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Abstract 
Many person-oriented studies use z-standardized scores before conducting cluster analyses and/or before displaying group differences. 
This article summarizes reasons why z-standardized scores can often be problematic and misleading in person-oriented methods. The article 
shows examples illustrating why and how the use of z-scores in group classification and comparisons can be misleading, and proposes less 
problematic methods. Reasons why z-standardized scores should be avoided when classifying or displaying differences between clusters, 
profiles, and other groups are:  
(1) The ratio of the difference between two groups is distorted in z-scores. 
(2) The ratio of the difference between two variables is distorted in z-scores. 
(3) Information about item endorsement and item rejection is lost. 
(4) The psychological meaning of a given z-score does not compare across samples and variables. 
(5) Group assignments can be misleading if z-scores are used to assign individuals to groups. 
(6) The group size and group frequency may be affected if z-scores instead of raw scores are used to assign individuals to groups. 
(7) Group differences in further outcome variables can change if z-scores instead of raw scores are used to assign individuals to groups. 
(8) Alternative normalization techniques perform better than z-standardization in cluster analyses. 
(9) z-standardization relies on homogeneity assumptions, including unimodality, but distributions analysed in person-oriented research are 
often multimodal.  
(10) Person-oriented methods typically examine within-person patterns to answer research questions about within-person phenomena, 
whereas z-standardization typically refers to between-person variation, which creates a logical mismatch between theory and method. 
Alternatives to using z-scores in graphs displaying profiles and group differences are using raw scores or using scale transformations that 
use the range, not the standard deviation in the normalization. 
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1. Introduction 

Z-standardization is a linear transformation that trans-
forms raw scores into z-scores. Z-scores are widely used to 
compare groups (Dere et al., 2014) and profiles (e.g., Bau-
tista et al., 2016; Kahn et al., 2013). Moreover, public health 

 
 
1 Mathematics and engineering use the term normalization for what social 
scientists tend to call standardization. 
 

organizations, including the World Health Organization and 
the US Center for Disease Control, often recommend the use 
of z-scores to relate individuals’ scores in health indices (e.g., 
Body Mass Index) to their reference population (e.g., de 
Onis et al, 1997; Ogden et al., 2002). In Psychology, z-stand-
ardization is probably the most frequently used approach, 
despite numerous alternative standardization methods.1  
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In person-oriented methods, z-scores are used for instance in 
various steps of cluster or latent profile analyses: In a first 
step before conducting the analysis, and in a second step af-
ter conducting the analysis to display differences between 
the resulting clusters or profiles in graphs (e.g., Cenkner et 
al., 2024; Edelsbrunner et al., 2025; Martinson et al., 2011; 
Nylund et al., 2007; Peng et al., 2020). 

Unbeknownst to many authors, z-standardization can 
cause misinterpretations of research findings (e.g., Berkey & 
Colditz, 2007; Moeller, 2015). This article summarizes rea-
sons why z-standardized scores should be avoided both be-
fore conducting cluster or latent profile analyses, and after-
wards when displaying their results in graphs depicting pro-
files or mean score differences between groups. The article 
provides examples showing why using z-scores in group 
comparisons can be misleading, and concludes with propos-
ing alternative methods that avoid such risks of misinterpre-
tation.  

2. What is z-Standardization and Why is it 
Used to Compare Profiles and Groups? 

Z-standardization is used to transform raw scores into z-
scores. A raw score is z-transformed by subtracting the mean 
score of the sample from the raw score, and dividing the re-
sult by the standard deviation of the sample. In the resulting 
distribution of z-scores, a z-score of zero represents the  
sample mean, and a z-score of one or minus one is one stand-
ard deviation away from that sample mean score. 

In person-oriented research, z-standardization is used for 
three main purposes, depicted in Figure 1:  

(1) to prepare data for a subsequent cluster or latent profile 
analysis performed on the z-standardized variables,  

(2) to display differences between clusters, latent profiles, 
or other groups in graphs showing the group-specific av-
erage levels of the examined variables, and  

(3) in within-person analyses of longitudinal data. 
 
Figure 1.  
How person-oriented research is affected by pitfalls of z-standard-
ization 

 
 

 
 
 

Oftentimes, researchers z-standardize variables before 
conducting analyses aiming to identify unobserved groups, 
such as clusters or latent profiles. This practice is based on 
the – not necessarily correct– belief that cluster analyses or 
latent profile analyses perform better, that is, identify clus-
ters or profiles better when z-standardized variables are used 
instead of raw scores. This belief is often mistaken, as we 
will discuss below (see Table 2 and the discussion section; 
see also Nylund et al., 2007).  

A second use of z-scores in person-oriented research is to 
display and compare the average z-scores of several varia-
bles within and across unobserved groups of individuals (i.e., 
clusters or profiles resulting from cluster or latent profile 
analyses; e.g., Cenkner et al., 2024; Edelsbrunner et al., 2025; 
Kahn et al., 2013; Martinson et al., 2011; Nylund et al., 2007; 
Peng et al., 2020). In other cases, researchers compare ob-
served groups, such as males and females, in terms of their 
average z-scores in relevant outcome variables, such as gen-
der differences in anxiety (e.g., Dere et al., 2014). 

A third use of z-standardization in person-oriented re-
search transforms longitudinal data into z-scores by using ei-
ther the within-person average, or a between-person average 
before applying longitudinal data analyses on the trans-
formed scores. Why this can lead to a variety of problematic 
misinterpretations has been discussed elsewhere (Moeller, 
2015) and is mentioned here merely because this application 
of z-scores is often combined with the above-mentioned uses 
of z-scores in person-oriented methods and group compari-
sons. The topic is linked to that of group comparisons be-
cause researchers planning to use z-standardization of longi-
tudinal data can typically choose between several group 
mean scores and standard deviations as frames of reference 
for their z-transformation: The full sample’s mean score 
(grand mean), or the intra-individual, person-specific mean 
score (group mean), or the mean score of a set of repeated 
measures (e.g., year 1 or wave 1 in a multi-year, multi-wave 
data collection). The different approaches have different dis-
advantages and probable misunderstandings in different 
analyses, particularly when being used in research questions 
comparing the results of different observed groups (e.g., 
males and females) or different unobserved groups (e.g., 
clusters of individuals with different slopes / growth curves 
or trajectories over time). While the present article mainly 
focuses on the problems of z-standardization in group com-
parisons and leaves the problems of z-standardization in lon-
gitudinal studies to be discussed elsewhere (e.g., Moeller, 
2015), readers should be aware of the many possible combi-
nations of both approaches, group comparisons in longitudi-
nal data, and the resulting risk that the problems affecting z-
scores in either approach can accumulate and become very 
difficult to handle if both approaches are combined. 
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Table 1.  
The two steps (before and after data analysis) in which z-standardization is used in A: Analyses identifying unobserved groups and B: 

Analyses identifying observed groups. 

 A: Analyses identifying unobserved groups  
(clusters, latent profiles, latent classes) 

B: Analyses identifying observed groups  
(e.g., individuals with a high harmonious 
passion versus a high obsessive passion) 

Step 1: uses of 
z-transformation 
before  
data analysis 

Rationale: Used in the hope to better identify clusters or latent pro-
files statistically. If variables are measured on widely different 
scales (e.g., X on a scale from 0 to 10 and Y on a scale from 0 to 
100), then the variable with the substantially larger response scale 
range is likely to show a larger variance of raw scores, which possi-
bly influences the bi- or multivariate distances and thus clustering 
solution stronger than the variable with the smaller response scale 
range. The hope is that z-standardization avoids that variables with 
larger variances affect the multivariate distances stronger than vari-
ables with a smaller variance. Therefore, some scholars see it as an 
advantage that z-standardization can change the distances between 
the observations in bi- or multivariate distributions that are used to 
determine statistically via distance measures (e.g., Euclidean dis-
tances) which observations are similar (belonging to one cluster) or 
different (belonging to different clusters). 
Critique: Problems 1, 8, and 9 mentioned below. The distances in 
bi- or multivariate distributions do not necessarily become more 
trustworthy through z-standardization. There are two reasons why a 
variable with a larger range and variance affects a cluster solution: 
1) The method artefact reflecting the fact that a variable measured 
on a scale from 0 to 100 has a larger range and therefore larger 
weight in a cluster analysis than the same variable measured on a 
scale from 0 to 1, and 2) The relevant information about psycholog-
ical mechanisms reflected in distributions and ranges of variables, 
including eventually meaningful extreme groups, content-wise 
meaningful outliers and eventual mixture distributions. Bringing the 
variance of all variables to 0 through z-standardization removes both 
the method artefact, and the meaningful information reflected in the 
variance and range. It can lead to different cluster or profile solu-
tions than distances calculated with raw scores of similarly scaled 
variables, or with ranks, or with or POMS- or POMP-transformed 
variables (see Table B-1). There is no sufficient theoretical or meth-
odological reason to claim that z-score-based cluster solutions are 
more insightful. 

Rationale: Used to create distinct groups of 
individuals, such as a group with higher z-
scores in Variable X (e.g., harmonious pas-
sion) than in Variable Y (e.g., obsessive pas-
sion, for example, see Mageau et al., 2009; 
Philippe et al., 2009; Vallerand & Houlfort, 
2003, for a critique, see Moeller et al., 2015).  
Critique: Problems 5, 6, 7, and 9 mentioned 
below. 

Step 2: uses of 
z-transformation 
after  
data analysis 

Rationale: Used to display and emphasize group differences. Differences between clusters and profiles look larger 
if displayed with z-scores rather than raw scores 
Critique: Problems 1, 2, 3, 4, 9, and 10 mentioned below.  
Rationale 2: Many researchers transform raw scores into z-scores to compare variables that were originally meas-
ured on different scales to each other. 
Critique 2: Problems 2, 3, 4, 9 and 10 mentioned below.  

 
 

One function of z-scores in group and profile comparisons 
is to bring different variables to the same metric, to make 
them comparable. That can be useful when inspecting pro-
files of variables measured on different response scales. A 
second reason why z-scores are used in group and profile 

comparisons is the researcher’s wish to emphasize differ-
ences between groups, which often appear larger in z-scores 
than in raw scores. Third, standardized scores are used to op-
timize the process of identifying unobserved groups in clus-
ter analyses. For instance, the statistical software SPSS 
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automatically z-standardize continuous variables before per-
forming a two-step cluster analysis. Fourth, z-scores are used 
to relate individual observations to the distribution of a ref-
erence sample and the population from which that sample 
was drawn, for instance to say that “Otto scored 2 standard 
deviations below the mean score” (e.g., de Onis et al., 1997; 
Ogden et al., 2002). Public health organizations recommend 
the use of z-scores to relate an individual’s health indicators 
to a reference population and also to compare such z-scores 
across groups and over time (e.g., de Onis et al., 1997; Og-
den et al., 2002).  

Some of these approaches can be problematic and even 
achieve the opposite of what they intended for reasons sum-
marized below. 

3. Reasons to Avoid z-scores in Group or
Profile Comparisons

Problem 1. The ratio of the difference between two 
groups is distorted in z-scores 

When comparing groups, including clusters or individuals 
belonging to different profiles, it often matters how large a 
difference between two groups is. It may affect a study’s 
conclusion whether individuals in group A have on average 
twice as many versus four times as many children as group 
B, or if country A reported twice as many versus twenty 
times as many deaths as country B during a pandemic.  

However, if groups are compared, z-scores may distort the 
relative ratios in the comparisons between groups, compared 
to raw scores. For example, compare the graphs for Italy and 
the UK in Figure 2, which show the reported deaths due to 
Covid-19 infections for three countries on April 12th (Johns 
Hopkins University, 2020). The left graph shows raw scores, 
the right graph the corresponding z-scores, based on the 
mean and standard deviation of the three countries included 

in the graph. 
The raw scores show that Italy reported roughly twice 

(1.87 times) as many deaths as the UK due to Covid-19 at 
that date, whereas the z-scores suggest that Italy reported 
24.50 times as many deaths as the UK. This distortion of the 
size of the difference between two groups can affect the ef-
fect size. The effect size d for instance would differ if calcu-
lated with the mean score and standard deviation for raw 
scores, compared to d being calculated with the mean and 
standard deviation of the z-scores. Maybe not many re-
searchers would opt to calculate d using z-scores, but every 
reader should have the opportunity to calculate an effect size 
for a group difference based on the reported results of a pub-
lished article, and if only z-scores were reported, then read-
ers cannot calculate a realistic effect size, due to the distor-
tions described above. 

Despite such distortions in the ratios of differences be-
tween groups, some researchers purposefully use z-scores to 
emphasize the visual differences between two groups in 
graphs, which may look smaller or imperceptible if raw 
scores are displayed instead. As a rule of thumb, differences 
between groups, including clusters and profiles, tend to look 
larger in z-scores than in raw scores, because using z-scores 
to display group differences resembles the use of a truncated 
y-axis, which we are taught to avoid. Readers should always
be given information about the theoretically possible and
empirically observed ranges of a distribution, to decide for
themselves whether they consider the distance between two
observations, two groups, or two profiles, large or small.
Graphs displaying raw scores typically display the infor-
mation about the range and the theoretically possible mini-
mum and maximum of a distribution on the Y-axis, unless
the Y-axis is truncated, whereas z-scores obfuscate that in-
formation.

Figure 2.  
Reported deaths due to Covid-19 infections by country on April 12th, 8:29 p.m. (based on data from the Johns Hopkins University, 2020). 
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Figure 3.  
Illustrating an example in which raw-scores suggest that Variable X is generally lower than Variable Y in two groups, whereas z-scores of 
the same individuals suggest that Variable X is higher than Variable Y in one group. 

Note. Appendices B and C show further graphs and transformed scores for further standardization methods 

.
Problem 2. The ratio of the difference between two vari-
ables is distorted in z-scores 

Z-scores distort the ratios between the scores of two vari-
ables, compared to raw scores. This implies that the form of 
profiles may change dramatically and even turn completely 
around when z- scores instead of raw scores are used to dis-
play profiles. An illustration of that problem is shown in Fig-
ure 3, in which cluster 2 displays lower mean scores for Var-
iable X than for Variable Y only when raw scores are exam-
ined, whereas that picture turns around for the same cluster 
2 and the same individuals when z-scores are examined in-
stead and the z-score-based mean score of Variable X be-
comes higher than that of Variable Y. Thus, the interpretation 
of the cluster 2 swaps from “low Variable X, high Variable Y” 
in terms of raw scores to “high Variable X, low Variable Y” 
in terms of z-scores.  

That z-scores can distort the ratios between two variables, 
compared to raw scores, also implies that it is not possible to 
determine whether a score in one variable was originally 
larger or smaller than the score of another variable in a 

profile. That can have dramatic consequences for the inter-
pretation and conclusion of a study. An illustration of that 
problem is shown in Figure 3, in which raw scores suggest 
that Variable X was always lower than Variable Y in all clus-
ters, whereas the z-scores suggest that Variable X was higher 
than Variable Y in cluster 2. For a real empirical example of 
that problem, please see the research on the motivational 
construct of passion, which often examines harmonious pas-
sion (HP) and obsessive passion (OP), which are measured 
with the same response scale (1 = do not agree at all to 7 = 
completely agree; Vallerand et al., 2003). When individuals’ 
profiles of HP and OP were examined, the raw scores re-
vealed that all profiles showed higher HP than OP, while the 
z-scores had suggested that one group showed higher OP
than HP (Moeller et al., 2015).

Since many statistics textbooks emphasize the aspects that 
z-standardization does not change and omit the aspects that
it does change, Table 2 gives an overview of the changes that
can affect the distributions, statistical models, and interpre-
tations relying on z-scores, compared to those relying on raw
scores.
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Table 2. 
What z-standardization does, and does not, change, compared to raw scores 

What z-standardization maya change, compared to raw scores What z-standardization does not change, compared 
to raw scores 

The shapes of bi- and multivariate distributions of multiple variables (see 
Figure 4) 

The shape of the univariate distribution of one variable 

The cluster solution in a cluster analysis The Pearson-Product-Moment correlation of two vari-
ables 

The factor solution in a factor analysis 

The ratio of the mean scores belonging to two groups (see Figure 2)  The ratio of the mean score difference of  

Ratio Differences = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1)−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3)−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4)

  The ratio of the mean scores belonging to two variables (see Figure 3) 

The univariate difference between the mean scores belonging to two 
groups 

The univariate differences between individual scores of 
one variable within one person, within any given group 
and in the overall sample 

The bi- and multivariate difference(s) between the mean scores belonging 
to two or more variables 

The interpretability of the psychological meaning of the response scale, 
including lost information about item endorsement and lost information 
regarding the question of which variable or which group was on average 
scored “higher” than the other variable or group in terms of the original 
response scale. 

 

Note. a = Whether or not and which of these changes occur may depend on the specific distributions, ranges of response scales, eventual outliers, mean 
scores, standard deviations, etc. of the variables being z-standardized. 
 

Many statistics textbooks declare that z-standardization 
does not change the distribution of a variable (e.g., Howell, 
2013, p. 80). That is only partially correct, since it only ap-
plies to univariate distributions and to bi- or multivariate dis-
tributions with truncated axes. Figure 4 illustrates how and 
when z-standardization does change the bivariate distribu-
tion of two variables. For this Figure 4, two normal distribu-
tions were simulated (for the R code, see Appendix D). The 
simulation created 365 normally distributed observations for 
variable X with a mean score of 50 and a standard deviation 
of 15 and 365 normally distributed observations for variable 
Y with a mean score of 75 and a standard deviation of 3.5. 
For our thought experiment, we assume that both variables 
were measured on a scale from 0 to 100. As the different 
standard deviations already indicate, variable X had for 
whatever reason a very large range (here with a minimum of 
6.901 to a maximum of 95.715) and variable Y had a compa-
rably small range (here with a minimum of 61.15 to a maxi-
mum of 85.66). To give an everyday-life example illustrating 
why anybody would want to measure two variables with 
such different standard deviations on the same response 
scale ranging from 0 to 100, imagine X being the daily tem-
perature during one year measured in Fahrenheit in the vir-
tual city in which our virtual individual lives, and Y being 
the number of emails that virtual individual is getting each 
day in that year, with variable X being measured on a scale 
ranging from the historically observed minimum tempera-
ture of the virtual home city of that virtual individual (0 de-
gree Fahrenheit) to the historically observed maximum tem-
perature of the virtual home city of that virtual individual 
(100 degree Fahrenheit). 

Panel A in Figure 4 shows the scatter plot of these varia-
bles X and Y with the correct, not truncated axes, both rang-
ing from 0 to 100. Panel B in Figure 4 shows the scatter plot 
of these same raw scores of variables X and Y, this time with 
a truncated Y-axis, showing only the range in which empiri-
cal values for that variable Y were observed (60 < Y < 85, 
since our virtual person never receives less than 60 and no 
more than 85 emails per day in that year). Panel C in Figure 
4 shows the scatter plot of the z-standardized scores of vari-
ables X and Y, with a truncated Y-axis, because graphs de-
picting z-scores typically zoom in to the section of a distri-
bution where empirical values and variance were observed. 
The pictures of Panels B and C are similar, illustrating that 
the bivariate distribution of z-scores is equivalent to a biva-
riate distribution of raw-scores plotted on truncated axis 
showing only the to the section of a distribution where em-
pirical values and variance were observed. Compared to the 
more correct and precise graph of Panel A, which avoids the 
misunderstandings of truncated axes, the bivariate distribu-
tion of the z-scores in Panel C looks different: For instance, 
consider the three highest scores of the X-axis encircled with 
the orange, red and blue circles. In Panel A, all three obser-
vations appear to be similarly far from each other in the two-
dimensional space; the two-dimensional distance between 
the observation in the red circle and the observation in the 
blue circle appears to be similar to the distance between the 
observation in the red circle and the observation in the or-
ange circle, and similar to the distance between the observa-
tion in the blue circle and the observation in the orange circle. 
In contrast, these distances appear different from each other 
in Panels B and C, where the orange and blue observations 
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appear to be closer to each other than each of them is to the 
red observation. This illustrates that in a bi- (or multi-)vari-
ate distribution, z-standardization can change the bi-(or 
multi-)dimensional distances between observations, com-
pared to raw scores that are depicted and put in relation to 
their original response scale. That is the main reason for 
problems 2 and 3, meaning for the problem that z-standardi-
zation can change the distances and the ratios of two group 
mean scores (problem 2), and the distances and the ratios of 
two variable mean scores (problem 3). Thus, even though the 
statistics text books are correct in stating that z-standardiza-
tion does not change the distances and ratios between obser-
vations in the univariate distribution, they should emphasize 
that it is nevertheless possible that a z-standardization will 
change the distances and ratios between observations in bi- 
or multivariate distributions (i.e., the bi- or multidimensional 
space). Since cluster analysis relies on exactly these bi- or 
multivariate distances in both identification and interpreta-
tion of differences between clusters and differences between 
variables, the multivariate changes to these distances created 
by a z-standardization can affect the final cluster model and 
the cluster interpretation in ways that resemble method 

artefacts and are neither theoretically, nor empirically con-
vincing. 
Problem 3. Information about item endorsement is lost 

Many studies determine the agreement or disagreement of 
participants with items by using a bound scale (e.g., 0 = don’t 
agree at all to 7 = totally agree, or 0 = does not apply at all 
to 10 = fully applies). In such scales, the scale midpoint is 
often a meaningful threshold at which the item rejection 
(minimal score to scale midpoint) turns into item endorse-
ment (scale midpoint to maximal score). Whether partici-
pants agree or disagree, or whether their score exceeds a the-
oretically relevant cut-off is often crucial information. This 
information, however, is lost in z-scores, in which the empir-
ical distribution instead of the original response scale be-
comes the frame of reference. Consequently, a z-score can 
appear to be “high” (e.g., above the mean score of z = 0), 
while representing an item rejection. Whether a z-score rep-
resents an item endorsement or rejection can differ for the 
same Variable X across samples, or for the same sample be-
tween variables measured on the same response scale. 

 
Figure 4. 
How and when z-standardization changes the bivariate distribution (Panel C), compared to raw scores (Panels A and B) 
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An illustration of that problem is shown in Figure 3, where 

the raw score graph clearly shows the original demarcation 
at which an item rejection (scores below 5) turned into an 
item endorsement (scores above 5). In the z-score-based 
graph on the right side of Figure 3, it may appear as if the 
mean scores of Variable X in cluster 2 was really high, when 
in fact that Variable X had been rejected (scores below the 
scale midpoint of 5) by every single individual in both clus-
ters. Likewise, the same z-score graph suggests that the mean 
scores of Variable Y in cluster 1 was really low, whereas in 
fact the average score of Variable Y indicated an average 
item endorsement (scores higher than the response scale 
midpoint of 5) in both clusters. This implies that for every 
research question for which the original response scale is a 
meaningful frame of reference, including all research ques-
tions asking whether a construct was experienced or not, 
there is a risk of misinterpretations when interpreting such z-
score-based graphs. 
Problem 4. The psychological meaning of z-scores de-
pends on the sample’s and variable’s distribution 

Since z-scores depend on the distribution of the variable 
in the sample, the same z-score of a variable can have an en-
tirely different psychological meaning in one sample versus 
another. For example, the average z-score of 0 of an item as-
sessing anxiety likely indicates a normal level of anxiety in 
a representative sample but a clinically relevant high level of 
anxiety in a population of anxiety disorder patients in a 
closed psychiatry ward. Likewise, the same z-score of two 
variables measured on the same response scale in the same 
sample can have two entirely different psychological mean-
ings, because each variable has its own frame of reference 
for the z-standardization (its own mean and standard devia-
tion.  

These sample- and variable-specific characteristics of z-
scores make it very difficult to determine the psychological 
meaning of z-scores in graphs displaying multiple variables’ 
z-scores in one or multiple groups, and in comparisons of 
results across samples. 
Problem 5. People may end up in a group they do not be-
long to if z-scores are used to assign individuals to groups. 

Some studies not only compare z-scores across variables 
or groups, but use z-scores to classify individuals into dis-
tinct groups before comparing these groups’ z-scores in these 
or other variables. One risk resulting from that approach is 
that people may end up in a group they do not belong to ac-
cording to the applied definition. For example, some studies 
on passion use z-scores of HP and OP to classify individuals 
into a “mainly obsessively passionate” group (zOP > zHP) 
and a “mainly harmoniously passionate” group (zOP < zHP; 
e.g., Philippe, et al., 2009). However, because of the differ-
ent item difficulties of HP and OP, most individuals 

 
 
2 SPSS automatically z-transforms scores before two-step cluster 
analyses, but not in k-means or hierarchical cluster analyses. 

classified as “mainly obsessively passionate” actually show 
higher HP than OP, which conflicts with the definition of the 
group.  

An illustration of this problem can be found in Figure 3: 
If we define individuals with a higher z-score in Variable X 
than in Variable Y as “high A, low B” (as Philippe et al., 2009 
did; see Cluster 2 in Figure 3), then we classify individuals 
into this group (here: Cluster 2), who rated Variable X actu-
ally lower than Variable Y on the original response scale (this 
applies to all individuals in Cluster 2). This implies that any 
interpretation that includes a judgement about whether or not 
a score in one variable represents a higher trait expression, a 
higher construct level, a more intense experience, or a 
stronger endorsement, than the score of another variable 
risks being misleading if z-scores instead of raw scores are 
interpreted. At least, that affects all research questions for 
which the original metric (e.g., the original response scale) 
is a meaningful frame of reference in any way.  
Problem 6. The group size and group frequency may be 
affected if z-scores instead of raw scores are used to as-
sign individuals to groups. 

Imagine that we stick with the aforementioned definition 
of the “mainly obsessive passionate” group as individuals 
with higher OP than HP, and use raw scores instead of the 
problematic z-scores to compare HP with OP. With that ap-
proach, the “mainly obsessive passionate” individuals are 
extremely rare, because almost no participant shows higher 
raw OP than HP (Moeller et al., 2015). For example, in Fig-
ure 3, the individuals with a higher score in Variable X than 
in Variable Y do not exist (0%), but Cluster 2 in the z-score-
based graph on the right side of Figure 3 suggests that 50% 
of the sample (persons 5 to 10) reported higher (z-)scores in 
Variable X than in Variable Y. 

Likewise, due to possible misclassification problems de-
scribed below under point 8, the size of clusters in cluster 
analyses may change when the variables are z-standardized 
before performing a cluster analysis on them.  
Problem 7. Group differences in further outcome varia-
bles can change if z-scores instead of raw scores are used 
to assign individuals to groups. 

Since the group composition (person-group assignment) 
may change if raw scores instead of z-scores are used to de-
fine groups (see the example of HP and OP above), a logical 
consequence is that group differences in outcome variables 
may look very different.  
Problem 8. Other scale transformations perform better 
than z-standardization in cluster analyses. 

Although many studies and statistical programs, such as 
SPSS, z-standardize continuous variables by default before 
using them in cluster analyses 2 , other standardization 
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techniques using the range (max – min) instead of the stand-
ard deviation as divisor (see equation 1 below) were found 
to perform much better in the cluster identification in simu-
lation studies (e.g., Everitt et al., 2001; Milligan & Cooper, 
1988; Schaffer & Green, 2010). In the cited simulation stud-
ies, the true group membership is typically known, and dif-
ferent standardization techniques were compared in terms of 
their performance in identifying and distinguishing these 
known groups as clusters.  

Based on the finding that the z-standardized variables lead 
to inefficient cluster classifications, we can deduce that the 
clusters identified with z-standardized scores may differ in 
size and composition from the true groups in the population 
that the cluster analyses aim to identify. Consequently, all 
problems described above under the points 5-7 may apply 
automatically, no matter whether the profiles are displayed 
in graphs using the raw scores or the z-scores. If the differ-
ences between the clusters are displayed in z-scores, then ad-
ditionally the points 1-4 may apply.  

Although the possible misclassifications due to z-scores in 
cluster analyses were pointed out decades ago (Milligan & 
Cooper, 1988), these problems remain widely unknown, as 
illustrated for instance in the statement “Z scores can be used 
directly in any number of analysis formats including cluster 
analysis“ (Cheadle et al., 2003, p. 78) and the fact that the 
widely-used statistical program SPSS, as well as JASP and 
ROPstat, still z-standardize continuous variables by default 
before various cluster analyses. Table 2 gives an overview of 
the inconclusive findings of several studies examining the 
best standardization method for cluster analysis. Possible 
reasons why the evidence to answer this question remains 
inconclusive to date, and aspects that need to be further stud-
ied in order for readers to know what standardization method 
to use for what kind of cluster or latent profile analysis, are 
discussed in the section on directions for future research be-
low.  
Problem 9. The mean scores used in z-transformation re-
quire unimodality, but mixture models are often used on 
bi- and multimodal data. 

Another reason why z-standardization may be ill-suited 
for studies using latent profile analyses is their reliance on 
mean scores. The mean score is used twice in z-standardiza-
tion: Once in the first step of subtracting the variables’ mean 
score from each observed score, and then in the second step 
of dividing the result by the standard deviation, which itself 
represents the variation of the observed values around the 
mean score.  

Mean scores require a unimodal variable distribution in 
order to be meaningful measures of the central tendency of 
that variable (see e.g., Derrible & Ahmad, 2015; Wirtz & 
Nachtigall, 1998). However, as the name suggests, mixture 
models, such as latent profile analyses, are often used for 
variables that show a mixture distribution, i.e., a bi- or mul-
timodal distribution and in fact are discouraged if all varia-
bles are bi- or multivariately normally distributed.  

For example, imagine a latent profile analysis being 

performed on two variables that are bivariate normally dis-
tributed and positively correlated, so that individuals with 
relatively low values in X report also relatively low values in 
Y; individuals with relatively moderate values in X report 
also relatively moderate values in Y; and individuals with 
relatively high values in X report also relatively high values 
in Y. The latent profile analysis might conclude that there are 
three clusters, one consisting of individuals with low values 
in X and Y, one consisting of individuals with moderate val-
ues in X and Y, and one consisting of individuals with high 
values in X and Y. The typical reply of reviewers and col-
leagues to the presentation of such profiles is: A correlation 
would have told you the same, a clustering approach does 
not contribute any additional insight, compared to the – in 
social sciences – more common correlation-based analyses.  

The unique selling point of cluster or latent profile anal-
yses is their ability to find meaningful distinct groups of ob-
servations with distinct profiles in the studied variables that 
would have been overlooked with correlation-based analyses, 
and this unique selling point only applies to multivariate 
mixture distributions, meaning multivariate distributions in 
which at least one variable is not unimodally normally dis-
tributed. A statistical textbook would say: Correlations are 
the method of choice for bi- or multivariate normal distribu-
tions, but they are inappropriate for the analysis of bi- or 
multivariate mixture distributions, because a correlation re-
lies on homogeneity assumptions and suggests a one-size-
fits-all association for the sample, whereas mixture distribu-
tions lack such homogeneity and can consist of substantial 
groups of observations showing different associations than 
that suggested by the one-size-fits-all correlation.  

Thus, cluster and latent profile analyses are typically ap-
propriate, insightful, needed and applied to mixture distribu-
tions, and that implies that the unimodality requirements that 
a mean score and therefore a z-standardization rely on are 
often not present in the type of data (mixture distributions) 
that cluster and latent profile analyses are needed for. A re-
searcher who believes that a mixture model might be an in-
sightful instrument for the data at hand has likely good rea-
sons to believe that a mean score, and by extension a z-trans-
formed score, is not an insightful instrument for the data at 
hand.  
Problem 10. Person-oriented research typically examines 
within-person patterns, making it illogical to use z- 
standardization that typically refers to between-person 
variance. 

One crucial motive for applying person-oriented research 
is the insight that psychological theories that address within-
person phenomena (e.g., patterns, mechanisms, cross-sec-
tional and longitudinal associations) should be studied with 
within-person methods (e.g., within-person profiles, within-
person correlations within and across time points, etc.). It has 
been pointed out time and again that the analysis of between-
person variation does not sufficiently depict such within-per-
son phenomena (see e.g., Molenaar, 2004; Moeller, 2021).  
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Table 3.  
Methods and results of different studies comparing how cluster analyses perform with different standardization methods  

Refer-
ence 

Types of scale 
transformation 
being compared 

Data Clustering algorithm 
used 

Criteria used to eva-
luate performance of 
clustering algorithm 

Conclusion 

Tanioka 
& 
Yadohisa, 
(2012) 

1) raw scores,  
2) z-scores, 
3) xj / max xj 
4) xj / (max xj – min 
xj) 
5) x / N x̄j 
6) Rank (xj) 
7) x/(x0.975 – x0.025) 

 

200 obser-
vations, 
multiple 
simulated 
datasets 
(Monte 
Carlo simu-
lation) with 
varying con-
ditions (see 
next cell) 

Euclidean norm versus 
fraction norm (Min-
kowski norm) for k-
means clustering algo-
rithm, compared be-
tween:  
Number of clusters (3 
conditions), number of 
variables (2 conditions), 
variable variances (2 
conditions), forms of 
distributions (3 condi-
tions), error conditions 
(3 conditions), dissimi-
larities (2 conditions), 
levels of cluster overlap 
(5 conditions) 

recovery results for the 
data standardization 
methods under various 
error conditions and 
dissimilarities (average 
value of ARI) 
 

Rank (xj) “is the most effec-
tive for k-means clustering of 
all standardization methods 
we tested“ (Tanioka & 
Yadohisa, 2012, p. 66). 
“data standardization with 
the fraction norm reduces the 
effect of the curse of high di-
mensionality and gives a 
more effective result than 
data standardization with the 
Euclidean norm and not ap-
plying data standardization 
with the fraction norm.” 
(Tanioka & Yadohisa, 2012, 
p. 59) 

Nogueira 
& Munita 
(2020) 

1) z-score,  
2) log10, 
3) improved min–
max  

146 archae-
ological ce-
ramic sam-
ples with 
each 18 ele-
ments 

Hopkins statistic to de-
termine clustering ten-
dency. Ward & Silhou-
ette methods to estab-
lish the number of 
groups. Groups gener-
ated by the k-means 
clustering algorithm. 

internal validation in-
dexes for compactness 
& separability: Dunn, 
Davies–Bouldin index 
and Calinski–Harabasz. 

“the best performance was 
obtained with the log10 
transformation. This trans-
formation also performed 
well in the calculation of 
compactness, while the im-
proved min–max showed 
better performance in terms 
of separability.” (Nogueira & 
Munita, 2020, p. 719). 

Nogueira 
& Munita 
(2021) 

1) logarithm (log), 
2) generalized-log 
3) improved mini-
mum-maximum 

data 1: 298 
ceramic 
samples, 14 
elements; 
data 2: 146 
ceramic 
samples, 13 
elements 

Kohonen neural net-
work  
 

Three validation indi-
ces: Jaccard, Fowlkes-  
Mallows and Rand  
 

“when the cluster are close, 
the improved minimum-
maximum standardization is 
better than the logarithm and 
generalized-log. (…) when 
the cluster are separated, the 
logarithm and generalized-
log are better than the im-
proved minimum- maximum 
technique.“ (Nogueira & 
Munita, 2021, p. 1) 

Mo-
hamad & 
Usman 
(2013) 

1) raw scores,  
2) z-scores, 
3) min-max, 
4) decimal scaling 

Data with 
15 days and 
8 Variables 
representing 
8 of eight 
diseases, 
origin of 
data and 
meaning of 
scores and 
variables 
unclear 

k-means clustering al-
gorithm 

“The sum of squares 
error representing dis-
tances between data 
points and their cluster 
centers and the points 
attached to a cluster 
were used to measure 
the clustering quality 
among the three differ-
ent standardization 
methods, the smaller 
the value of the sum of 
squares error the higher 
the accuracy, the better 
the result.” (p. 3300- 
3301) 

“standardization before clus-
tering algorithm leads to ob-
tain a better quality, efficient 
and accurate cluster result. It 
is also important to select a 
specific standardization pro-
cedure, according to the na-
ture of the datasets for the 
analysis. In this analysis we 
proposed Z-score as the most 
powerful method that will 
give more accurate and effi-
cient result among the three 
methods in K-means cluster-
ing algorithm“ (Mohamad & 
Usman, 2013, p. 3302). 

Annotation. The studies are mentioned in descending order of the sophistication and quality of their methodological approach, as per-
ceived by the author of this present article. The quality of the information provided in the study by Mohamad & Usman (2013) is consid-
ered questionable by the author of this present article. 
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If person-oriented research aspires to build on that insight 
and really focuses on the person as a whole, then it may ap-
pear illogical to go back to using between-person variance 
as the main frame of reference for the interpretation of the 
within-person patterns. Z-standardization typically refers to 
between-person variance as its frame of reference, if the 
between-person mean and standard deviation are used. A 
person-oriented researcher aiming to live up to Mo-
lenaar’s manifesto might be less interested in the question 
of whether a person scored comparably higher on Varia-
ble X, compared to other individuals, and more in the 
question of whether that person scored high on Variable X 
according to that person’s own cognitive understanding of 
that variable. 
The core of the problem: z-transformation turns ratio 
scales into interval scales without many researchers be-
ing aware of this 
Abstractly speaking, many of the misinterpretations of z-
scores in group or profile comparisons and longitudinal anal-
yses stem from the fact that z-standardized scores are inter-
val scaled, but they are not ratio scaled. This means that it 
cannot be said that a z-score of two represents double as 
much of anything as a z-score of 1, nor does it represent half 
as much of anything. For instance, in terms of the absolute 
metric (i.e., the original metric used to measure the construct 
before the z-transformation), a z-score of two does not re-
present double the amount of the trait or construct that was 
measured, compared to a z-score of one.  

Since the reference to the original metric is lost in the pro-
cess of z-standardizing the scores, we also lose the infor-
mation about ratios between two raw scores (or trait levels) 
measured by the scores. Some readers may argue that yes, 
you lose the reference to the original metric, but you gain the 
reference to the variable’s distribution in that sample. While 
that is correct, any useful information about ratios between 
two measures remains lost: While z-standardization does 
make every score relative to the mean score of the  

distribution of its variable in the sample, that relative in-
formation also cannot be interpreted in terms of ratios: A z-
score of 2 is twice as many standard deviations away from 
the mean score, but not twice as many individuals away from 
the mean score, since in a normal standard distribution, there 
are 34.1% of individuals between the mean score and the 
first standard deviation, but 47.7% of individuals between 
the mean score and the second standard deviation.  

The ratio between two standard deviations (e.g., 1 SD 
compared to 2 SD) neither translates into the same ratio in 
terms of the measured construct, nor into the same ratio in 
terms of how many individuals away from the mean score a 
person with that z-score is. Ratios between z-scores lack the-
oretical and practical meaning. This is particularly problem-
atic when z-standardization is performed on measures that 
originally exist on a ratio scale that has a meaningful zero 
point. In this case, the original metric includes meaningful 
information about ratios (e.g., two children are double as 

many as one child; four solutions created in a fluency task of 
a creativity test are half as many as eight solutions; see e.g., 
Cotter et al., 2020) and the z-standardization loses that infor-
mation, often without the researcher being aware of that fact.  

I have had discussions with colleagues who told me that 
the problems that I describe regarding z-scores may be rele-
vant to research using LIKERT-like bound scales (e.g., re-
sponse scales from 0 = not at all to 10 = very much), but that 
they find z-standardization the best and most meaningful 
transformation to relate unbound scales to the reference of 
their sample distribution (e.g., the number of children, the 
number of correct answers in fluency and originality ratings 
in creativity tests; see Cotter et al., 2020; or knowledge and 
competency levels in other performance tasks, see Edels-
brunner et al., 2025). At least in the discussions that I have 
had, the rationale of researchers arguing for z-standardiza-
tion of unbound scales has been that the unbound scale is 
perceived as meaningless and that z-standardization adds 
meaningful information about whether a score is high or low 
in terms of the distribution. That rationale has been the main 
reason why the researchers that I have had discussions with 
opt against the available scale transformations that do not re-
late the transformed scores to the distribution’s mean score. 
The downsides of that rationale and strategy are discussed in 
rebuke 4 in Table 5. Most unbound scales have a natural zero 
point and thus are ratio scales. Z-standardization loses that 
information, whereas the POMS transformation proposed 
below maintains that information about ratios (see Table 4), 
also brings all variables to the same, intuitively understand-
able metric, and is easy for everyone to interpret and to com-
pare across samples, variables, and groups. 

4. Alternatives to Standardization in Group 
Comparisons 

As alternatives to z-standardization, graphs displaying 
profiles and groups should use raw scores or alternative scale 
transformations that do not change the ratios between two 
variables or two (observed or unobserved) groups.  

Raw scores have the advantage that they are easy to un-
derstand. They can easily be compared across samples and 
studies if the same measures and response scales are used. 
To understand their psychological meaning, readers do not 
have to translate the reported scores into the frame of refer-
ence that participants saw when responding to a question. 
Raw scores indicate whether a variable was endorsed by a 
participant, or whether the average score of a group or vari-
able was above a relevant threshold (e.g., clinical cut-off). 
Disadvantages of raw scores are that they make it difficult to 
compare variables that were measured with different re-
sponse scales, or with unbound response scales.  

There are many alternative scale transformations that can 
be used to standardize scores (or to normalize them, as many 
engineers would call the procedure). Tables 3, A-1, and B-1 
and Figure C-1 show a selection of standardization proce-
dures that have been proposed for cluster analyses and other 
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comparisons between variables and between groups. Table 3 
shows their respective advantages and disadvantages with 
regard to the problems discussed above. It is currently an on-
going debate as to which of these transformations improve 
the performance of which kind of clustering algorithm under 
which boundary conditions. Their advantages and disad-
vantages are reviewed in Table 3. There is no conclusive an-
swer yet to the question of which type of standardization per-
forms best with which kind of clustering algorithm with 
which kind of data. This question is discussed in section 6, 
addressing directions for future research.  

For the comparison of clusters, latent profiles, and other 
groups, in graphs, this author recommends the use of the Pro-
portion of Maximum Scaling Transformation (POMS, see 
Cohen et al., 1999; Gower, 1971; Little, 2013; Sneath & 
Sokal, 1973). The POMS is also called the Min-Max normal-
ization (see e.g., Mohamad & Usman, 2013). It is a linear 
scale transformation bringing all variables to a range from 0 
to 1 with the formula shown in Appendix A. POMS-trans-
formed scores have the advantage that they provide one uni-
versal metric (from 0 to 1), so that scores can be compared 
across variables and samples, without any of the problems 
affecting z-scores mentioned above. The ratios in the differ-
ences between groups and between variables are unaffected 
by the transformation. 

A disadvantage of the POMS transformation is the com-
parably larger effect of outliers on the min and max scores 
used in the POMS transformation, compared to the relatively 
smaller outlier effect on the mean and standard deviation 
used in z-standardization. This is likely to affect unbound 
scales (e.g., number of sex partners, income) stronger, be-
cause only for those the POMS formula uses the empirically 
observed minimum and maximum, whereas for bound scales 
(e.g., 1 = not at all to 5 = very much), the pre-defined min 
and max values are used so that the difference between out-
liers and non-outliers tends to be smaller than for unbound 
scales, depending on the phenomenon being assessed and the 
response options used. A way to minimize the influence of 
outliers on the POMS transformation for unbound scales is 
using more robust estimators for the sample’s min and max 
values, e.g., by removing outliers by trimming or winsoriz-
ing (see e.g., Wilcox, 2010). Another way to reduce the in-
fluence of outliers on a min-max transformation similar to 
the idea of the POMS technique is the Improved Anchored 
Min-Max (IAMM) Normalization Technique by Kabir et al. 
(2016). Outlier removal techniques to make non-normal dis-
tributions more normal can be combined with any of the 
standardization techniques mentioned in Tables 3, A-1, and 
B-1, and include the fusing of extreme values of the long tail 
of a very skewed distribution (Vargha & Grezsa, 2024), 
windsorizing or trimming (see e.g., instructions on robust 
statistics by Wilcox, 2010)  

It should be noted that the POMS transformation strongly 

 
 
3 Item difficulty in the Classical Test Theory refers to the proportion of 
individuals who responded to the item in a way that indicated that they 
display the measured trait 

resembles the formula for calculating item difficulties in 
terms of its definition according to the Classical Test Theory 
(see Kelava & Moosbrugger, 2020)3, with the main differ-
ence that the item difficulty score according to the Classical 
Test Theory is multiplied by 100, making the resulting score 
range from 0 to 100. The same is done in the closely related 
percent of maximum possible (POMP) transformation, 
which multiplies the result of the POMS transformation by 
100 (Cohen et al., 1999). Thus, calculating for each group or 
profile each item’s difficulty in terms of the Classical Test 
Theory is a further alternative to z-transformation and likely 
one that is slightly more known and easier to communicate 
than the POMS transformation (which, however, relies on 
the very same principle). 

Readers interested in person-oriented research, which is a 
label most commonly used in social science and clinical re-
search, should be aware of the fact that many standardization 
techniques are labeled differently in mathematics and engi-
neering research, and that these fields have developed a large 
variety of what they call normalization methods (i.e., stand-
ardization methods in social science terminology).  

5. Implications for Person-Oriented Re-
search 

Many person-oriented methods use cluster or latent pro-
file analyses and there are countless examples of studies per-
forming these analyses on z-standardized indicator variables. 
Few studies systematically compare the results of cluster 
analyses conducted with raw scores versus z-scores. Those 
that do conclude that the cluster solutions differ between the 
two approaches (see Moeller et al., 2015; Nylund et al., 2007) 
and that at least for some data, there are reasons to trust the 
raw-score-based cluster analysis over the z-score-based clus-
ters (Moeller et al., 2015).  

In addition to obtaining cluster or profile solutions that 
may not be trustworthy if performed with z-transformed var-
iables, many person-oriented studies also then display the 
levels of the studied variables in the different clusters in 
graphs showing z-scores (e.g., Cenkner et al., 2024; Edels-
brunner et al., 2025; Martinson et al., 2011; Peng et al., 2020). 
Thus, many of the interpretations of these results displayed 
in these graphs may be misleading, for the problems 1, 2, 3, 
4, and 9 mentioned above. 

Moreover, many person-oriented studies use longitudinal 
data in order to examine within-person patterns, and for  
longitudinal data there are many more pitfalls and probable 
misinterpretations of z-standardized scores, which have been 
discussed elsewhere (e.g., Berkey & Colditz, 2006; Moeller, 
2015). 
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Table 4.  
Scale transformations and their respective advantages and disadvantages for person-oriented research (for all formulas, see Appendix A) 

z-
standardization Rank (x) Percentile

Rank (x) 
POMS; 
POMP; 

Min-Max 

“Improve
d 

min-max 
scaling” 

Deci-
mal 

scalin
g 

logarithm & 
generalized-log 
transformations 

transforming the original 
scales by fusing extreme 

values on the long tail of a 
very skewed distribution 

Disadvantages 
1) loses information about ratios,
turns ratio scale into interval scale yes yes yes no yes no yes in part, for the fused values 
2) loses information about item endorsement

yes yes yes 
not 
necessaril
y 

yes no yes possibly in part, for the fused 
values 

3) requires unimodality to be meaningful and
statistically correct yes no no no yes no no no 
4) loses information about differences between
variables and groups in item difficulties and
mean scores

yes yes yes no yes yes yes in part: removed outliers do 
not bias the mean score 

5) Sensitive to outliers 
yes not much not much yes not much no 

downplays large 
but exaggerates 
small outliers 

no 

Advantages 
1) brings variables measured on different
metrics/scales to the same metric
2) adds the information how each observation
related to the variable’s distribution yes no yes yes yes yes yes no 

3) Makes a non-normal distribution look more
normala

Yes, by 
anchoring it on 
mean score and 
standard 
deviation 

Yes, by 
assigning 
each score 
its rank in 
the 
distributio
n  

Yes, by 
assigning 
each score 
its rank in 
the 
distributio
n  

no 

Yes, by 
anchoring 
it on mean 
score and 
standard 
deviation 

no no no 

4) Is intuitive to understand at a glance in a
graph no no no no no no yes 

A little bit, by cutting the long 
tail of a very skewed 
distribution 

5) Is widely known and used in social science
and person-oriented research

People think so, 
but it is prone to 
misunderstandin
gs 

Arguably, 
yes 

Arguably, 
yes yes no yes no 

Yes, but whether or not it 
makes sense to exclude or 
fuse outliers depends on data 
and research question 

6) Recommended as best standardization
method in the sophisticated simulation study by
Tanioka & Yadohisa (2012)

yes yes yes no no no no no 

Note. POMS = Proportion Of Maximum Scaling; POMP = Percent Of Maximum Possible 
All formulas for all transformations are shown in Appendix A. a = Whether it really is an advantage to make a non-normal distribution look more normal through standardization can be controversially debated, see 
Rebuke 6) in Table 4 
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Table 5. 
Frequent arguments brought forward in favor of z-standardization and their rebukes 

Argument brought forward in favor 

of z-standardization 

Counter argument  

Argument 1) I have a graph depicting 
cluster or profile differences and the 
differences between profiles -or the 
differences between different varia-
bles, look much smaller, even unper-
ceivable, if I display raw scores in-
stead of z-scores. So, I choose to dis-
play z-scores to emphasize the differ-
ences between the groups. 

Rebuke 1) Emphasizing group differences by using z-scores instead of raw scores in graphs re-
sembles using a truncated axis, because it typically means that the parts of the axis where no 
difference was observed are just omitted and the parts where differences were observed are rela-
tively enhanced. That is typically not perceived as the most realistic and trustworthy form of 
visual data presentation. Plus, beware of the risks that profiles can turn around, and that ratios 
between two variables and between two profiles become untrustworthy when z-scores instead of 
raw scores are used. Graphs showing z-scores can suggest very different conclusions than the 
showing raw scores, which can be misleading in many ways. Enhancing the perception of a small 
group difference does not appear a sufficient justification. 

Argument 2) z-standardization is a lin-
ear transformation. It changes the dis-
tances between observations in one 
variable only by the constant added to 
each score and the slope coefficient by 
which each score is multiplied. There-
fore, it can be used without problems 
in correlation-based analyses. 

Rebuke 2) z-standardization does not change the distances between observations in one variable 
and group, but it can change the ratios of mean-score differences between two variables (see 
Figure C-1) and the ratios of mean-score differences between two clusters (see Table B-2, lowest 
line) and the psychological meaning of these ratios.. 

Argument 3) z-standardization adds 
information (by relating each score to 
the sample distribution) and therefore 
makes the scale more informative.  
 
 

Rebuke 3) z-standardization also loses information (e.g., about the meaning of ratios between 
two scores and about the psychological meaning of the original unit) and turns scales that origi-
nally were ratio scales into mere interval scales. It therefore also makes the scale less informative 
and since that problem is widely ignored and interpretations about ratios are being made, it is not 
only a loss of information, but potentially also a loss of the knowledge about what information 
can, and cannot, be derived from z-scores, thus endangering the trustworthiness of interpretations 
of z-score-based research findings. 

Argument 4) I have an unbound scale 
and if I do not z-standardize my 
scores, the original scores will be 
meaningless, because nobody knows 
how to interpret a score as high or low. 

Rebuke 4) Most unbound scales have a natural zero point and thus are ratio scales. If you want 
to make it easier for readers to judge a score as high or low, you can use a scale that brings all 
measures to an easy-to-interpret metric, e.g., 0 to 1 or 0 to 100, without turning your meaningful 
ratio scale into the less meaningful interval scale. The POMS transformation proposed in this 
article maintains the ratios and its metric is easy for everyone to interpret and to compare across 
samples, variables, and groups. Z-standardization loses that information about ratios. 

Argument 5) I have variables meas-
ured on different scales (e.g., Variable 
X: teacher feeling overwhelmed on a 
response scale from 1 = not at all to 10 
= very much and Variable Y: teaching 
0 children to 40 children in a school 
class) and I need to make them com-
parable and bring them to the same 
metric. 

Rebuke 5) It is correct that with different variables measured on very different metrics, it can be 
necessary to bring all variables to the same metric to facilitate interpretations. There are available 
and easy to interpret scale transformations that bring all variables to the same metric without 
losing information about ratios and without causing the problems described in this article. See 
for instance the POMS transformation described above and compare the features of available 
transformations in Table 3 and Appendices A, B, and C. 

Argument 6) I need z-standardization 
to transform my non-normal distribu-
tion into a more normal looking one. 

Rebuke 6) z-standardization does not change the form of the distribution, a skewed or bimodal 
distribution remains in that shape after z-standardization. Even if a transformation mathemati-
cally did change the form of the distribution of the numeric relatives (i.e., the numbers repre-
senting the phenomenon -which here it does not), that transformation does not change the form 
of the distribution of the measured phenomenon. It is that latter distribution that researchers 
should be interested in. We examine how real phenomena are distributed. What would be the 
point in first changing the distribution of the measures artificially and then describing the form 
of that artificially changed distribution with our favorite statistics? If a phenomenon is hetero-
geneous and therefore shows a mixture distribution, then researchers need to use methods that 
describe such heterogeneity and that can deal with mixture distributions, instead of pretending 
that the phenomenon is more heterogeneous than it is, just in order to apply the homogeneity-
requiring nomothetic methods they like best.  
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That all of these three methods – performing cluster or la-

tent profile analyses with z-scores, displaying group differ-
ences in z-scores, and using z-scores in longitudinal analyses 
– are frequently used in person-oriented research implies that 
many results of such person-oriented studies risk being mis-
interpreted and of limited trustworthiness. At the very least, 
this implies that researchers using such techniques in person- 
oriented studies need to be aware of the risks and should aim 
to provide systematic comparisons between analyses per-
formed and displayed with raw scores versus z-scores.  

Standardization techniques using the range, such as the 
POMS transformation described above, avoid many of the 
problems that affect z-scores. Since there are many different 
methods available for standardization (or normalization, as 
it is often called), it is not entirely clear why the particularly 
problematic z-standardization is so frequently used in the 
psychological literature and in person-oriented research.  

Unless researchers can make sure that the here described 
problems do not apply to their data, I recommend avoiding 
z-scores in the classification of unobserved groups, the dis-
playing of observed or unobserved groups in graphs, and 
when working with longitudinal studies. 

6. Directions for Future Research 
Researchers interested in person-oriented research may 

leave this discussion with questions such as: What standard-
ization technique works best for the cluster or latent profile 
analysis or related technique that I have planned? Do the 
problems and misunderstandings related to z-standardization 
described in this article apply to my specific data and anal-
yses? Do the advantages of z-scores outweigh the problems 
in my dataset and analyses? How do I navigate expectations 
and peer pressure in the scientific community? More specif-
ically, how do I communicate to reviewers and readers, who 
are used to (mis-)interpreting z-scores that I chose a different, 
less known and less accepted, type of data standardization? 
For these practical questions, future research needs to pro-
vide tutorials and decision trees helping researchers pick and 
defend the most appropriate data standardization technique 
for their cluster or latent profile analysis, graph, or longitu-
dinal analysis. So far, neither teaching materials nor pub-
lished studies raise enough awareness of the problems re-
lated to z-scores in such analyses, nor do they provide suffi-
cient role models and solutions showing researchers how to 
avoid the misinterpretations and issues related to z-scores 
discussed on this article. 

An open question for future research is which kind of 
standardization or normalization procedure performs better, 
for which kind of clustering algorithm, and for which kind 
of dataset (varying by number of observations, clusters, 
overlap of clusters, cluster densities, forms of the distribu-
tions, variance of the variables, error, noise, and outliers in 
the data), according to which kind of quality criteria. There 
are very few studies that systematically compare the perfor-
mance of clustering techniques across many or all of these 
conditions. Most available studies apply one clustering 

algorithm to one dataset, use one or two quality criteria to 
evaluate its performance, and then compare half a handful of 
standardization procedures in terms of how this clustering 
algorithm with this dataset performs with these three or so 
standardization procedures according to these two or so 
quality criteria (for examples, see e.g., Mohamad & Usman, 
2013; Nogueira & Munita, 2020; 2021).  

The vast majority of the available studies comparing how 
different standardization techniques perform in cluster anal-
ysis only examines normally distributed data. However, as I 
have pointed out above, person-oriented research typically 
uses clustering or latent profile approaches to examine mix-
ture distributions, meaning non-normally distributed, bi- or 
multimodal data. I could find only one study examining for 
such non-normal distributions how different standardization 
techniques performed in clustering algorithms (Tanioka & 
Yadohisa, 2012). More research is needed to better under-
stand what type of standardization is most appropriate for 
which form of distribution in combination with the latent 
profile, latent class, or cluster analyses typically performed 
in current person-oriented research. In line with the sophis-
ticated example provided by Tanioka and Yadohisa (2012), 
such future research needs to systematically compare its re-
sults across a multitude of conditions, including different 
levels of cluster size, cluster number, cluster compactness 
and separability, noise in the data, etc. 

Since most of the available studies only examine the per-
formance of classical cluster analyses with different stand-
ardization procedures, it is rather unknown how that trans-
lates to the latent profile analyses or other latent variable ap-
proaches to clustering (e.g., latent growth curve models) that 
are becoming more and more popular in person-oriented re-
search. Since cluster and latent profile analysis examined un-
observed groups, it is not trivial to find useful quality criteria 
to decide which cluster or profile solution is the most appro-
priate if different analyses using differently standardized 
data are compared in terms of their results. One task for fu-
ture studies examining the best standardization approach for 
latent profile and latent class models will therefore be to de-
cide first which quality criteria to use for making the deci-
sion about what qualifies as the best solution in datasets in 
which group membership is not obvious.  

In sum, the crucial question for future studies is not merely 
what standardization technique works best for cluster or la-
tent profile analyses, but what standardization technique 
works best under which circumstances for which cluster or 
latent profile analyses. The available body of literature sug-
gests that there will be no simple one-size-fits-all solution to 
this question, but it is safe to say that z-standardization is not 
the simple, unproblematic solution to this problem that many 
researchers currently perceive it to be. 

A further avenue for future research is to determine how 
many person-oriented studies come to misleading conclu-
sions because of their reliance on z-scores in cluster analyses, 
graphs, and/or longitudinal data analyses. 
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Appendix A: Formulas of item transformations 
 

Table A-1:  
Descriptions and formulas of different standardization techniques 

Name of 
transformation 
method 

Description Formula References 

z-standardization The transformed variable gets a mean score of 0 and a 
standard deviation of 1. Downside: Sensitive to outliers. 

xi_z = xi − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)
𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 𝑠𝑠𝑀𝑀𝑑𝑑𝑑𝑑𝑀𝑀𝑠𝑠𝑑𝑑𝑑𝑑𝑀𝑀(𝑥𝑥)

  

Rank (x) The numbers represent the person’s rank in relation to 
the sample distribution, ranging from 0 = lowest rank to 
the highest observed rank. 

  

Percentile Rank (x) Transforms the rank into percentiles, with the sample 
distribution as a reference. The transformed variable gets 
a range from 0 to 100, with the numbers representing the 
person’s rank in relation to the sample distribution. 

xi_PR = (Nlower+0.5∗𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁𝑀𝑀𝑁𝑁)
N

∗
100 
legend: 
Nlower = amount of scores 
lower than Xi 
Nequal = amount of scres 
equal to Xi 
N = amount of all scores 

 

Proportion Of 
Maximum Scaling 
(POMS);  
also called Min-Max 
normalization 

The transformed variable gets a range from 0 to 1, with 
the numbers representing the item level in relation to the 
smallest and highest possible scores. Downside: Highly 
sensitive to outliers. 

xi_POMS = 
(xi − M𝑑𝑑𝑀𝑀𝑑𝑑𝑖𝑖𝑁𝑁𝑖𝑖)

(M𝑀𝑀𝑥𝑥𝑑𝑑𝑖𝑖𝑁𝑁𝑖𝑖 − M𝑑𝑑𝑀𝑀𝑑𝑑𝑖𝑖𝑁𝑁𝑖𝑖)
 

Cohen et al. 
(1999) 

Percent Of Maximum 
Possible (POMP) 

Same formula as POMS / Min-Max, just that the result is 
multiplied by 100, making the range go from 0 to 100, 
like percentages, with the numbers representing the item 
level in relation to the smallest and highest possible 
scores. The formula is essentially similar to computing 
item difficulties according to the Classical Test Theory 
definition. Downside: Highly sensitive to outliers. 

xi_POMP = 
(xi − M𝑑𝑑𝑀𝑀𝑑𝑑𝑖𝑖𝑁𝑁𝑖𝑖)

(M𝑀𝑀𝑥𝑥𝑑𝑑𝑖𝑖𝑁𝑁𝑖𝑖 − M𝑑𝑑𝑀𝑀𝑑𝑑𝑖𝑖𝑁𝑁𝑖𝑖)
 * 100 

for item 
difficulty 
formula, see 
e.g., Kelava 
& 
Mossbrugger 
(2020) 

Improved Anchored 
Min-Max (IAMM) 
Normalization 
Technique 

Whether or not it is an improvement to mix the two 
reference frames (min-max of the original scale and 
mean score and standard deviation of the sample 
distribution) likely depends on data and research 
question. This technique was developed for the 
integration of multimodal (mostly psychophysiological) 
data. 

Requires a set of steps and 
equations, for details, see 
Kabir et al. (2016).  

Kabir et al. 
(2016) 

decimal scaling 
standardization 

Moves the decimal point of values of the variable so that 
the resulting score is smaller than 1. 

 e.g., 
Mohamad & 
Usman, 2013 

logarithm & 
generalized-log 
transformations 

Multiplies the raw score with a logarithm, for instance, 
with log(10) 

xi_log10 =  log10(xi) e.g., 
Nogueira, 
2021; 
Nogueira & 
Munita, 
2020 

transforming the 
original scales by 
fusing extreme 
values on the long 
tail of a very skewed 
distribution 

There are several techniques for outlier removal (e.g., 
trimming) or for fusing extreme values with less extreme 
ones (e.g., winsorizing). Whether or not that makes sense 
depends on data and research question and is 
controversially debated. 

For different techniques and 
formulas, see e.g., Wilcox 
(2010) 

e.g., Vargha 
& Grezsa 
(2024) 
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Appendix B: Data example comparing the mentioned item transformations 
 

Table B-1.  
Example data set from Figure 1, transformed with different standardization methods 

Clustera Raw scores z scores Ranks Percentile 
Ranks 

POMS 
scoresb 

POMP scoresb decimal scaled scores log10 scaled scoresc 

 X Y X Y X Y X Y X Y X Y X Y X Y 
1 1 7 -1.28 0.43 1 7 0.1 0.7 0.1 0.7 10 70 0.1 0.7 0 0.85 
1 1 7 -1.28 0.43 1 7 0.1 0.7 0.1 0.7 10 70 0.1 0.7 0 0.85 
1 1 7 -1.28 0.43 1 7 0.1 0.7 0.1 0.7 10 70 0.1 0.7 0 0.85 
1 2 8 -0.43 1.28 4 10 0.4 1 0.2 0.8 20 80 0.2 0.8 0.3 0.9 
1 2 8 -0.43 1.28 4 10 0.4 1 0.2 0.8 20 80 0.2 0.8 0.3 0.9 
1 2 8 -0.43 1.28 4 10 0.4 1 0.2 0.8 20 80 0.2 0.8 0.3 0.9 
2 3 5 0.43 -1.28 7 1 0.7 0.1 0.3 0.5 30 50 0.3 0.5 0.48 0.7 
2 3 5 0.43 -1.28 7 1 0.7 0.1 0.3 0.5 30 50 0.3 0.5 0.48 0.7 
2 3 5 0.43 -1.28 7 1 0.7 0.1 0.3 0.5 30 50 0.3 0.5 0.48 0.7 
2 4 6 1.28 -0.43 10 4 1 0.4 0.4 0.6 40 60 0.4 0.6 0.6 0.78 
2 4 6 1.28 -0.43 10 4 1 0.4 0.4 0.6 40 60 0.4 0.6 0.6 0.78 
2 4 6 1.28 -0.43 10 4 1 0.4 0.4 0.6 40 60 0.4 0.6 0.6 0.78 
Grand mean 2.50 6.50 0.00 0.00 5.50 5.50 0.55 0.55 0.25 0.65 25.00 65.00 0.25 0.65 0.35 0.81 
Grand SD 1.17 1.17 1.00 1.00 3.50 3.50 0.35 0.35 0.12 0.12 11.68 11.68 0.12 0.12 0.24 0.08 
Group-Mean Cluster 1 1.50 7.50 -0.86 0.86 2.50 8.50 0.25 0.85 0.15 0.75 15.00 75.00 0.15 0.75 0.15 0.88 
Group-Mean Cluster 2 3.50 5.50 0.86 -0.86 8.50 2.50 0.85 0.25 0.35 0.55 35.00 55.00 0.35 0.55 0.54 0.74 
Group-SD Cluster 1 0.55 0.55 0.47 0.47 1.64 1.64 0.16 0.16 0.05 0.05 5.48 5.48 0.05 0.05 0.16 0.03 
Group-SD Cluster 2 0.55 0.55 0.47 0.47 1.64 1.64 0.16 0.16 0.05 0.05 5.48 5.48 0.05 0.05 0.07 0.04 
Ratio group means 0.43 1.36 -1.00 -1.00 0.29 3.40 0.29 3.40 0.43 1.36 0.43 1.36 0.43 1.36 0.28 1.18 
Difference group means -2.00 2.00 -1.71 1.71 -6.00 6.00 -0.60 0.60 -0.20 0.20 -20.00 20.00 -0.20 0.20 -0.39 0.14 
Ratio group SDs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.50 0.63 
Difference group SDs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 -0.02 
Ratiod of  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 −𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺(𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉𝐺𝐺𝑉𝑉𝑉𝑉𝑀𝑀 𝑋𝑋)
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 −𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺(𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉𝐺𝐺𝑉𝑉𝑉𝑉𝑀𝑀 𝑌𝑌)

 
0.38 

Cannot be 
computed,  

no division by 0 
1 1 0.38 0.38 0.38 0.43 

Difference of  
Grand-Mean(VariableX)  
– Grand-Mean(VariableY) 

-4.00 0.00 0.00 0.00 -0.40 -40.00 -0.40 -0.46 

Note. a = The clusters correspond to those depicted in Figure 1. Two clusters were created deductively / artificially for the purpose of demonstrating differences between standardization methods by defining one cluster as below 
average values in X and above average values in Y and the other cluster as above average values in X and below average values in Y, to demonstrate the problems related to such a clustering approach, which has been used e.g., 
by Philippe et al. (2009) and Moneta & Csikszentmihaly (1996). b = For the purpose of this demonstration, the response scale used as frame of reference for POMS and POMP transformation ranges from 0 = not at all to 10 = 
very much (see Figure 1); c = rounded to the second decimal digit. This Table does not contain examples of the fused extreme values for the extreme tails of very skewed distributions mentioned in Tables 3 and B-1, because this 
example dataset was not skewed and because several methods of fusing or cutting outliers have been proposed in the literature. For overviews and discussions, see e.g., Wilcox (2010). d = transformations that maintained the 
ratio of mean scores of Cluster 2 / Cluster 1 and mean scores of Variable X / Variable Y are marked bold; transformations that distorted the ratio of mean scores of Cluster 2 / Cluster 1 and mean scores of Variable X / Variable 
Y compared to the raw scores are marked grey. 
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Appendix C: Graphs displaying the data example comparing the mentioned item transformations 
 

Figure C-1: Graphs displaying the data example shown in Appendix B 

 
Note. As Figure C-1 and the last row of Table B-1 show, compared to the raw scores, the ratios of the size differences between variables and/or 
clusters are distorted by the z-standardization, the ranks, the percentile ranks, and the log10 transformation. In this data example, only z-
standardization, ranks and percentile ranks distort the Variable mean scores within clusters to the point that they make Variable X in Cluster 2 look 
larger than Variable Y in Cluster 2, despite of the raw scores indicating that Variable X in Cluster 2 was smaller than Variable Y in that same Cluster.  
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Appendix D: Graphs displaying the data example comparing the mentioned item transformations 
 

R code used to simulate the data for Figure 4. 
 

Please find the R code on the Open Science Framework using this link:  
https://osf.io/b8p6n/ 

https://osf.io/b8p6n/
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