ)

= GT
p Gpvech(Ψ−1).

The second order derivative is

∂2 ln |Ψ|
∂vech(Ψ)∂(vech(Ψ))T

= GT
p Gp

∂vech(Ψ−1)

∂(vecΨ)T
= −(GT

p Gp)Hp(Ψ
−1 ⊗Ψ−1)Gp,

where the last equality follows from Harville (1997), p. 368 with Hp = (GT
p Gp)

−1GT
p .

Thus using the previous results for the partial derivatives of a symmetric matrix, we

get

∂ logL((n− 1)−1S̃|θ,Ψ, ζ)

∂vech(Ψ)
=

n− k + p

2
GT
p Gpvech(Ψ−1)− n− 1

2
vech(S̃

(−)
11 ),

∂2 logL((n− 1)−1S̃|θ,Ψ, ζ)

∂vech(Ψ)∂(vech(Ψ))T
= −n− k + p

2
GT
p (Ψ−1 ⊗Ψ−1)Gp

∂2 logL((n− 1)−1S̃|θ,Ψ, ζ)

∂vech(Ψ)∂θT
= 0,

∂2 logL((n− 1)−1S̃|θ,Ψ, ζ)

∂vech(Ψ)∂ζ
= 0.

The identity (n − 1)S̃−1 ∼ Wp+1(n + p − k, Σ̃−1) and the properties of the Wishart

distribution (see Muirhead (1982)) lead to

E[S̃−1] =
n+ p− k
n− 1

Σ̃−1 =
n+ p− k
n− 1

[
Ψ−1 −Ψ−1θ

−θTΨ−1 ζ−1 + θTΨ−1θ

]

Hence,

E(S̃
(−)
11 ) =

n+ p− k
n− 1

Ψ−1;

E(S̃
(−)
12 ) = −n+ p− k

n− 1
Ψ−1θ;

E(S̃
(−)
22 ) =

n+ p− k
n− 1

(ζ−1 + θTΨ−1θ)
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As a result the Fisher information matrix is given by

I(θ,Ψ, ζ)

∝ −E

 −(n− k + p)ζS̃
(−)
11 0p×p(p+1)/2 −(n− 1)(S̃

(−)
11 θ + S̃

(−)
12 )

0p(p+1)/2×p −n−k+p
2 GT

p (Ψ−1 ⊗Ψ−1)Gp 0p(p+1)/2

−(n− 1)(S̃
(−)
11 θ + S̃

(−)
12 )T 0Tp(p+1)/2 −n−k+p

2 ζ−2



∝

 (n− k + p)ζΨ−1 0p×p(p+1)/2 0p

0p(p+1)/2×p
n−k+p

2 GT
p (Ψ−1 ⊗Ψ−1)Gp 0p(p+1)/2

0Tp 0Tp(p+1)/2
n−k+p

2 ζ−2

 .
�
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