
LTHs 10:e Pedagogiska Inspirationskonferens, 6 december 2018

Abstract—I summarise the ideals and challenges of

implementing an exam in introductory computer
programming, and report on a successful implementation in
2018 at ITU. This includes pedagogical, curricular, technical,
social, and administrative devisions and experiences that scale
to other setting in which a student-owned device is used for
individual assessment. The core issue is the difficulty of
preventing communication with outside sources using a
computer with internet capabilities.

I. INTRODUCTION
UMMATIVE assessment of individual programming
skills needs to simultaneously honour conflicting ideals:

Programming is typically done on a computer, not on paper,
and programmers actively use an interactive edit-run-debug
cycle when developing functional code, which is impossible
to emulate in a pen-and-paper exam setting. Moreover,
programming environments are highly individualised, to the
level of keyboard layout, choice of editor, etc., so that an
exam setting ideally lets students use the same computer
they use for programming. Today, this is the student’s
laptop. These devices are capable of connecting to the
internet, which allows exam sets to be distributed and
collected using a modern learning platform. These are great
opportunities for a scalable and authentic assessment format
for individual programming skill.

At the same time, a modern laptop accesses the internet
freely, allowing students access to outside sources during
the exam. Students are highly incentivised to use existing,
efficient, and fairly cheap professional services or exploit
social connections to have their exam solved by somebody
else, completely invalidating the result of the assessment.

As part of a project at IT University of Copenhagen, to
introduce newcomers to introductory programming we
constructed an exam format that tries to address these issues.

II. INITIAL CONSIDERATIONS

A. Ambitions
The ambition was to construct an exam form for

introductory programming with the following qualities:
1. (Validity.) The assessment should represent the
examinee’s individual programming skill, not that of their
social network.
2. (Scalability.) The exam form should be implementable
for hundreds of students several times per year.
3. (Authenticity.) The exam form should assess individual
programming skill within a typical environment.

(However, this excludes the access to outside help,
notwithstanding possible arguments that social capital
and plagiarism are an important part of programming.)
4. (On-site.) The assessment is performed in a controlled
environment on university premises.
5. (Digital.) Code is written on a digital computer.
6. (Individual.) The assessment is individual.
Introductory programming is mainly concerned with

basic, operationally critical, and easily assessed
programming skills—code comprehension, syntax of a
specific language, creation of small stand-alone programs
(dozens of lines of code), manipulation of medium-sized
programs (hundreds of lines), or use of library functions.
The above exam format parameters suit such a course well.
In contrast, an advanced course in software engineering
would focus on much larger systems, group work, report
writing, etc., which may be more compatible with project
based formats, group exams, or take-home exams.

In the current setting, individual assessment of
demonstrable basic programming skills was an important
external constraint due to a larger process of curricular
change at university level.

The usual problems with outside communication
(sometimes called “cheating”) are exacerbated for basic
programming because it is very hard to detect plagiarism
(correct solutions tend to look the same), problems are
quickly communicated to the outside (by compressing the
exam to a single file and sending it over any of dozens of
protocols over the internet), exam performance correlates
highly with learning outcome (in the sense that an
experienced programmer can solve the exam one or two
orders of magnitude faster than a struggling examinee), and
the service is available either in exchange for social capital
in the examinees social network or by dedicated
professional services—online, affordable, and reliable help
for programming exams is a business model. Moreover, this
particular course is critical for student progression in their
desired education, and it can be expected that students face a
difficult trade-off between earnest desire for honesty and
critical career goals.

B. Why not use pen and paper?
The traditional way of individually assessing

programming skill is via a pen and paper-based written
exam where the examinee hands in handwritten code. The
examinator evaluates the quality of the code by reading it.
No code is ever executed by an electronic computer.

This format remains attractive for many reasons, not the
least of which is its compatibility with established
examination routines for distributing questions and
collecting answers. By being inherently offline, it does not

Valid, scalable, authentic, on-site, digital,
individual assessment of programming skills

Thore Husfeldt, Dept. of Computer Science, Lund University and IT University of Copenhagen

S

LTHs 10:e Pedagogiska Inspirationskonferens, 6 december 2018

invite outside communication.
However, the pen and paper-format falls short on a

number of other points relating to validity and authenticity:
1. (Amount of text.) Fundamental programming tasks
involve the engagement with, manipulation, and maybe
creation of chunks of text of nontrivial size in a
programming environment (say, a code editor). This is
not feasibly assessed using pen and paper.
2. (Debug cycle.) Computer code is almost never written
flawlessly. Instead, most programmers use an edit-run-
debug cycle, in which tentative code is written, then
tested, and edited to remove errors. This cycle is repeated
many times. Most programmers spend their time editing
code, rather than writing it. This is a core competency of
introductory programming and impossible to simulate
without access to a computer.

C. Why not use departmental machines?
In the early 2000s, we experimented with computer-based

individual programming exams at the computer science
department of the natural science faculty (CSNatFak).
There, students completed the exam seated at a unix
machine in one of the computer labs. These were the same
machines used for instruction and exercises during the
course, so students were familiar with those machines and
their programming environments. The machines accessed
the internet through a wired (ethernet) connection whose
access could be monitored by departmental technicians.
During the exam, students were forbidden to access the
internet for other purposes than downloading the exam
questions and uploading their solutions. This restriction was
enforced through a plausible threat of monitoring their
internet access.

Similar setups remain viable and in use for programming
competitions, where relatively small groups of very resilient
and experienced programmers compete for social status.

While the CSNatFak solution worked very well, it is no
longer viable for our purposes, because of changes in
student demographics, wireless internet, and near-universal
access among students to portable computers.

Today, most students use—and are encouraged to use—
their own computer for programming, instead of a
departmental lab computer. This changes the situation
compared to half a generation ago in a number of ways:

1. (Scale.) The number of students attending a large,
introductory programming exam is in the 100s and
typically far exceeds the number of computers that a
department can make available at the same time in a
controlled environment and in a reliable and cost-efficient
manner.
2. (Familiarity.) Programming environments are often
highly personalised workspaces that reflect individual
preferences in choice of code editor, integrated
development system, colour schemes, and physical
keyboard layout. In particular, beginning students with
highly heterogeneous prior experience in programming
and computer use can be expected to be significantly
constrained from demonstrating their programming skills
at the exam if the setup requires use of an alien
programming environment.
3. (Internet access.) Today, internet access is no longer

restricted to wired connections via ethernet, but provided
through a variety of channels, including wireless
channels.
In summary, it seems difficult to implement a digital

exam on university-controlled computers today.

III. OTHER REJECTED APPROACHES
A number of vendor-based systems that promise valid

digital exams while claiming to restrict access to the internet
were quickly rejected. Most of these systems seem to
provide various standard exam forms (such as multiple
choice or free text) in a web-based interface, and use the
web browser to report loss of window focus (or termination
of the web browser session) to the server. At the time of
writing, none of these systems seem relevant for our
purposes.

A more attractive solution is to make students insert an
external hardware device into their machine, which runs
invasive software in the background to monitor internet
access, or contains its own small programming environment.
This solution somewhat addresses some of the concerns
with the university-owned machines, such as scalability, but
still requires extensive hardware maintenance. The security
and legal implications are not easily understood.

Administrators seriously suggested monitoring internet
use during the exam by having invigilators or even teachers
ambulate through the exam rooms. This suggestion seems to
be based on a misunderstanding of how easily an online
programming exam can be communicated to the outside,
and how difficult it is to distinguish the required commands
from virtuous programming. This suggestion was rejected.

A final, perhaps surprising, suggestion was to monitor
student behaviour during the exam using cameras placed
above or behind student computers, which record all
behaviour (in particular, everything that is typed) and can be
consulted after the fact in cases of suspected dishonesty.
This is less intrusive than a hardware-based solution
(whether by inserting a dongle on the student’s device or
using a university-controlled machine), but feels much more
intrusive. This solution scales somewhat worse (due to the
fact that dozens or hundreds of cameras need to be acquired,
maintained, and installed). However, note that due to the
strong impression of surveillance, the system may not
actually need to work in order to have the desired effect of
disincentivising examinees from seeking outside help.

IV. PROCEDURE AT IT UNIVERSITY OF COPENHAGEN

A.Exam contents
The exam itself lasts 4 hours and consists of a number of

programming exercises of increasing difficulty and range.
The examinee downloads the exam from the learning
platform at the beginning of the exam as a single folder
containing both the questions as a single file in Markdown
format (“exam-questions”), some additional files needed for
the larger tasks, and a solutions directory into which the
student places their answers. (For consistency, this directory
contains empty files for each answer which the examinee is
supposed to edit.)

A typical medium question asks students to consider a
small piece of given code, and

LTHs 10:e Pedagogiska Inspirationskonferens, 6 december 2018

1. edit it so as to perform according to specified
behaviour (this may include running the code to see what
goes wrong, identify the error, and fix it),
2. add comments or other documentation to make it
human-readable and easier to maintain,
3. rewrite it so as to maintain functionality but adhere to
another paradigm (for instance, object orientation)
4. add functionality by extending the code.
The hardest of these exercise typically involve

manipulating a small textual database or writing a very
simple video game engine (with text-based or no graphics.)
The easiest exercises are mere code comprehension and
mastery of syntax.

B. Procedure
The exam works like this:

1. (Weeks in advance.) Examiner constructs all the files
necessary for the exam. Various standard quality control
mechanisms are executed (a teaching assistent solves it
and provides feed-back, other teachers may have to be
consulted for constructive alignment, etc.). The exam is
uploaded to the learning platform, where it remains
invisible until the time of the exam.
2. (Beginning of exam.) The examinee arrives with their
own laptop, logs in to the learning platform, and
downloads the CS050-12-AUG-2018 folder to their
machine.
3. (Exam.) The examinee renames the “sol-xxx” folder to
their own user ID (say, “sol-jdoe”), solves some of the
exercises, and puts the result into the renamed solutions
directory.
4. (End of exam.) The examinee uploads the renamed
solutions folder to the learning platform.
5. (Grading.) The examinator downloads the solutions
from the learning platform and starts grading.

C. Internet Access Restriction
Student access to the internet is restricted using the

existing firewall management system at ITU. A simplified
description of the process is this:

1. (Weeks in advance, well-established procedures.)
Students register for exams well in advance, using
existing procedures, based on enrolment, successful
completion of mandatory activities, and external
regulations. These procedures are handled by the
Examinations Office at ITU, which is part of the Student
Affairs and Learning department.
2. (One week in advance, manually.) From the list of
registered students (say, John Doe 200205043823), a
technician at the IT Department creates the corresponding
list of ITU network users (say, jdoe@itu.dk). This group

is visible for the network access control (“firewall”)
settings of the ITU domain control system.
3. (Morning of the exam, automatically.) At the day of the
exam, the firewall settings of the group are restricted to
access only the relevant web page of the learning
platform.
4. (During exam.) Students arrive with their own laptop.
Invigilators perform standard identification routines to
verify student identity. Students voluntarily relinquish
electronic communication devices (mobile phones, smart
watches) and disable access to the cellular network by
removing identification modules (“SIM card”) from their
laptop if needed.
5. (Day of the exam, automatically.) After the exam, the
group’s firewall settings revert to normal.
In effect, all internet access for registered students

through the ITU network, including wireless access, or
access through eduroam, is restricted to accessing the exam
on the learning platform and uploading the answer.

V. CONCLUSION

A. Validity in the future
Various options for accessing the internet remain for

students. This includes short-range communication with
wearable access points to the cellular network (say,
Bluetooth to an extra mobile phone hidden on the body) or
other networks in geographic reach. These opportunities will
only increase with increasing technological miniaturisation
and ubiquitous connectivity of wearable devices.

To the extent to which universities aim to maintain any
form of valid assessment, examination forms need to react
to these technological changes in order to ensure valid exam
forms that do not punish honesty, ultimately to retain public
trust. This seems to require physical measures on the level
of building design to create examination environments in
which students are guaranteed to be off-line, as well as
moderately invasive checks for worn electronic devices
when entering such environments, comparable to airport or
museum security checks. This seems to be a major
responsibility that requires consideration at a much higher
level.

B. Further Automatisation
The fact that exam answers are electronically available to

the examiner in a standardised format would make it
feasible to automate grading, at least in part, by subjecting
student code to a battery of automated test. We have not
pursued this possibility.

