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Abstract

The inverse of the standard estimate of covariance matrix is frequently used in

the portfolio theory to estimate the optimal portfolio weights. For this problem,

the distribution of the linear transformation of the inverse is needed. We obtain

this distribution in the case when the sample size is smaller than the dimension,

the underlying covariance matrix is singular, and the vectors of returns are inde-

pendent and normally distributed. For the result, the distribution of the inverse

of covariance estimate is needed and it is derived and referred to as the singular

inverse Wishart distribution. We use these results to provide an explicit stochastic

representation of an estimate of the mean-variance portfolio weights as well as to

derive its characteristic function and the moments of higher order.
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1 Introduction

Analyzing multivariate data having fewer observations than their dimension is an impor-

tant problem in the multivariate data analysis. For example, in the mathematical finance,

due to the dependence in historical data the sample size of portfolio assets should be often

considered effectively smaller than the portfolio size. In contrast to the covariance estima-

tion problem, for which the singularities due to both the small sample size and the linear

dependence between variables have been considered, see Dı́az-Garćıa et al. (1997), in the

portfolio theory, where the linear transformations of the inverse of covariance estimates

need to be considered, the singularity problems have not been tackled. In particular, the

problem of finding the distribution of the mean-variance (MV) portfolio weights was only

discussed for the non-singular covariance of the vector of returns and when the sample

size of assets is larger than the portfolio size, see Bodnar and Schmid (2011). Our goal

is to fill this gap and to provide results for this portfolio theory problem, when the small

sample size and the singular covariance matrix are both present. One important reason

for considering the singular covariance matrix case in the portfolio theory is that often in

for a given set of assets, there maybe strong stochastic dependence between them. This is

due to some natural interrelation between asset prices. For example, valuation of assets

within a specific industry branch often are highly correlated. If the dimension of portfolio

is relatively large there is a possibility of (approximate) singularity and the problem needs

to be addressed in the theory.

The paper has two major contributions. The first one lies in deriving the distributional

properties of the generalized inverse Wishart (GIW) random matrix under singularity of

the covariance matrix. This singular covariance case is referred to as the singular inverse

Wishart distribution (SIW). In particular, we show that under the linear transformations

the family of the SIW distributions remains within the GIW distributions. The notable

special case is when the rank of the linear transformation is smaller than the rank of

the covariance matrix. Under this assumption the distribution becomes a regular inverse

Wishart distribution. This is used in our second main contribution that gives a stochastic

representation of a linear transformation of the estimated MV portfolio weights under the

singularity conditions as well as their characteristic function and the moments of higher

order. These results are complementary to the ones obtained in Okhrin and Schmid

(2006), Bodnar and Schmid (2011).

The paper is structured as follows. First, in Section 2, we introduce basic notation

and review known facts about (inverse) Wishart distributions and their generalizations.

In Section 3, we consider the distributional properties for the linear symmetric transfor-

mations of the SIW random matrix. In Theorem 1, we prove that for a SIW matrix A,

its linear symmetric transformation LALT , for a detereministic matrix L, remains gener-

alized Wishart distributed. Theorem 1 is then used to obtain Theorem 2 and Corollary 1

that show independence on random linear transformation. The results can be utilized for
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developing test statistics in the multivariate singular problems, see Srivastava (2007) and

Muirhead (1982). In Section 4 we consider estimation of the optimal portfolio weights

under the singularity. In Theorem 4, we show the independence between the sample mean

vector and the sample covariance matrix and derive their distributions when the sample

size is smaller than the dimension of portfolio. In Theorem 7, we present a stochastic

representation of the distribution of a linear transformation for the estimated MV portfo-

lio weights. Finally, in Corollary 3 and Corollary 4, the expressions of the characteristic

function and the moments of higher order are provided.

2 Notation and basic facts

The Wishart matrix distribution is a multivariate generalization of the chi-square dis-

tribution and has been applied in numerous fields of applied and theoretical statistics.

The distributional properties of the Wishart matrices, the inverse Wishart matrices and

related quantities were established by Olkin and Roy (1954), Khatri (1959), Dı́az-Garćıa

et al. (1997), Bodnar and Okhrin (2008), Drton et al. (2008), Bodnar et al. (2013) among

others. In this section, we collect some basic facts about the Wishart and inverse Wishart

distributions as well as about some of their generalizations.

Let X ∼ Nk,n(0,Σ ⊗ In), i.e. the columns of the random k × n matrix X represent

an iid sample of size n from the k-dimensional normal distribution with zero mean vector

and non-singular covariance matrix Σ. If the sample size n is greater than the dimension

k, then A = XXT has the k-dimensional Wishart distribution with n degrees of freedom

and the matrix parameter Σ.

In Srivastava (2003), a generalization of the Wishart distribution was studied by con-

sidering the quadratic form A = XXT in the case of the sample size being smaller than

the dimension, i.e. for k > n. In this case, the distribution is called the singular Wishart

in Srivastava (2003) and the k-dimensional pseudo-Wishart distribution in Dı́az-Garćıa

et al. (1997). The distribution is residing on the singular n × n dimensional subspace of

non-negatively definite matrices A that for the following partitioned forms

A =

[
A11 A12

A21 A22

]
(1)

have the n× n matrix A11 non-singular and A22 = A21A
−1
11 A12. In an abbreviated form

we simply write A ∼ Wk(n,Σ) both when n ≥ k and n < k. The characteristic function

of the singular Wishart distribution is presented in Bodnar et al. (2014).

The additional source of ‘singularity’ can be due to a singular matrix parameter Σ.

Here terminology is not uniquely established but in Dı́az-Garćıa et al. (1997) they refer to

this case as a singular matrix Wishart distribution and distinguishing the case of the rank
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of Σ bigger than n by adding the prefix pseudo-. We continue to use notation Wk(n,Σ)

to cover this case.

In the case of the sample size n greater or equal to the dimension k and a non-singular

covariance Σ, the inverse Wishart distribution is defined as the distribution of the inverse

of XXT . The number of degrees of freedom is set to n+ k+ 1 and the parameter is taken

as the precision matrix Ψ = Σ−1. We abbreviate this to IWk(n+ k + 1,Ψ).

The inverse Wishart distribution with a nonsingular Ψ can be extended to the singular

case of n < k. For this we need some basic facts about the generalized inverse matrices.

The generalized (Moore-Penrose) inverse A+ of a k×k non-negatively defined matrix A of

the rank n ≤ k can be explicitly defined through its spectral representation A = PΛPT ,

where Λ is the n × n diagonal matrix of positive eigenvalues and P is the k × n matrix

having the corresponding eigenvectors as columns. With this notation we have that

A+ = PΛ−1PT . This can be also written as

A+ =

[
P1Λ

−1PT
1 P1Λ

−1PT
2

P2Λ
−1PT

1 P2Λ
−1PT

2

]
=

[
A+

11 A+
12

A+
21 A+

22

]
,

where the second equality serves as the definition of A+
ij, i, j = 1, 2, while the n × n

non-singular matrix P1 is made of the first n rows of P, while the k − n × n matrix P2

is made of the remaining k − n rows of P.

For A ∼ Wk(n,Σ) and n < k, the generalized inverse Wishart distribution IWk(n+

k + 1,Ψ) is extended as the distribution of B = A+. Note that the distribution is

residing on the same subspace of non-negative matrices as for the Wishart distribution,

i.e. matrices B such that the n × n upper-left ‘corner’ B11 is non-singular and B22 =

B21B11
−1B12. For more properties see Bodnar and Okhrin (2008).

In this work we consider the singular inverse Wishart distribution that is defined as

the distribution of the Moore-Penrose inverse of a Wishart distributed matrix A with

n < k and a singular matrix Σ.

3 Linear transformations of singular inverse Wishart

distribution

In Theorem 1 we derive the distribution of linear form of a singular inverse Wishart

distributed random matrix. The results are obtained when the covariance matrix Σ

is assumed to be singular. Since terminology for the singular cases of inverse Wishart

matrices is not that well-established, to avoid confusion we express the result using the

generalized Moore-Penrose inverses and utilizing our standard notation for matrix Wishart

distributions.
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Theorem 1. Let W ∼ Wk(n,Σ), k > n with rank(Σ) = r ≤ n and let L : p × k be a

matrix of constants of rank p. If m = rank(LΣ) = min(r, p), then

(LW+LT )+ ∼ Wp

(
n− r +m, (LΣ+LT )+

)
.

Moreover, if m = p, then both LW+LT and LΣ+LT are of the full rank p and thus

their Moore-Penrose inverses becomes the regular inverses.

Proof. From Srivastava (2003) we get the stochastic representation of W expressed as

W
d
= XXT with X ∼ Nk,n(0,Σ⊗ In) , (2)

where the symbol
d
= denotes the equality in distribution.

Let Σ = QΛQT be the singular value decomposition of Σ where Λ : r × r is the

matrix of non-zero eigenvalues and Q : k×r is the orthogonal matrix of the corresponding

eigenvectors. Then the stochastic representation of X is given by

X
d
= QΛ1/2Z with Z ∼ Nr,n(0, Ir ⊗ In) . (3)

From (2) and (3), we obtain

W
d
= QΛ1/2ZZTΛ1/2QT , (4)

where ZZT ∼ Wr(n, Ir).

Since QΛ1/2 is the full column-rank matrix and Λ1/2QT is the full row-rank matrix,

we get

LW+LT d
= L

(
QΛ1/2ZZTΛ1/2QT

)+
LT

= LQΛ−1/2
(
ZZT

)+
Λ−1/2QTLT

= LQΛ−1/2
(
ZZT

)−1
Λ−1/2QTLT , (5)

because ZZT is non-singular (cf., Greville (1966)). Finally, the identity ZZT ∼ Wr(n, Ir)

and the assumption that m = p after the application of Theorem 3.2.11 in Muirhead

(1982) lead to

(LW+LT )−1 ∼ Wp

(
n− r + p,

(
LQΛ−1/2IrΛ

−1/2QTLT
)−1
)

=Wp

(
n− r + p, (LΣ+L′)−1

)
.

This proves the case m = p.

For the proof in the case when m = r, note that here it is assumed that rank(L) =

p > r and rank(LΣ) = r. Then LQΛ−1/2 has a full column-rank and Λ−1/2QTLT has a

full row-rank. Applying the last property to (5) and using Theorem 2.4.2 of Gupta and
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Nagar (2000) we get

(LW+LT )+ d
= (LQΛ−1/2

(
ZZT

)−1
Λ−1/2QTLT )+

= (Λ−1/2QTLT )+ZZT (LQΛ−1/2)+

= Z̃Z̃T (6)

with Z̃ ∼ Np,n(0, (LΣ+LT )+ ⊗ In).

Thus, if p < n then Z̃Z̃T has the Wishart distribution with singular covariance ma-

trix, otherwise, i.e. p > n, it has the pseudo-Wishart distribution (see Theorem 5.2 of

Srivastava (2003)).

An application of Theorem 1 leads to Theorem 2 and ensuing Corollary 1.

Theorem 2. Let W ∼ Wk(n,Σ), k > n with rank(Σ) = r ≤ n and let Y : p × k

be a random matrix such that with probability one rank(YΣ) = p, p ≤ r, and which is

independent of W. Then

(YΣ+YT )−1/2(YW+YT )−1(YΣ+YT )−1/2 ∼ Wp (n− r + p, Ip) (7)

and it is independent of Y.

Proof. Since Y and W are independent, we get that the conditional distribution of

(YW+YT )−1 given Y = Y0 is equal to the distribution of (Y0W
+YT

0 )−1. The ap-

plication of Theorem 1 leads to

(Y0Σ
+YT

0 )1/2(Y0W
+YT

0 )−1(Y0Σ
+YT

0 )1/2 ∼ Wp (n− r + p, Ip) ,

which does not depend on Y0. Hence, it is also the unconditional distribution of

(YΣ+YT )1/2(YW+YT )−1(YΣ+YT )1/2 which appears to be independent of Y.

One consequence of Theorem 2 is the following corollary, where the important case of

p = 1 is considered.

Corollary 1. If W ∼ Wk(n,Σ), k > n with rank(Σ) = r ≤ n and y is any k-dimensional

random vector distributed independently of W such that yTΣ is non-zero with probability

one, then

yTΣ+y

yTW+y
∼ χ2

n−r+1,

and is independent of y.

It should be noted that in Theorem 1, the assumption that rank(Σ) is smaller than

the sample size n is essential. The problem of finding the distribution of the linear
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transformation of the generalized inverse Wishart distribution in the general case seems to

be difficult and remains open. Some special case in a general case can be obtained as shown

in the next result where we consider the orthogonal transformation of the generalized

inverse Wishart random matrix.

Theorem 3. Let W ∼ Wk(n,Σ), k > n and let L : k× k be an orthogonal matrix. Then

(LW+LT )+ ∼ Wk(n,LΣLT ).

Proof. It follows from general properties of the Moore-Penrose inverse matrices (see Boul-

lion and Odell (1971)) that for an orthogonal matrix L:

(LW+LT )+ = LWLT

and the result follows since LWLT = LX(LX)T and LX ∼ Nk,n(0,LΣLT ⊗ In).

4 Application to portfolio theory

In this section, using the properties of the singular inverse Wishart distribution shown

in Section 3, we derive the stochastic representation of the linear transformation of the

mean-variance portfolio weights under the assumption of normality for the case when

the number of observations n from k-variate Gaussian distribution is smaller than the

dimension k and a singular covariance matrix Σ.

We consider the vector of portfolio weights w = (w1, ..., wk) of k assets, i.e. wT1k = 1.

We assume that the asset log-returns are normally and identically distributed with mean

vector µ and covariance matrix Σ. Let Σ be a nonnegative definite matrix with with

rank(Σ) = r ≤ n.

The MV portfolio, wMV is the solution of the following optimization problem

max
w:wT 1k=1

wTµ− α

2
wTΣw, (8)

where 1k be the k-dimensional vector of ones. The symbol α > 0 describes the risk

aversion of an investor.

Since Σ is singular, the optimization problem (8) has an infinite number of solutions.

In Pappas et al. (2010), a solution was expressed as

wMV =
Σ+1k

1TkΣ+1k
+ α−1Rµ with R = Σ+ −Σ+1k1

T
kΣ+/1TkΣ+1k, (9)

which appears to be unique solution with the minimal Euclidean norm. Relation (9) can

be used only under the constrain 1TkΣ+1k 6= 0, which is assumed throughout the paper.
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Finally, we point out that if we have the fully risk-averse investor, i.e. α →∞, then the

global minimum variance portfolio is the limit case of the MV portfolio.

In practice Σ is an unknown matrix and should be estimated using historical values

of asset returns. Given a sample of n independent observations x1, ...,xn of log-returns

on k assets we calculate the sample covariance matrix by

S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T , (10)

where x = 1
n

∑n
i=1 xi. Replacing µ and Σ with x and S, respectively, in (9) we obtain

the sample estimator of the MV portfolio weights given by

ŵMV =
S+1k

1TkS+1k
+ α−1R̂x with R̂ = S+ − S+1k1

T
kS+

1TkS+1k
. (11)

The distribution of ŵMV is of obvious interest for the portfolio theory and was dis-

cussed for the non-singular case, i.e. k ≤ n − 1, by Okhrin and Schmid (2006), Bodnar

and Schmid (2011). The following result completes the MV portfolio theory by provid-

ing the distribution in the singular case. We consider a more general case, namely the

distribution of a linear transformation of ŵMV is derived. Let

θMV = LwMV =
LΣ+1k
1TkΣ+1k

+ α−1LRµ. (12)

where L is a non-random p× k matrix of rank p < r such that rank(LΣ) = p. Applying

the estimator (10) we obtain

θ̂MV = LŵMV =
LS+1k
1TkS+1k

+ α−1LR̂x. (13)

The following theorem shows that the sample mean vector x and the sample covariance

matrix S are independently distributed.

Theorem 4. Let X ∼ Nk,n(µ1Tn ,Σ⊗ In), k > n with rank(Σ) = r ≤ n. Then

(a) (n− 1)S ∼ Wk(n− 1,Σ),

(b) x ∼ Nk
(
µ, 1

n
Σ
)
,

(c) x and S are independently distributed.

Proof. From Theorem 2.1 of Dı́az-Garćıa et al. (1997) the density function of X is given

by
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f(X) =
1

(2π)rn/2 (
∏r

i=1 λi)
n/2

etr

(
−1

2
(X− µ1Tn )TΣ+(X− µ1Tn )

)
, (14)

where λi are the non-zero eigenvalues of Σ.

Let V = XFT with the Jacobian of transformation equals to 1, where F is an orthog-

onal n× n matrix with elements in the last row which are equal to n−1/2. The matrix V

is partitioned as V = (Z,v) where Z is k × (n− 1) and v is k × 1. Then it holds that

XXT = VVT = ZZT + vvT . (15)

Because the first (n − 1) rows of F are orthogonal to 1n, i.e. F1n = (0, ..., 0, n1/2)T ,

we have that

X1nµ
T = VF1nµ

T = n1/2vµT . (16)

Using (15) and (16) the term (X − µ1Tn )(X − µ1Tn )T which is presented in (14) can

be rewritten as

(X− µ1Tn )(X− µ1Tn )T = ZZT + vvT − n1/2µvT − n1/2vµT + nµµT

= ZZT + (v − n1/2µ)(v − n1/2µ)T . (17)

Hence, we obtain the joint density function of Z and v:

f(Z,v) =
1

(2π)r(n−1)/2 (
∏r

i=1 λi)
(n−1)/2

etr

(
−1

2
Σ+ZZT

)
× 1

(2π)r/2 (
∏r

i=1 λi)
1/2

exp

(
−1

2
(v − n1/2µ)TΣ+(v − n1/2µ)

)
,

where Z ∼ Nk,n(0,Σ⊗ In) and v ∼ Nk(n1/2µ,Σ) which are independently distributed. It

leads to the fact that x ∼ Nk(µ, 1/nΣ) and is independent of Z since v = n−1/2XT1n =

n1/2x. Also, after the transformation S = ZZT and the application of Theorem 5.2 of

Srivastava (2003) we obtain that S ∼ Wk(n− 1,Σ).

From Theorem 4 we have that S and x are independent, then the conditional distri-

bution of θ̂EU given x = x∗ is expressed as

θ̂MV (x∗) =
LS+1k
1TkS+1k

+ α−1LR̂x∗

=
LS+1k
1TkS+1k

+ α−1(n− 1)
x∗T R̂x∗

(n− 1)x∗TRx∗
x∗TRx∗

LR̂x∗

x∗T R̂x∗

= θ̂MV ;1 + α̃−1ŝ∗−1θ̂MV ;2(x∗), (18)
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where θ̂MV ;1 = LS+1k/1
T
kS+1k, α̃ = α/(n − 1), ŝ∗ = (n − 1)x∗TRx∗/x∗T R̂x∗, and

θ̂MV ;2(x∗) = x∗TRx∗LR̂x∗/x∗T R̂x∗.

In Theorem 5, we present the density function of θ̂MV ;1, which is the sample estimator

of the linear transformation for the weights of the global minimum variance portfolio and

plays an important role in the portfolio theory.

Theorem 5. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k > n − 1 and

let rank(Σ) = r ≤ n − 1. Consider L a p × k non-random matrix with rank(LT ,1k) =

p+ 1 ≤ r and set θMV ;1 = LΣ+1k/1
T
kΣ+1k. Then the density function of θ̂MV ;1 is given

by

θ̂MV ;1 ∼ tp

(
n− r + 1;θMV ;1,

1

n− r + 1

LRLT

1TkΣ+1k

)
,

where R = Σ+−Σ+1k1
T
kΣ+/1TkΣ+1k. The symbol tp(d; a,A) stands for the p-dimensional

multivariate t-distribution with d degrees of freedom, the location parameter a, and the

dispersion matrix A.

Proof. Let L̃ = (LT ,1k)
T and define S̃ = L̃S+L̃T =

{
S̃ij

}
i,j=1,2

with S̃11 = LS+LT , S̃12 =

LS+1k, S̃21 = 1TkS+LT and S̃22 = 1TkS+1k. Similarly, let Σ̃ = L̃Σ+L̃T = {Σ̃ij}i,j=1,2 with

Σ̃11 = LΣ+LT , Σ̃12 = LΣ+1k, Σ̃21 = 1TkΣ+LT and Σ̃22 = 1TkΣ+1k. Then it holds

that θ̂MV ;1 = S̃−1
22 S̃12 and θMV ;1 = Σ̃−1

22 Σ̃12. Because (n − 1)S ∼ Wk(n − 1,Σ) and

rank(L̃) = p + 1 ≤ r we get from Theorem 1 and Theorem 3.4.1 of Gupta and Nagar

(2000) that the random matrix S̃ = {S̃ij}i,j=1,2 has the (p + 1)-variate inverse Wishart

distribution with (n − r + 2p + 2) degrees of freedom and the non-singular covariance

matrix Σ̃, i.e. (n− 1)−1S̃ ∼ IWp+1(n− r + 2p + 2, Σ̃). Using Theorem 3 (d) of Bodnar

and Okhrin (2008) we get the density function of θ̂MV ;1 through

f
θ̂MV ;1

(x) ∼
[
1 + Σ̃22(x− Σ̃−1

22 Σ̃12)T Σ̃−1
11·2(x− Σ̃−1

22 Σ̃12)
]−(n−r+p+1)/2

,

= [1 + 1TkΣ+1k(x− θMV ;1)T (LRLT )−1(x− θMV ;1)]−(n−r+p+1)/2.

where Σ̃11·2 = Σ̃11 − Σ̃12Σ̃21/Σ̃22. This concludes the argument.

Applying the distributional properties of the multivariate t-distribution we have that

E(θ̂MV ;1) = θMV ;1 and V ar(θ̂MV ;1) =
1

n− r − 1

LRLT

1TkΣ+1k
.

Theorem 5 says that θ̂MV ;1 belongs to the same class of distribution and has the same

mathematical expectation as in the non-singular case (see Bodnar and Schmid (2008)).

The difference is present in the degrees of freedom of the t-distribution only.
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Let b∗ = LRLT −LRx∗x∗TRLT/x∗TRx∗ and let MT = (LT ,x∗,1k) with rank(M) =

p + 2 ≤ r. In Theorem 6 we derived the joint density function of θ̂MV ;1, θ̂MV ;2(x∗) and

ŝ∗.

Theorem 6. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k > n − 1

and with rank(Σ) = r ≤ n − 1. Consider L a p × k non-random matrix such that

rank(LT ,x∗,1k) = p+2 ≤ r and R that is defined in Theorem 5. Then θ̂MV ;1, θ̂MV ;2(x∗),

and ŝ∗ are mutually independently distributed according to

θ̂MV ;1 ∼ tp

(
n− r + 1,θMV ;1,

1

n− r + 1

LRLT

1TkΣ+1k

)
,

θ̂MV ;2(x∗) ∼ tp

(
n− r + 2,LRx∗,

1

n− r + 2
x∗TRx∗b∗

)
,

ŝ∗ ∼ χ2
n−r+1.

Proof. Let H = MΣ+MT = {Hij}i,j=1,2 with H22 = 1TkΣ+1k and let Ĥ = MS+MT =

{Ĥij}i,j=1,2 with Ĥ22 = 1TkS+1k. Similarly, let G = H11−H12H21/H22 = {Gij}i,j=1,2 with

G22 = x∗TΣ+x∗ − (x∗TΣ+1k)
2/1TkΣ+1k = x∗TRx∗ and let Ĝ = Ĥ11 − Ĥ12Ĥ21/Ĥ22 =

{Ĝij}i,j=1,2 with Ĝ22 = x∗TS+x∗ − (x∗TS+1k)
2/1TkS+1k = x∗T R̂x∗.

Then

θ̂MV (x∗) =
EĤ12

Ĥ22

+ α−1G̃12,

where E = (e1, ..., ep,0k) with (e1, ..., ep) being the usual basis in Rp and 0k is the k-

dimensional zero vector. Additionally, let b̂∗ = Ĥ11 − Ĥ12Ĥ21/Ĥ22 and b∗ = H11 −
H12H21/H22.

The unconditional distribution of θ̂MV ;1 has already been derived in Theorem 5. Next,

we prove that θ̂MV ;1, θ̂MV ;2(x∗), and ŝ∗ are mutually independently distributed and derive

the distribution of θ̂MV ;2(x∗) and ŝ∗. Using Theorem 1 we obtain that

(n− 1)Ĥ−1 = (n− 1)(MS+MT )−1 ∼ Wp+2(n− r + p+ 1, (MΣ+M)−1). (19)

From (19) and Theorem 3.4.1 of Gupta and Nagar (2000) we get

(n− 1)−1Ĥ ∼ IWp+2(n− r + 2p+ 4,H). (20)
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Applying Theorem 3 of Bodnar and Okhrin (2008) we obtain that

(n− 1)−1Ĝ ∼ IWp+1(n− r + 2p+ 3,G),

(n− 1)−1Ĥ22 ∼ IW1(n− r + 2, H22),

(n− 1)−1Ĥ12|(n− 1)−1Ĥ22, (n− 1)−1Ĝ ∼ N

(
(n− 1)−1H12H

−1
22 Ĥ22, (n− 1)−3 Ĥ

2
22

H22

Ĝ

)
.

It leads to

(n− 1)−1EĤ12

(n− 1)−1Ĥ22

|(n− 1)−1Ĥ22, (n− 1)−1Ĝ ∼ N

(
E

H12

H22

, (n− 1)−1 EĜET

H22

)
.

Using the fact that EĜET = Ĝ11 we obtain that the conditional distribution of θ̂MV ;1

does not depend on Ĝ12, Ĝ22 and Ĥ22. As a result, the unconditional distribution is

independent of Ĝ12 and Ĝ22. From Theorem 3 of Bodnar and Okhrin (2008) it follows

that Ĝ12/Ĝ22 and Ĝ22 are independent. Moreover, we get

(n− 1)−1Ĝ22 ∼ IW1(n− r + 3, G22).

Finally, from the proof of Theorem 5 it holds that

Ĝ12

Ĝ22

∼ tp

(
n− r + 2,LRx∗,

1

n− r + 2
x∗TRx∗b∗

)
.

Putting all together we obtain the statement of Theorem 6 .

The stochastic representation of θ̂MV is derived in the following theorem.

Theorem 7. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k > n − 1 and

with rank(Σ) = r ≤ n− 1. Consider L a p× k non-random matrix with rank(LT ,1k) =

p + 1 ≤ r and R that is defined in Theorem 5. Additionally, let S1 = (LRLT )−1/2LR1/2

and Q1 = ST1 S1. Then the stochastic representation of θ̂MV is given by

θ̂MV
d
= θ̂MV ;1 + α̃−1ŝ∗−1LRx +

α̃−1ŝ∗−1

√
n− r + 2

(LRLT )1/2

×

[√
xTRxIp −

√
xTRx−

√
xT (R−Q1)x

xTQ1x
S1xxTST1

]
t0,

where ŝ∗ ∼ χ2
n−r+1, θ̂MV ;1 ∼ tp

(
n− r + 1,θMV ;1,

1
n−r+1

LRLT

1T
k Σ+1k

)
, x ∼ Nk

(
µ, 1

n
Σ
)
, and

t0 ∼ tp(n− r + 2,0, Ip); moreover, ŝ∗, θ̂MV ;1, t0, and x are mutually independent.

12



Proof. From (18) and Theorem 6 we obtain the stochastic representation of θ̂MV :

θ̂MV
d
= θ̂MV ;1 + α̃−1ŝ∗−1LRx +

α̃−1ŝ∗−1

√
n− r + 2

[
xTRxLRLT − LRxxTRLT

]1/2
t0,

where ŝ∗ ∼ χ2
n−r+1, θ̂MV ;1 ∼ tp

(
n− r + 1,θMV ;1,

1
n−r+1

LRLT

1T
k Σ+1k

)
, x ∼ Nk

(
µ, 1

n
Σ
)
, and

t0 ∼ tp(n− r + 2,0, Ip); moreover, ŝ∗, θ̂MV ;1, t0, and x are mutually independent.

Now we calculate the square root of (xTRxLRLT −LRxxTRLT ) using the following

equality

(B− ccT )1/2 = B1/2(Ip − dB−1/2ccTB−1/2)

with d =
1−
√

1−cT B−1c

cT B−1c
, c = LRx, and B = xTRxLRLT that leads to

θ̂MV
d
= θ̂MV ;1 + α̃−1ŝ∗−1LRx +

α̃−1ŝ∗−1

√
n− r + 2

(LRLT )1/2

×

[√
xTRxIp −

√
xTRx−

√
xT (R−Q1)x

xTQ1x
S1xxTST1

]
t0

with S1 = (LRLT )−1/2LR1/2 and Q1 = ST1 S1.

In the next corollary, we consider the special case of p = 1 and L = lT .

Corollary 2. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k > n − 1

and with rank(Σ) = r ≤ n − 1. Also, let l be a k-dimensional vector of constants and

rank(lT ,1k) = 2 ≤ r. Then the stochastic representation of θ̂MV is given by

θ̂MV
d
= θ̂MV ;1 +

α̃−1

ŝ∗

lTRµ +

√(
1 + r−2

n−r+2
u2

)
lTRl

n
u1

 ,

where θ̂MV ;1 ∼ t(n − r + 1, θMV ;1,
1

n−r+1
lTRl/1TkΣ+1k), ŝ∗ ∼ χ2

n−r+1, u1 ∼ N (0, 1), and

u2 ∼ F
(
r−2

2
, n−r+2

2
, nΛ

)
with Λ = µTRµ− (lTRµ)2/lTRl. Here F (k1, k2, λ) denotes the

non-central F -distribution with k1 and k2 degrees of freedom and non-centrality parameter

λ. Moreover, the random variables θ̂MV ;1, ŝ∗, u1 and u2 are mutually independently

distributed.

The application of Theorem 7 and Corollary 2 leads to the expression of the charac-

teristic function of ŵMV which is given in the following corollary.

Corollary 3. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k > n− 1 and

with rank(Σ) = r ≤ n− 1. Additionally, let p = 1, r ≥ 2, and rank(M) = 3. Then with

13



the notation of the previous corollary, the characteristic function of ŵMV is given by

ϕŵMV
(t) = ϕt(n−r+1,θMV ;1,

1
n−r+1

tT Rt/1T
k Σ+1k)(1) exp

(
−nΛ

2

)
×

∫ ∞
0

exp

(
i
tTRµ

α̃v
− tTRt

2nα̃2v2

)
fχ2

n−r+1
(v)

×
∞∑
i=0

(
nΛ
2

)i
i!

1F1

(
r − 2

2
+ j,−n− r + 2

2
,
ũtTRt

2nα̃2v2

)
dv,

where 1F1(·, ·, ·) is the confluent hypergeometric function (see Andrews et al. (2000)).

Proof. From Corollary 2 the density function of θ̂MV = tT ŵMV is given by

fθ̂MV
(y) = α̃

n− r + 2

r − 2

∫ ∞
−∞

ft(n−r+1,θMV ;1,
1

n−r+1
tT Rt/1T

k Σ+1k)(y − ω1)

×
∫ ∞

0

ω2fχ2
n−r+1

(ω2)

∫ ∞
0

fN (tT Rµ,(1+ω3)tT Rt/n)(α̃ω2ω1)

× fF( r−2
2
,n−r+2

2
,nΛ)

(
n− r + 2

r − 2
ω3

)
dω1dω2dω3, (21)

where f subindexed by a distribution stands for the density of this distribution.

Since ϕŵMV
(t) = ϕθ̂MV

(1), the conclusion follows from the proof of Corollary 3.5 of

Bodnar and Schmid (2011).

Another important application of Theorem 7 leads to the conditional and uncondi-

tional moments of higher order of θ̂MV . Let the symbol mi1,...,ip(µ,Σ) denote the mixed

moment of the p-dimensional normal distribution with parameters µ and Σ, and let

Ck1,...,kp
n1,...,np

(s) =

p∏
i=1

Cki
ni

Γ
(
s
2
−
∑p

i1
(ni − ki)

)
Γ(s/2)

,

where Cki
ni

= ni!/ki!(ni − ki)! is a binomial coefficient. The statement of the corollary

follows from Theorem 7 and the binomial formula which is applied three times and we

omit the proof details.

Corollary 4. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k > n − 1

and with rank(Σ) = r ≤ n − 1. Consider L a p × k non-random matrix such that

rank(LT ,x∗,1k) = p + 2 ≤ r. Then the conditional mixed moments of the θ̂MV (x∗) are

14



given by

En1,...,np = E

(
p∏
i=1

(eTi θ̂MV ;1 + α̃−1ŝ∗−1eTi θ̂MV ;2)ni |x = x∗

)

=

p∑
i=1

ni∑
ji=0

α̃−
∑p

i=1(ni−ji)Cj1,...,jp
n1,...,np

(n− r + 1)

×

(
p∑
i=1

ji∑
ki=0

C
k1,...,kp
j1,...,jp

(n− r + 1)

×
p∏
i=1

(lTi θMV )kimj1−k1,...,jp−kp

(
0,

1

n− r + 1

LRLT

1TkΣ+1k

))

×

(
p∑
i=1

ni−ji∑
qi=0

C
q1,...,qp
n1−j1,...,np−jp(n− r + 2)

×
p∏
i=1

(lTi Rx∗)qimn1−j1−q1,...,np−jp−qp

(
0,

b∗x∗TRx∗

n− r + 2

))
,

where LT = (l1, ..., lp).

The above result can be used to obtain the formula for the unconditional mean and

variance of the estimator

E(θ̂MV ) =
LΣ+1k
1TkΣ+1k

+
n− 1

n− r − 1
α−1LRµ (22)

and

V ar(θ̂MV ) =
1

n− r − 1

LRLT

1TkΣ+1k
+ α−2(c1µ

TRµLRLT + c2LRµµTRLT )

+
α−2

n

(
c2 + c1(r − 1) +

(n− 1)2

(n− r + 1)2

)
LRLT . (23)

Indeed, from Corollary 4 it holds that

E(θ̂MV |x = x∗) =
LΣ+1k
1TkΣ+1k

+
n− 1

n− r − 1
α−1LRx∗

and

V ar(θ̂MV |x = x∗) =
1

n− r − 1

LRLT

1TkΣ+1k
+ α−2(c1x

∗TRx∗LRLT + c2LRx∗x∗TRLT )

with

c1 =
(n− 1)2

(n− r)(n− r − 1)(n− r − 3)
and c2 =

(n− 1)2(n− r + 1)

(n− r)(n− r − 1)2(n− r − 3)
.
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The final form of the conditional mean and variance, then follow easily from the following

standard relations

E(θ̂MV ) = E
(
E(θ̂MV |x = x∗)

)
and

V ar(θ̂MV ) = E
(
V ar(θ̂MV |x = x∗)

)
+ V ar

(
E(θ̂MV |x = x∗)

)
See also Bodnar and Schmid (2011) for more details.

5 Summary

Distributional properties of the linear symmetric transformations of the inverse sample

covariance matrix are very important tool for derivation of the distribution of the esti-

mated optimal portfolio weights. In the present paper we provide its distribution when

the sample size is smaller than the size of portfolio and the covariance matrix is singular.

Several important special cases of the transformations are considered and can be utilize

in the portfolio theory. Assuming independent and multivariate normally distributed re-

turns we prove stochastic independence between the sample mean vector and the sample

covariance matrix, and derive their distributions under the singularity. Moreover, we

extend results which are obtained by Bodnar and Schmid (2011) by providing a stochas-

tic representation of the estimated MV portfolio weights. Additionally, we obtain the

expressions of the characteristic function and the moments of higher order.
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