
LTHs 10:e Pedagogiska Inspirationskonferens, 6 december 2018

Abstract—In 2015, a course in numerical computations using

Python (NUMA01) was made obligatory in the first semester of
math studies for all students in the Bachelor program in
Mathematics at the Faculty of Science in Lund. Here, we
discuss how this has influenced the course in introductory
Calculus (MATA21).

Index Terms—Calculus, education, programming, Python

I. INTRODUCTION
RADITIONALLY taught, a Calculus course usually
consists of:

1. theory and proofs,
2. computational exercises.

The "theory" part of the course is the domain of the lectures
where the professor proves why the formulas of Calculus
are true. The students are usually left with solving some
“standard” computational exercises using these formulas.

For the average student, it is hard to keep track of how the
theory and computational exercises are connected.
Moreover, since only “standard exercises” are likely to
appear on the final exam, a one-sided focus on procedural
skills is encouraged. This disconnect between theory and
exercises makes it difficult for students to understand why
they are supposed to solve the exercises given to them.
Indeed, studies have shown that students do not show any
measurable improvement in their understanding of the basic
concepts of Calculus after completing a traditional first
semester Calculus course, [2].

Moreover, the relevance of Calculus is undermined by the
apparent limited scope of the techniques involved (e.g., the
need to disregard friction to make a differential equation
tractable).

It is therefore only reasonable for students to ask the
question: "Why do we have to learn Calculus?"

We argue that by introducing a non-math specific
programming language already in the first semester, we can
use numerical computations to bridge the gap between
theory and practical computations. Moreover, the numerical
perspective is ideal for showcasing the relevance of
Calculus in the sciences.

II. BACKGROUND
Since the advent of the personal computer, there have

Manuscript received November 1, 2018.
Jan-Fredrik Olsen is with the Centre for Mathematical Sciences, Faculty

of Science, at Lund University, Box 118, 22100 Lund, Sweden (e-mail: jan-
fredrik.olsen@math.lu.se).

been several pushes to make numerical computations part of
the syllabus for introductory Calculus courses at the
university level. Indeed, most modern Calculus textbooks
include the use of Maple, Matlab or Mathematica to some
extent (see, e.g, [1]).

In Sweden, it has recently become necessary to review the
role of numerical computations at the university level as
programming has become a part of the curricula of all
science subjects at Swedish elementary and high schools
since 2018, [5].

Already in 2015, the course Scientific Computations
using Python (NUMA01), was made obligatory in the first
semester of math studies of all students at the Bachelor
programs in Mathematics and Physics at the Faculty of
Science in Lund. The objective was to provide students and
teachers with a tool to more efficiently perform numerical
computations.

Initially, this effort was inspired by similar developments
dating back to the early 2000s at the University in Oslo
(UiO) where numerical computations using Python were
integrated into the introductory math courses. In fact, what
started as a limited reform to modernize math and physics
curricula at UiO, was later elevated to a national Centre for
Excellence in Education (thus receiving 240 million NOK
over a 10-year period) which has now expanded to also
include the study programs in Chemistry, Geology and
Biology at UiO, see, e.g., [4].

III. THE BASIC PEDAGOGICAL IDEA
In the infancy of Calculus, the availability of computing

power was highly limited. It could be argued that Newton
and Leibniz developed the theory of differential and integral
Calculus to compensate for this.

At its core, most of the fundamental ideas of Calculus are
quite naïve and straight-forward. Indeed:
(i) Infinite series are approximated by partial sums.

(ii) Derivatives are approximated by slopes of secant lines.
(iii) The definite integral is approximated by finite sums of

rectangular areas.
(iv) Using Euler’s method, the solution to a differential

equation is approximated by a sequence of straight
lines.

The standard objective of most Calculus courses is to study
how the theory of integration and differentiation emerges as
the “limit” of such approximations.

The basic pedagogical idea is that since limits are
probably the most difficult concepts for students to
understand, why not put more emphasis on the more student
friendly notions of approximation in order to motivate
students?

In fact, due to the current massive availability of

How to (and why) use Python to teach
introductory Calculus

Jan-Fredrik Olsen

T

LTHs 10:e Pedagogiska Inspirationskonferens, 6 december 2018

computational power, the classically dominant techniques of
differentiation and integration have become less relevant, and
instead, the above list of naïve ideas has evolved into a battery
of powerful numerical algorithms that are directly applicable
to problems in both research and in the industry.

We also note that since the “boundary conditions” set by
later courses have not changed, placing additional emphasis
on approximations does lead to a danger of overloading the
course.

For an overview of the history of the use of approximations
as a unifying theme in introductory Calculus, see [6] and the
references therein.

IV. WHY PYTHON AND NOT MAPLE?
To effectively perform numerical computations, one has to

use some type of programming tool. Now, there is nothing
sacred about using Python. However, in our experience, the
language one choses ought to satisfy the criteria:

1. Non-math specific
2. Simple (and transparent) syntax
3. Powerful math libraries
4. Open source
5. Widely used in the industry

We now address the two first criteria.
Why a non-math specific language? The fundamental

reason is to control expectations. Indeed, students tend to use
Maple as a powerful scientific calculator, [3]. That is, when
faced with a mathematical problem, they search for a ready-
made blackbox solution. In contrast, when using a non-math
specific programming language with only the knowledge of
a handful of commands (for, while, if, else), students are
instead forced to think about the nature of whatever
mathematical creature that they are facing. In short, Python
provides the students with a technological “sandbox” where
they are encouraged to construct their own solutions.

To illustrate that Python has a relatively simple syntax, we
include some examples how some of the basic concepts of
Calculus can be implemented and/or studied in Python:

• The infinite series 1 + #
$ +

#
% +

#
& + ⋯ can be

approximated by using the code
mySequence = [1/2**n for in range(0,10000)]
mySum = sum(mySequence)

• The formal definition of the limit lim
+→-

.+ = 0 can be
studied using the code

epsilon = 1/10
n = 0
while 1/2**n >= epsilon:
 n = n + 1

• The definite integral ∫ 2$32$
4 can be approximated by

using the code
X = [n/50 for n in range(0,101)
S = 0
for n in range(1,101):
 S = S + x[n]**2*(x[n]-x[n-1])

V. HOW DOES THIS IDEA WORK IN PRACTICE?

A. Teacher’s perspective
There is a limit to how much we could modify the course

MATA21 since the subsequent math courses have not been
changed. With this in mind, we initially tried to "seamlessly"
integrate Python into MATA21 by interspersing numerical
Python exercises among the “regular” exercises. This more or
less failed since the students chose the path of least resistance,
and essentially avoided the Python exercises.

As a response to this, we ended up creating a sequence of
obligatory “mini-projects” where the students are to study
various notions of approximations using a combination of
numerical computations, using Python, and theoretical
arguments (e.g., how many terms do we have to include in a
partial sum for it to approximate an infinite series).

These mini-projects are placed at “transitional points”
during the course and have had the effect that the course now
alternates between weeks where definitions relying on
approximations are explored in project-oriented work, and
more classical weeks where the theory arising “in the limit”
is worked out.

B. Student’s perspective
Course evaluations show that students are, in general, very

happy with how the course currently works. For instance,
between 80 and 90% of the respondents to the course
evaluation in the spring of 2018 “agree somewhat” or “agree
completely” with the following statements (the other two
options on the survey were “disagree somewhat” and
“disagree completely”): “The course has stimulated my
interest in mathematics”, “The course has increased my
ability to use computer based tools to understand
mathematical concepts”, “My prior knowledge has been
sufficient to learn contents of the course”, “As a result of this
course, I feel confident about tackling unfamiliar problems”
and “The course had a reasonable workload”.

We note that the latter response was surprising, due to the
fact that the course is now rather overloaded.

VI. DISCUSSION
By placing a course in Scientific Computations using

Python in the first semester, we have been able to put more
emphasis on approximations in the course MATA21.
Students are positive to this change, as shown by responses
to course evaluations, this despite an increased workload.
While the instructor feels that the level of classroom
discussions has increased, we have not yet studied the impact
on student learning.

REFERENCES
[1] R.A. Adams and C. Essex, Calculus: A Complete Course, 9th ed.

Prentice-Hall (Canada), 2017.
[2] J. Epstein, “The Calculus concept inventory: Measurement of the effect

of teaching methodology in mathematics”, Notices of the AMS, vol. 60,
no. 8, pp. 1018-1026, 2013.

[3] MapleSoft (2018), “The Top 10 Reasons Students Use Maple”.
Available:
https://www.maplesoft.com/products/maple/students/top10.aspx.

[4] L. Nederbragt (2017), “Experiences with the first edition of
Introduction to Computational Modelling for the Biosciences”.
Available: https://flxlexblog.wordpress.com.

[5] Skolverket (2018), ”Förändringar och digital kompetens i
styrdokument”. Available:
https://www.skolverket.se/temasidor/digitalisering/digital-kompetens.

[6] K.S. Sofronas, et al, “A study of Calculus instructors’ perceptions of
approximation as a unifying thread of the first-year Calculus”, Int. J.
Res. Undergrad Math. Ed., vol. 1, pp. 386-412, 2015.

