

Abstract—Teamwork and project participation are essential
skills for professional software engineers. To be able to give
large groups of students adequate opportunities to learn such
skills at a reasonable teaching cost, we have developed two
courses that work in tandem: a team programming course
taken by about 100 students, and a coaching course taken by
about 20 students. In this paper, we describe our view of how
these courses should be integrated within the engineering
curriculum and our experiences of running them for five years.
Important aspects of our set up include co-location during
development, fixed working hours, and guided reflection
exercises for both coaches and developers. The projects are run
as role-playing games where teachers acting as customers
provide opportunities for negotiation and the making of
commitments. Our experience so far is very positive, and we
see that students get a good basic understanding of the
important concepts in software engineering, rooted in their
own practical experience.

I. INTRODUCTION
HE development of software products is a complex
task, involving many interrelated activities like

requirements analysis, design, implementation, testing,
documentation, release, and deployment. However, in
software development it is well known that specifying the
system to be developed so that it accurately reflects the
client's true requirements is at least highly difficult and
often even impossible. Established ways to overcome such
obstacles typically involve prototype development, partial
deliveries and tight loops of feedback from the users.

To teach these skills and concepts it is not sufficient to
use the standard academic teaching model because the
students need practical experience in order to get a deep
understanding of the activities. It is therefore common to
use project courses as the educational medium for these
topics, typically involving students working together in
teams [6]. However, in order to thoroughly learn these
skills, the teams need a lot of educational resources in terms
of guidance and coaching, something which is always a
limiting resource in academic education.

We have therefore taken the opportunity to also offer a
course on coaching, given in tandem with the basic project
course. In the coaching course older students serve as
coaches and project leaders for the younger students, and in
this course the focus is on leadership where the students
learn theory about leadership and teamwork, and get to
practice it in a realistic setting.

Manuscript received April 18, 2006.
All authors are with Department of Computer Science, Box 118, S-221

00 Lund, Sweden (e-mail: {gorel|bendix|boris|lennart}@ cs.lth.se).

II. SETUP OF THE TANDEM COURSES
The tandem courses are given in parallel during two study

periods of 7 weeks each, and the students take other courses
in parallel as well. The Team Programming course is a
pass/fail mandatory course of 4 credits (6 ECTS) for 2nd
year students, and is taken by around 100 students each
year. The Coaching course is a pass/fail optional course of 6
credits (9 ECTS) for 3rd-4th year students, and is taken by
around 20 students each year. The students are studying for
a Masters of Science in Computer Science and Engineering,
and they are used to quite dense and intense courses.

We have run these tandem courses now for five years in a
row. To get started, we ran the first instance of the Coaching
course as a graduate course with a few additional
handpicked senior undergraduate students. The next year we
ran the Coaching course as a regular course with the Team
Programming course as a prerequisite.

A. Theory and project parts
As the software engineering basis for the courses we use

the methodology of eXtreme Programming (XP) [2], which
is one of the most well known examples of the class of
modern so called agile methodologies [1] and is centred
around 12 practices.

The first study period is a theory part where the two
courses are taught separately. In the Team Programming
course, the theory of XP is covered and the students also
have some lab exercises on tools and techniques to be used
later in the project. In the Coaching course, teamwork and
leadership theory is studied, both general team theory, and
specific theory related to software development and agile
work processes. Weekly homework assignments are given
where the students reflect on the theory.

The second study period is a project part where the two
courses are joined and around 10 programming teams are
formed. Each team consists of 8-10 developers from the
team programming course, 2 coaches from the coaching
course, and 1 faculty member serving as a customer to the
team.

The coaches also do an in-depth study of their own
choice that is started during the theory part and completed
during the project part. Often, they make use of the teams to
gather experimental data or for trying out specific ideas.

B. Project iterations
The project is run as a series of 6 weekly iterations. An

iteration starts on a Wednesday with a two-hour planning
meeting where the team follows up on the previous iteration
and plans for the next one. The following Monday, the team
meets in one of the labs for 8 hours of program development
(a “long lab session”). The customers (faculty) visit each

Tandem Courses – Students coaching students
Görel Hedin, Lars Bendix, Boris Magnusson, and Lennart Ohlsson, Computer Science

T

team both during the planning meeting and the long labs for
discussion and prioritization of requirements.

Between the planning meeting and the long lab, each
developer is expected to spend around 4 hours of “spike
time”, preparing for the long lab, doing experiments and
studying specific issues. Exactly what each developer
should do during the spike time is decided by the team at the
planning meeting. However, actual program development
takes place only during the long lab sessions when all
members are present.

The coaches meet with faculty each Tuesday to discuss
experiences from the previous iteration and to get advice for
the upcoming iteration.

C. Expected results and grading
All teams develop essentially the same product and are

given the same set of user stories (customer requirements).
However, they are not expected to complete all the stories.
The focus is rather on maintaining high quality in their work
and on learning by doing.

In the last (7th) week of the study period, the resulting
products are demonstrated and evaluated. This is done by
peer evaluation, letting each team try out another team’s
product and review their code, technical documentation and
user manual. These reviews are presented orally in groups
of three teams at a time.

How can we grade a course that is time boxed and builds
so much on teamwork? We grade it only pass/fail, and for
passing they are required to have actively participated in all
the scheduled activities. Students can apply for an
exemption from the scheduled activities due to illness or
exceptional circumstances. In order to make up for such
absence, the students get additional tasks that are valuable
for their team and which are presented to both the team and
us.

More details about the two courses are available in the
following papers: [3, 4, 5].

III. EXPERIENCE
Software development requires very many different skills

and at many different levels. In order to not overwhelm the
students we think that an iterative learning environment is
absolutely essential. It is necessary for the students to get
the chance to do concrete work according to their current
understanding and to get the possibility to reflect and get
feedback from others in order to improve their
understanding and their skills. This has turned out to be a
very illustrative example of Kolb’s learning cycle [7] for
experiental learning.

The use of XP provides excellent opportunities for
learning in this way. From a pedagogical perspective we
identify four important aspects that in particular support the
learning cycle: time-boxing, iterations, co-location, and role
play. We now comment on each of these in turn.

A. Time-boxing
In most other course projects we give fixed requirements

that the implemented system should fulfil. The Team
Programming course is very different. Here we give the
students a fixed time box (planning time, spike time, and

long lab time), and expect them to do their best with this
time. Completing stories is important, but not at the expense
of quality of work, team communication, and peer learning.
We find this approach absolutely essential in order to make
sure that the students learn and practice various skills rather
than focus on the product they produce.

B. Iterations and guided reflections
At the start of the project, the students have read about

XP in theory, and although they have some practical
experience from the labs, they have on the whole a passive
and superficial understanding of the techniques. The course
design with six project iterations gives them many chances
to experience and reflect on how the practices work, to get
feedback from their coaches and peers, and to improve
during the next iteration(s).

Although the 12 XP practices seem fairly simple in
principle, they take time to really understand and master. In
order to not get overwhelmed by trying to learn everything
at once, we have introduced focus practices. The idea is that
while we instruct the students to try their best at following
all the XP practices, for each iteration we select 4 practices
that we ask them to focus on in particular during that
iteration. They are asked to refresh the theory for these
practices before they go to the long lab session, and at the
subsequent planning meeting they are asked to discuss and
reflect on their experience from these practices, and to
suggest ways of improving. We ask the coaches to
summarize these discussions, and each week we compile a
summary and post it on the web for everyone to share.

C. Co-location and peer learning
We have found the practice of having the whole team co-

located in one room extremely important for learning. We
have heard of other experiments in applying XP in
education where the teams are just left to themselves to find
a common time and place for programming. This usually
results in the team splitting into fixed pairs, splitting the
stories between them and programming them at different
times without much communication, learning, or reflection.

A co-located team, on the other hand, allows all team
members to keep up with the development of all parts of the
product, and promotes team building. Short “time-outs” are
taken to discuss and reflect over both design and
methodology with the whole team. Switching pair partners
can be done frequently, supporting peer learning.

The teams are put together in a random fashion. Usually,
the students initially say that they would prefer to form
teams with their friends, but after the project, they agree that
they probably learned a lot more by being part of a random
team. Many students comment that the use of random teams
makes the project feel more realistic.

D. Role play
An important element in project courses is to use the

opportunity for role playing games [6]. The benefit of this
old idea, which is based on Winnicott's thoughts on play
and creativity [8], is that it provides a safety harness which
allows you to test new and different behaviour habits
without risking a blow to your ego. Giving students clear
roles therefore allows them to learn more than if they were

required to fulfil a certain task. We use role play on several
levels. In the XP practice of Pair Programming the partners
have distinct roles: driver and navigator, which ensures
continuous communication concerning all aspects of
programming, from design ideas to mundane bookkeeping
tasks. This communication promotes peer learning at all
levels during programming. Frequent switching of the roles
within the pair ensures that both partners get to experience
being the “driver”.

The coaches also take on different roles during the
project: e.g., coach and project leader. Initially, they also
have the roles of architect and tracker, but these roles are
gradually delegated to the developers. The coaches can also
go into the developer role to pair program with the ordinary
developers, a very effective way of sharing their expertise,
both concerning the methodology and concerning
programming as such.

During planning meetings, the customer participates in
the role play and the plan for the next iteration is negotiated:
the developers estimate stories, and the customer sets the
priorities and adds new stories.

E. Course costs
The two courses have many scheduled hours for the

students. However, because of the use of student coaches,
the needed faculty resources are reasonable. The two tables
below summarize the number of teaching hours used.

Normal preparation hours are needed for the lectures and
laboratory supervision, whereas the customer role requires
much less preparation. Additional teaching costs include a
one-hour exam, administration of the course, administering
“focus practices”, and handling absence, i.e., keeping track
of students that are ill, come in late, etc., and taking
appropriate actions. The costs below do not include the
creation of stories for the product since we have reused
approximately the same set over the 5 instances the course
has been given.

Costs for Team Programming course:

Type of
personnel
(role)

Description In-class
hours
for t
teams

In-class
hours for
10 teams
(100
students)

Senior
faculty
(lectures)

7*2h lectures +
1*2h concluding
lecture

16 16

Teaching
assistants (lab
supervisors)

4*2h labs
(serving 2 teams
simultaneously)

4*t 40

Teaching
assistants
(customer in
project)

6*2h customer
at planning
session (serving
2 teams
simultaneously)
+ 6*4h at
development
sessions
(serving 4 teams
simultaneously)

12*t 120

Costs for Coaching course:
Type of personnel Description
Senior faculty Lectures: 7*2h
Senior faculty Supervision of coach meetings:

7*2h
Senior faculty In-depth studies: Feedback on

preliminary abstracts + Feedback
on preliminary versions + 4h final
seminar.

IV. CONCLUSION
Software development is a complex area, and success

depends on many different skills, including programming
skills, organizational skills, and people skills. Many of these
skills require extensive practice in order to get a good
understanding of the whole picture and the complex
interrelations between different tasks.

We find the use of tandem courses allows us to provide
the students of the Team Programming course with a very
good learning environment, while at the same time
providing the Coaching course students with the opportunity
to learn and practice coaching under realistic conditions.

While both XP and our courses focus on software
development, we think there are many aspects that would
carry over to other areas where products are built or
designed. Coaching and leadership skills are highly useful
for engineers, and the tandem course setup should be
applicable also to project courses in other fields.

ACKNOWLEDGMENT
We would like to thank the participants of our courses for

valuable feedback and discussions concerning the course
contents and setup.

REFERENCES
[1] The agile manifesto, http://agilemanifesto.org.
[2] K. Beck, Extreme Programming Explained – Embrace Change,

Addison-Wesley, 1999.
[3] G. Hedin, L. Bendix, and B. Magnusson, Introducing Software

Engineering by means of Extreme Programming, in Proceedings of
the International Conference on Software Engineering, Portland,
Oregon, May 3-10, 2003.

[4] G. Hedin, L. Bendix, and B. Magnusson, Coaching Coaches, in
proceedings of the 4th International Conference on eXtreme
Programming and Agile Process in Software Engineering, Genova,
Italy, May 25-29, 2003.

[5] G. Hedin, L. Bendix, and B. Magnusson, Teaching eXtreme
Programming to Large Groups of Students, Journal of Systems and
Software, January 2005.

[6] C. Johansson, L. Ohlsson, An Attempt to Teach Professionalism in
Engineering Education, World Conference on Engineering Education,
Portsmouth, 1992.

[7] D. A. Kolb, Experiental Learning: Experience as the Source of
Learning, Prentice-Hall, 1984.

[8] D. W. Winnicott, Playing and Reality, Penguin Books, 1985.

