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Abstract—In 2015, a course in numerical computations using 

Python (NUMA01) was made obligatory in the first semester of 
math studies for all students in the Bachelor program in 
Mathematics at the Faculty of Science in Lund. Here, we 
discuss how this has influenced the course in introductory 
Calculus (MATA21). 
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I. INTRODUCTION 
RADITIONALLY taught, a Calculus course usually 
consists of: 

1. theory and proofs, 
2. computational exercises. 

The "theory" part of the course is the domain of the lectures 
where the professor proves why the formulas of Calculus 
are true. The students are usually left with solving some 
“standard” computational exercises using these formulas. 

For the average student, it is hard to keep track of how the 
theory and computational exercises are connected. 
Moreover, since only “standard exercises” are likely to 
appear on the final exam, a one-sided focus on procedural 
skills is encouraged. This disconnect between theory and 
exercises makes it difficult for students to understand why 
they are supposed to solve the exercises given to them. 
Indeed, studies have shown that students do not show any 
measurable improvement in their understanding of the basic 
concepts of Calculus after completing a traditional first 
semester Calculus course, [2].  

Moreover, the relevance of Calculus is undermined by the 
apparent limited scope of the techniques involved (e.g., the 
need to disregard friction to make a differential equation 
tractable).  

It is therefore only reasonable for students to ask the 
question: "Why do we have to learn Calculus?" 

We argue that by introducing a non-math specific 
programming language already in the first semester, we can 
use numerical computations to bridge the gap between 
theory and practical computations. Moreover, the numerical 
perspective is ideal for showcasing the relevance of 
Calculus in the sciences. 

II. BACKGROUND 
Since the advent of the personal computer, there have 
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been several pushes to make numerical computations part of 
the syllabus for introductory Calculus courses at the 
university level. Indeed, most modern Calculus textbooks 
include the use of Maple, Matlab or Mathematica to some 
extent (see, e.g, [1]). 

In Sweden, it has recently become necessary to review the 
role of numerical computations at the university level as 
programming has become a part of the curricula of  all 
science subjects at Swedish elementary and high schools 
since 2018, [5].  

Already in 2015, the course Scientific Computations 
using Python (NUMA01), was made obligatory in the first 
semester of math studies of all students at the Bachelor 
programs in Mathematics and Physics at the Faculty of 
Science in Lund. The objective was to provide students and 
teachers with a tool to more efficiently perform numerical 
computations.  

Initially, this effort was inspired by similar developments 
dating back to the early 2000s at the University in Oslo 
(UiO) where numerical computations using Python were 
integrated into the introductory math courses. In fact, what 
started as a limited reform to modernize math and physics 
curricula at UiO, was later elevated to a national Centre for 
Excellence in Education (thus receiving 240 million NOK 
over a 10-year period) which has now expanded to also 
include the study programs in Chemistry, Geology and 
Biology at UiO, see, e.g., [4]. 

III. THE BASIC PEDAGOGICAL IDEA 
In the infancy of Calculus, the availability of computing 

power was highly limited. It could be argued that Newton 
and Leibniz developed the theory of differential and integral 
Calculus to compensate for this.  

At its core, most of the fundamental ideas of Calculus are 
quite naïve and straight-forward. Indeed: 
(i) Infinite series are approximated by partial sums. 

(ii) Derivatives are approximated by slopes of secant lines. 
(iii) The definite integral is approximated by finite sums of 

rectangular areas. 
(iv) Using Euler’s method, the solution to a differential 

equation is approximated by a sequence of straight 
lines. 

The standard objective of most Calculus courses is to study 
how the theory of integration and differentiation emerges as 
the “limit” of such approximations. 

The basic pedagogical idea is that since limits are 
probably the most difficult concepts for students to 
understand, why not put more emphasis on the more student 
friendly notions of approximation in order to motivate 
students? 

In fact, due to the current massive availability of 
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computational power, the classically dominant techniques of 
differentiation and integration have become less relevant, and 
instead, the above list of naïve ideas has evolved into a battery 
of powerful numerical algorithms that are directly applicable 
to problems in both research and in the industry. 

We also note that since the “boundary conditions” set by 
later courses have not changed, placing additional emphasis 
on approximations does lead to a danger of overloading the 
course. 

For an overview of the history of the use of approximations 
as a unifying theme in introductory Calculus, see [6] and the 
references therein. 

IV. WHY PYTHON AND NOT MAPLE? 
To effectively perform numerical computations, one has to 

use some type of programming tool. Now, there is nothing 
sacred about using Python. However, in our experience, the 
language one choses ought to satisfy the criteria: 

1. Non-math specific 
2. Simple (and transparent) syntax 
3. Powerful math libraries 
4. Open source  
5. Widely used in the industry  

We now address the two first criteria. 
Why a non-math specific language? The fundamental 

reason is to control expectations. Indeed, students tend to use 
Maple as a powerful scientific calculator, [3]. That is, when 
faced with a mathematical problem, they search for a ready-
made blackbox solution. In contrast, when using a non-math 
specific programming language with only the knowledge of 
a handful of commands (for, while, if, else), students are 
instead forced to think about the nature of whatever 
mathematical creature that they are facing. In short, Python 
provides the students with a technological “sandbox” where 
they are encouraged to construct their own solutions.  

To illustrate that Python has a relatively simple syntax, we 
include some examples how some of the basic concepts of 
Calculus can be implemented and/or studied in Python: 

• The infinite series 1 + #
$ +

#
% +

#
& + ⋯ can be 

approximated by using the code 
mySequence = [1/2**n for in range(0,10000)] 
mySum = sum(mySequence) 

• The formal definition of the limit lim
+→-

.+ = 0 can be 
studied using the code  

epsilon = 1/10 
n = 0 
while 1/2**n >= epsilon: 
    n = n + 1 

• The definite integral ∫ 2$32$
4  can be approximated by 

using the code 
X = [n/50 for n in range(0,101) 
S = 0 
for n in range(1,101): 
    S = S + x[n]**2*(x[n]-x[n-1]) 

V. HOW DOES THIS IDEA WORK IN PRACTICE? 

A. Teacher’s perspective 
There is a limit to how much we could modify the course 

MATA21 since the subsequent math courses have not been 
changed. With this in mind, we initially tried to "seamlessly" 
integrate Python into MATA21 by interspersing numerical 
Python exercises among the “regular” exercises. This more or 
less failed since the students chose the path of least resistance, 
and essentially avoided the Python exercises. 

As a response to this, we ended up creating a sequence of 
obligatory “mini-projects” where the students are to study 
various notions of approximations using a combination of 
numerical computations, using Python, and theoretical 
arguments (e.g., how many terms do we have to include in a 
partial sum for it to approximate an infinite series). 

These mini-projects are placed at “transitional points” 
during the course and have had the effect that the course now 
alternates between weeks where definitions relying on 
approximations are explored in project-oriented work, and 
more classical weeks where the theory arising “in the limit” 
is worked out.  

B. Student’s perspective 
Course evaluations show that students are, in general, very 

happy with how the course currently works. For instance, 
between 80 and 90% of the respondents to the course 
evaluation in the spring of 2018 “agree somewhat” or “agree 
completely” with the following statements (the other two 
options on the survey were “disagree somewhat” and 
“disagree completely”): “The course has stimulated my 
interest in mathematics”, “The course has increased my 
ability to use computer based tools to understand 
mathematical concepts”, “My prior knowledge has been 
sufficient to learn contents of the course”, “As a result of this 
course, I feel confident about tackling unfamiliar problems” 
and “The course had a reasonable workload”. 

We note that the latter response was surprising, due to the 
fact that the course is now rather overloaded. 

VI. DISCUSSION 
By placing a course in Scientific Computations using 

Python in the first semester, we have been able to put more 
emphasis on approximations in the course MATA21. 
Students are positive to this change, as shown by responses 
to course evaluations, this despite an increased workload. 
While the instructor feels that the level of classroom 
discussions has increased, we have not yet studied the impact 
on student learning. 
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