

eXtreme Teaching
Roy Andersson and Lars Bendix, Department of Computer Science, LTH

{Roy.Andersson,Lars.Bendix}@cs.lth.se

Abstract— It sounds extreme to talk about getting higher

quality at lower costs – and yet that is exactly what happens in
eXtreme Programming. If it can be done for producing software
products, we think it might be possible to carry over (all or most
of) their techniques to teaching and get better teaching products
(learning) at lower costs – simply by initiating eXtreme Teaching.

I. INTRODUCTION
It is an inherent value in most teachers to strive for high

quality in their teaching. On the other hand it seems like it is
an equally inherent value in governments to cut down on the
funding for teaching. Furthermore, with more students
enrolling at university, they tend to have a more varied
background. Faced with this situation something extreme has
to be done.

In eXtreme Programming (XP) [1] they claim to produce
software of high quality, on time, with less resources and
fitting the customer’s specific needs. This in contrast to more
traditional development methods that deliver buggy software
over budget, too late and often missing the customer’s reel
needs. We have been inspired by the techniques used in
eXtreme Programming and have brought some of them into a
teaching setting, thus initiating what could be coined eXtreme
Teaching (XT).

In this paper, we lay out some of our own experience from
trying out eXtreme Teaching and prepare the ground for a
round table discussion.

II. EXTREME PROGRAMMING
XP is a software development method that was “invented”

by Kent Beck almost ten years ago [1]. It was created as a
response to the many problems he saw in contemporary ways
of developing software. Actually there is very little new in XP
– Beck took a number of already known “best practices” and
then really applied them to his daily work. His credo was (is)
that if testing is known to be good, then let us do it all the time
– if code review is known to be a good practice, then let us do
it all the time.

In total he came up with a dozen different practices: Simple
Design, Refactoring, Coding Standards, Metaphor, Test-First,
Customer On-Site, Pair Programming, Collective Ownership,
Continuous Integration, Planning Game, Frequent Releases,

and 40-Hour Week. In the book where he first describes XP,
he states that you have to adopt all the practices to be doing
XP – if you miss one or more practices you are not doing XP.
In his new book [2] he modifies that statement in the light of
the past years’ experience. He adds more practices to XP, but
divides them into two categories. Primary practices that are
safe and offer immediate improvement in the areas addressed,
and corollary practices that should not be attempted without
doing and mastering all the primary practices. In this paper,
we will use the initial practices and their terminology, as this
is what we knew and used when we worked with our ideas of
eXtreme Teaching. However, there is very little difference as
no practice has been revoked.

In addition to the practices, Beck provides a framework in
which to carry out these practices. Two things are at the centre
of XP: the customer and planning.

To be able to create a product that fits the customer’s real
needs (which changes) the team must be in close contact with
the customer all the time. To allow good communication, the
customer has to be in the same room as the team. This way it
is easy for the team to communicate its progress through
showing the effect of additions to the program to the customer
and to get immediate feedback. Likewise, it is easy for the
developers to ask questions to the customer when in doubt and
for the customer to provide immediate feedback to these
questions.

When it comes to planning, Beck claims that four factors
are in play: time, scope, resources, and quality. It is essential
that the developers have control over at least one of these –
otherwise the customer will push for unrealistic estimates. So
if time and resources are fixed (as is often the case in
teaching), developers and customer will have to negotiate
scope and quality. When the customer pushes for more scope,
the developers should respond by saying that this would
compromise quality and that they will not sacrifice quality.
Plans can never be precise if they are long-term, so in XP they
plan for small iterations of a couple of weeks’ duration.

On an XP project, the customer writes a number of “user
stories” to express what he wants the system to do. These
stories are estimated by the developers after which the
customer prioritizes the stories he wants to go into the next
iteration. The developers then start implementing the stories
and in parallel with that the customer writes acceptance tests
and gets ideas for more user stories. At the end of the
iteration, the team releases a new version of the system. In
addition they also look at how much work has been done and
adjust the estimate for how much work they can do in the next

iteration accordingly and a new iteration can begin. It is
common on XP projects to have a first iteration where a small
group of experts create the initial important architecture of the
system after which more people are brought in to add
manpower to the following iterations.

During the years, the XP ideas have been generalized into
what is called agile software development methods, as
expressed in the Agile Manifesto [3]:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,

we value the items on the left more.

III. TRANSFERRING XP TO XT
Just as XP is about software development “best practices”,

this round table is about teaching “best practices”. The goal of
XP is to achieve efficiency and quality in software production;
that of XT is to achieve efficiency and quality in the
production of learning.

XP works particularly well when you have to deal with
vague or rapidly changing “requirements” – which is often the
case in teaching. Especially when we have to deal with the
fact that different students can have quite different ways of
learning. As teachers, we know very little about our students’
optimal way of learning – except from the fact that it is highly
individual. So if we want to cater for all students we need to
be extremely flexible and agile in our teaching.

Our initial interest in trying to carry XP ideas into teaching
came from the fact that our department has been using XP as
software development method in a course/project in software
engineering [7] for the past four years. One of the authors is
involved in this and noticed that the highly iterative nature of
XP had many beneficial side-effects on the students’ learning
process. Each week during the project period the students try
out XP in practice during a one-day programming lab. During
the subsequent two-hour session they also have to reflect on
what went wrong and what went well – and how to improve
for the next iteration. This way of “teaching” has much in
common with Kolb’s learning cycle [4], where learning is
achieved through active experience, reflection,
conceptualisation and planning.

This gave us the idea that it might also be possible and
beneficial to “translate” the individual practices of XP into
corresponding teaching practices. As it turned out, some
practices were easy to translate; some were difficult and others
impossible. In the process of working out the “translations”,

we realised that we really needed to go through the underlying
values and philosophy of XP, as seen from figure 1. So this is
also the road we will take in the round table discussions.

Figure 1. Going from XP to XT.

So what are the values behind XP? Fortunately, in the

second edition of his book on XP [2], Kent Beck explicitly
deals with these values. He says, that they are universal
whereas the practices are situated and specific for software
development – and probably even specific for some software
development situations. The five values of XP are:
Communication, Simplicity, Feedback, Courage, and Respect.

These values can be cast into a number of principles to
guide your behaviour: Humanity, Economics, Mutual benefit,
Self-similarity, Improvement, Diversity, Reflection, Flow,
Opportunity, Redundancy, Failure, Quality, Baby steps, and
Accepted responsibility. When we try to formulate XT
practices, it will be helpful to keep in mind also these
principles.

 Values/Philosophy

XP Practices XT

IV. SOME XT-PRACTICES
It is not the goal of this round table to discuss how to

translate subjects such at customer, product and developer
from XP to XT. We will take as given that the product is
“student learning”, and that the customer is in part the student
(for receiving the product), and in part the government (for
deciding the curriculum and economic sponsoring). The part
of the development team is taken by teachers, assistants, and
technical staff at the department.

From these definitions we have chosen to define and
describe three XT-practices in this paper – Pair Teaching,
Collective Ownership, and 40-Hour Week:

1) Pair Teaching

In the development phase of a course it is naturally to have
someone to share ideas and to discuss different approaches
with. This is as important in the actual teaching phase and in
the maintenance phase between courses. Besides that people
working solo are more likely to make mistakes, pair teaching
is also preferable from a scholarly approach to teaching [5,6].
To be open with your teaching is a corner stone in the term
scholarly, and it is as important to be able to develop your
teaching as it is completely naturally to all researchers to
expose their academic research to peer review to make
progress.

From our own experience we prefer pair teaching at all
levels of a course. All teachers, including the teaching
assistants (TAs), on the teaching team should work in pairs

whenever it is possible; during course planning, lecture
planning, exam construction, exam marking, exercises (labs),
and even lectures. We think it is preferable to really work face
to face as often it is possible, but working alternate on
something also fits in the term pair teaching. Besides better
quality, pair teaching also leads to a bonus back up flexibility
– most things can be carried out solo even if planned to be
carried out in pairs; if someone gets ill, gets double booked,
has to attend a conference, meeting, etc.

2) Collective Ownership

Anybody on the teaching team who sees an opportunity to
add value to any part of the course is required to do so at any
time. This sounds obvious but to be able to obtain it requires
all on the teaching team are taking responsibility for the whole
of a course and it can only be done if all are both given the
responsibility of their teaching and that they shoulder this
responsibility. Of course, not all on the teaching team needs to
know everything about all teaching activities on a course
equally well, though everyone has to know something about
all activities.

Two contrasts to collective ownership are no ownership and
individual ownership. In the first model no one takes the
responsibility for the whole. All involved people do their part
as it best suits them without noticing whether it fits with other
activities or not. The disadvantage of this model is quite
obvious. In the other model all changes has to be approved by
the official course owner. In this model the whole is stable,
but it doesn’t evolve as quickly as it could. Two results from
strict ownership is that a course easily diverges from the
teaching team’s understanding since people are reluctant to
interrupt the course owner, and people not given any
responsibility takes less responsibility.

From our point of view and experience collective
ownership is preferable to both no ownership and individual
ownership. Collective ownership is also preferable from a
scholarly approach to teaching.

3) 40-Hour Week

Overtime is a symptom of a planning problem. If a working
week is precisely 40 hours is not terribly important. But no
one can do several consecutive 60 hours weeks and still be
fresh and creative and careful at the same time. The 40-hour
practice allows overtime once in a while, but the practice
states a second week of overtime is never allowed. Especially
not for the same reason! The 40-hour practice is not only
about minimizing mistakes and ensuring creativity. It is also
about respect, respect of other people’s time. Especially is it
the department’s responsibility to show respect for the
employees’ time by a reasonable planning. Then on the next
level it is the teachers’ responsibility to show respect for the
students’ time by a reasonable planning!

V. THE ROUND TABLE SESSION
At the round table session we will open up for the

participants to share their experience and opinions on both the
XT-practices described above and on other XT-practices not
described in this paper.

One practice in particular that could be very exciting to try
to cast in a teaching setting is that of “Test-First”. It sort of
turns the normal way of teaching upside-down. The course
starts with presenting an (old) exam – and then goes on to
teach the students enough to make them pass the exam. The
course ends when all students have passed the exam. Now that
is extreme ;-)

REFERENCES
[1] Beck K.: Extreme Programming Explained – Embrace Change,

Addison-Wesley, 1999.
[2] Beck, K.: Extreme Programming Explained – Embrace Change, second

edition, Addison-Wesley, 2005.
[3] The agile manifesto, http://agilemanifesto.org, 2001.
[4] Kolb, D. A.: Experiental Learning: Experience as the Source of

Learning and Development, Prentice-Hall, 1984.
[5] Boyer, E., L., Scholarship Reconsidered. Priorities of the Professoriate,

The Carnegie foundation, 1990.
[6] Antman, L., Booth, S., Hammar Andersson, P. and Olsson, T. Excellent

Teaching Practice – ett forskningsprojekt kring LTHs pedagogiska
akademi, 2:a Pedagogiska inspirationskonferensen, Proceedings, pp 14-
16, Lund Institute of Technology, 2004.

[7] Hedin, G., Bendix, L. and Magnusson, B.: Introducing Software
Engineering by means of Extreme Programming, in proceedings of the
25th International Conference on Software Engineering, Portland,
Oregon, May 2003.

