

Abstract— In this paper we describe a concept that can be used

to capture best practices in teaching and learning and for sharing
knowledge between educators – The Pedagogical Pattern concept.
We present the emergence and work of the Pedagogical Patterns
Project. Its goal was initially to document solutions to teaching
and learning problems in Computer Science, especially in the
field of object-oriented programming. Many of the problems
addressed are, however, of a much more general nature and
therefore most of the existing pedagogical patterns can be of
interest to educators in other fields. Some general patterns are
presented as are also some of our own experiences of using
patterns in teaching Computer Science.

I. INTRODUCTION
HE English architect Christopher Alexander in 1977
published a book with the title A Pattern Language [1],

where he uses patterns to document proven solutions to
commonly occurring problems in architecture. His definition
of a pattern was: Each pattern describes a problem which
occurs over and over again in our environment, and then
describes the core of a solution to that problem, in such a way
that you can use this solution a million times over, without
doing it in the same way twice.

The work of Alexander inspired a group of people involved
in software development. In the late 80s they introduced the
Design Pattern concept as a way of documenting and
communicating solutions to common problems arising in the
design of software systems. The background was that a new
programming paradigm, the object-oriented technology (OT),
had been adopted in industry. Software developers used to
other programming paradigms found it very difficult to adapt
to OT. Design Patterns proved to be very useful in this
context. Collection of Design Patterns were published the
most well-known of which is in Gamma et al. [7]. The pattern
movement grew rapidly in software industry. Software Design
patterns are now also part of the curriculum for most students
in Computer Science.

The paradigm shift created a demand for effective teaching
and learning of the new technology. This turned out to be a
real challenge for Computer science educators. E.g., there was
no obvious best order in which to teach the different concepts
in object-oriented programming languages. Many of the
pedagogical methods used to teach programming languages

Eva.Magnusson@cs.lth.se
Department of Computer Science
Lund University

before did not work. Several different new approaches were
discussed in different forums in conjunction with conferences
and symposiums dealing with OT. It became clear that there
was a need to find effective ways to communicate expertise in
this area between university educators. This was the reason for
the start of the Pedagogical Patterns Project (PPP) in 1996.

The rest of this paper is organized as follows: In Section II
the Pedagogical Patterns Project is presented. Section III
describes the Pedagogical Pattern concept and give some
example of patterns. In Section IV we show how relationships
between patterns can be used to create pattern languages to
solve more complex problems. Some of our own experiences
of using patterns are summarized in Section V. Finally in
Section VI we conclude with a discussion of the pattern
concept.

II. THE PEDAGOGICAL PATTERNS PROJECT
The motivation for the Pedagogical Patterns Project has

been formulated in the following way [8]:
Effectively communicating complex technologies is often a

struggle for information technology instructors. They may try
various teaching strategies, but this trial and error process
can be time-consuming and fraught with error. Advice is often
sought from other “expert” instructors, but these individuals
are not always readily available. This creates the need to find
other ways to facilitate the sharing of teaching techniques
between expert and novice teachers.

The goal of the project was thus to create a method to
document and share best practices for teaching and learning.
The educators involved in the project introduced the concept
of a Pedagogical Pattern as a means to achieve this. The
concept will be presented more in detail in the next section.

Browsing through some of the patterns developed so far,
some of the principles on which the project is founded become
evident:

• The focus is on students. Patterns discuss teacher
activities but it is always clear that the main job of
the teacher is to facilitate learning.

• Learning happens best in environments where
mentally active processes are supported.

• Students learn differently.
The Pedagogical Patterns Project involves instructors from

many different countries and also people from industry.
Initially their focus was on collecting reusable techniques and
finding a suitable format for pattern mining. Later their focus
has shifted to pattern languages (see Section IV) as a more

Pedagogical Patterns – a method to capture best
practices in teaching and learning

Eva Magnusson

T

powerful tool for more complex problems. They often gather
at workshops in conjunction with conferences dealing with the
pedagogy of Computer Science or with Design Patterns for
OT.

III. THE PEDAGOGICAL PATTERN CONCEPT
A Pedagogical Pattern deals with pedagogical problems in

teaching and learning. The problem space was originally the
teaching and learning of OT. It turned out, however, that the
problems encountered in this area are common in other
disciplines as well. Most of the patterns are therefore quite
general and applicable in many different educational contexts.

Pedagogical Patterns focus on practises that have been
thoroughly tested and proven useful by several people in
different contexts rather than on new ideas They are not
something you invent, rather they are discovered. Sharing
these discoveries between educators requires pattern mining,
which is facilitated by a common documentation format. The
project advocates a format where each pattern is divided into
sections to make it easy for readers to find the key elements.
These include:

• A problem statement
• The problem context and the conflicting forces

which create the problem
• A solution, its rationale and consequences
• Concrete examples; evidences that the solution

works
Each pattern also has a name, chosen so that it reveals its

essence. Examples of pattern names are See Before Hear, One
Concept Several Implementations and Built In Failure. Often,
the documentation includes references to other related
patterns. In Fig 1, you find an example of a pattern called
Solution Before Abstraction from [4].

The work of the project is constantly evolving. The
evolution of a pattern can roughly be described as having an
idea of a good solution to an often recurring teaching problem
and present this as a pedagogical pattern draft. In order to have
it recognized as a pattern it needs to be discussed in a pattern-
writers’ workshop, refined, tested and validated. Often the
abstraction level of the initial problem formulation is raised
during this process in order to make it as general as possible.

A wide variety of patterns have been used and tested by
several instructors. They are available at the homepage of the
project [8]. From this page there are also links to homepages
of the project members where additional suggested patterns
can be found.

IV. PATTERN LANGUAGES
Pedagogical patterns are related to each other in different

ways. For example, a pattern can specialize, generalize,
parallell, use or complete another pattern. A larger number of
patterns can also be interrelated. For example, they can be
dealing with solutions to problems arising when teaching a
specific subject such as object-oriented programming or they
can have a common problem space such as course
development or assessment issues. When several patterns in

this way collaborate to solve a more complex problem they
constitute a Pattern Language.

The original goal of the PPP was to form one pedagogical
pattern language for teaching object technology. Around 2000
it became clear that this domain was too large. Considerable
work was done to find and document relationships between
the then existing set of patterns. One possible pattern language
was identified, The Experimental Learning Pattern [4]. After
that three other pattern languages have been developed:
Feedback [6], Active Learning [5] and Gaining Different Per-
spectives [2].

A pattern language documentation always include a quick
access table for the included patterns. It lists some problems
addressed by the language and the respective patterns that are
applicable to solve these problems. Fig 2 shows part of this
table for The Experimental Learning Pattern.

In [9] and [10] it is emphasized that the concept of a pattern
language structure is one of reasons that patterns stand out
from other forms of documentation. The structure of
languages makes it possible to define a process for using
related patterns in several different sequences.

V. EXPERIENCES OF USING PEDAGOGICAL PATTERNS IN
COMPUTER SCIENCE

In this section some of the patterns which have been used
by the author in different courses in computer science are
presented briefly.

You sometimes find that the topics are interrelated in a
cyclic way. There are also many occasions where
dependencies are acyclic but where students need to know a
lot of topics before they can start to solve interesting
problems. The pattern Spiral [2] can be used here. It applies to
situations where a large number of topics must be mastered at
the same time. The suggested solution is to start with an
introduction to a subset of the topics without too much detail,
but enough to make it possible to solve some interesting
problems. For example, you can give the students tools to use
for some of the topics they still do not master. You then return
to the topics in several cycles during the course. In each cycle
the topics are treated more in depth and additional topics may
be added.

Everybody make mistakes, not least while learning how to
program. Making mistakes give us experiences that help us to
learn. So making mistakes while trying to master a subject
should be seen as something positive. We know, however, that
many students are not confident enough to acknowledge this.
They may be afraid of exposing their mistakes. When they
make mistakes they also have difficulties in diagnosing the
reasons even if their tools provide them with error messages.
The patterns Built in Failure [4] and Mistake [3] addresses these
problems. The first one emphasizes the need to create an
environment where failure is an accepted and even expected
outcome of some learning activities. The second suggests
giving the student an assignment where they use an artifact
e.g., a computer program, with errors and diagnose the errors
or interpret the error messages produced by some tool.
Another possibility is to ask the students to produce an artifact

with certain errors and study the consequences.
Metaphors are abundant in Computer Science. Well

established metaphors include semaphore, client, server,
message, editor and desktop. The pattern Consistent Metaphor
[2] recommends introducing a new metaphor when you are
teaching a topic outside the student’s normal experience. A
metaphor is useful both for concepts constituting small
elements of a course and for giving an overall view of a larger
topic.

VI. DISCUSSION
The Pedagogical Pattern concept is an attempt to capture

successful practices and for effectively sharing those practices
with others. They offer a way to learn from the successes of
other teachers. Probably many of the patterns seem trivial for
experienced teachers. For novices, however, they can be an
efficient way to acquire knowledge and avoid making some of
the mistakes that are common for inexperienced teachers.
Subjects taught in engineering educations are often developing
rapidly and therefore even experienced instructors in these
fields often encounter new teaching problems and face new
challenges. Pedagogical Patterns give them the possibility to
seek advice from other instructors.

A relevant question is, of course, how you know that a
certain practice is best. Probably in most cases you don’t. The
patterns approved by the PPP have been thoroughly discusses,
refined and tested. But the forces behind a teaching problem
are often conflicting and the suggested solution in a pattern is
an attempt to create balance between these.

Some patterns are highly context sensitive since they
require special resources or environments. E.g., they may only
be applicable when all teaching takes place in small groups or
they may assume that schedule changes or small divergences
from the original course plan are allowed and can be made on
short notice.

Patterns result from lots of feedback and evolve as
experience is collected from instructors in different contexts.
The project welcomes comments and reactions. There are
several other ways in which you can participate: as author,
reviewer, test pilot or (as this paper) as an advertiser. Visit the
homepage of the project [8] for more information.

REFERENCES
[1] C. Alexander et al., A Pattern Language. New York: Oxford University

Press, 1977.
[2] J. Bergin, J. Eckstein, M. L. Manns and E. Wallingford, Patterns for

Gaining Different Perspectives. Available:
http://jerry.cs.uiuc.edu/%7Eplop/plop2001/accepted_submissions/PLoP2
001/ewallingford0/PLoP2001_ewallingford0_1.pdf.

[3] J. Bergin, Fourteen Pedagogical Patterns. Available:
http://csis.pace.edu/~bergin/PedPat1.3.html

[4] J. Eckstein, K. Marquardt, M. L. Manns and E. Wallingford, Patterns for
Experimental Learning. Available:.
http://csis.pace.edu/%7Ebergin/patterns/ExperientialLearning.html

[5] J. Eckstein, J. Bergin and H. Sharp, Patterns for Active Learning.
Available:
http://csis.pace.edu/~bergin/patterns/ActiveLearningV24.html.

[6] J. Eckstein, J. Bergin and H. Sharp, Feedback Patterns. Available:
http://csis.pace.edu/~bergin/patterns/FeedbackPatterns.html

[7] E. Gamma, R. Helm, R. Johnsson and J. Vlissides Design Patterns:
Elements of reusable object-oriented software. Reading, MA: Addison-
Wesley, 1995.

[8] Homepage of the Pedagogical Patterns Project. Available :
http://www.pedagogicalpatterns.org/

[9] M.L. Manns, An investigation into factors affecting the adoption and
diffusion of software patterns in industry. PhD thesis, 2002. Available:
http://www.cs.unca.edu/~manns

[10] H. Sharp, M.L. Mann and J. Eckstein, Evolving Pedagogical Patterns:
The Work of The Pedagogical Patterns Project. Computer Science
Education, vol. 13, No 4, pp. 315-330, 2003.

You want to introduce a new, abstract topic and you took
ABSTRACTION GRAVITY into account.

☛☛☛
In a typical classroom situation students may not know what
benefit they might derive from the topic. There is a need to
keep students' interest even in abstract concepts.
An abstract concept can become the basis for a large
number of applications. However, it is hardly considered
useful unless it is related to concrete experience.

☛☛☛
Therefore give the students an example of the problem in a
setting that they are comfortable with. After they have found
a solution for this example, focus their attention on those
aspects that can be applied to similar problems. When your
students are inexperienced or you feel that the subject matter
is very complex, you should introduce more than one
concrete example (see ONE CONCEPT -- SEVERAL
IMPLEMENTATIONS).
Use the identified transferable aspects to introduce the
general, abstract concept of the solution. When your
students have understood the underlying principle, you can
advance to a more formal description such as abstractions or
patterns.
This kind of presentation is especially useful for students
with little or no experience in the course area. It assumes
that students are not familiar with the concept with respect
to their profession, so that they need to learn a relation that
more experienced professional probably already discovered
themselves. After some abstractions are introduced this way,
the teacher may change the presentation form and start with
abstractions before applying it to example situations.

☛☛☛
For example, real life experiences can be used to introduce
abstract concepts. When two persons have no language in
common, and they do not want to learn another language,
they need a translator. Between two existing software
systems that do not understand each other, you need a
component taking the role similar to a translator. This
analogy to a real life experience helps to introduce the
concept of the Adapter design pattern that allows
establishing contact to a different program without the need
to change it.

Fig 1: An example of a Pedagogical Pattern

Participants are
overwhelmed by theory

SEE BEFORE HEAR.
EXPERIENCE IN THE
TINY, SMALL AND
LARGE

Participants have problem
grasping the whole picture

STUDENT DESIGN
SPRINT

Participants don’t know how
to learn outside the official
learning environment.

BUILT IN FAILURE,
MISSION
IMPOSSIBLE

Fig 2: Part of a quick access table for a Pedagogical
Pattern Language

