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Abstract 
Unless very large samples are available, the number of variables and variable categories that can be simultaneously used in categorical data 
analysis is small when models are estimated. In this article, an approach is proposed that can help remedy this problem. Specifically, it is 
proposed to perform, in a first step, principal component analysis or factor analysis. These methods help reduce the dimensionality of the 
data space without loss of important information. In a second step, sectors are created in the component or factor space. These sectors can, 
in a third step, be subjected to Configural Frequency analysis (CFA). CFA identifies those sectors that contradict a priori-specified hypoth-
eses. It is also proposed to take into account the ordinal nature of the sectors. In addition, distributional assumptions can be considered. 
This is illustrated in data examples. Possible extensions of the proposed approach are discussed. 
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Configural Frequency Analysis (CFA; Lienert, 1968; von 
Eye & Gutiérrez Peña, 2004; von Eye & Wiedermann, 2021) 
allows researchers to answer the question whether patterns 
of variable categories, known as configurations, were ob-
served more often than expected, less often than expected, 
or about as often as expected, all under a particular probabil-
ity model. Configurations are said to constitute a CFA type, 
when the observed number exceeds the expected number. 
They are said to constitute a CFA antitype when the observed 
number is smaller than the expected number.1 

CFA is applied to cross-classifications of categorical vari-
ables. This characteristic implies that either the number of 
variables and their categories are relatively small or the sam-
ple that is studied is very large. In empirical studies, re-
searchers usually have comparatively small samples availa-
ble (see von Eye, & Wiedermann, 2021). Large samples are 
rare, very large samples are very rare. To the best of our 
knowledge, there exists only one case in which a sample with 

1 Here and in the remainder of this article, ‘more than expected’ and 
‘fewer than expected’ are used to indicate a statistically significant differ-
ence. 

millions of cases was subjected to (a form of) CFA (Du-
Mouchel, 1999). 

In addition, even when the number of categorical varia-
bles and their categories are relatively small, continuous var-
iables cannot be subjected to CFA. The cross-classification 
of continuous variables would be far too large to be analyzed 
with CFA. Therefore, data analysts often categorize varia-
bles before data analysis. This procedure (also called binning) 
reduces the size of tables often considerably, but it comes 
with a price, that is, loss of information. 

In this article, we propose a new approach to the problem 
that larger numbers of variables and continuous variables 
cannot be analyzed with CFA. Specifically, we propose a 
three-step procedure. The first step involves subjecting con-
tinuous variables to principal component analysis or factor 
analysis. The second step involves creating sectors in the 
component or factor space that results from the first step. In 
the third step, CFA is used to analyze the sectors that result 
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from the second step. 
The new approach is a generalization of a method that was 

proposed to determine the sectors in a factor space that devi-
ate from multinormality (von Eye, & Gardiner, 2004). Here, 
this method is extended to accommodate the goals of CFA. 
The new approach is also a generalization of a method that 
was recently proposed by von Eye and Wiedermann (under 
review). This approach allows researchers to perform CFA 
under consideration of the scale level of binned variables 
(i.e., the ordinal nature of binned variables) and possible 
multinormality. Here, in contrast, observed continuous vari-
ables are neither binned nor crossed. Instead, the component 
or factor space is split in sectors that can be subjected to CFA. 
The contribution of the present article is to elaborate a 
method that allows researchers to perform CFA on multiple 
continuous and categorical variables of various characteris-
tics. 

This article is structured as follows. In the next section, 
we illustrate the procedure of creating sectors in a data space. 
In the following sections, we briefly review CFA (for more 
detail, see von Eye & Gutiérrez Peña, 2004; von Eye & 
Wiedermann, 2021) and principal components analysis 
(PCA). In the section following this, we show how to seg-
ment the component space and to perform CFA on the result-
ing sectors.  

Creating sectors in a data space 

In the remainder of this article, we focus on the component 
space. This is the space that uses the components that result 
from PCA as axes. Alternatively, factor spaces could be used 
or, when the number of continuous variables is small, the 
space that is spanned by observed variables themselves. Let 
d be the number of components, with d ≥ 1. The creation of 
sectors in this d-dimensional space follows the steps that are 
performed when the Chi-square test is used to test whether a 
single variable is normally distributed. These steps are dis-
cussed in many introductory statistics textbooks (e.g., Glass 
& Hopkins, 1984). Taking an algorithmic perspective, the 
sectors can be created in the following two steps (cf. von Eye 
& Bogat, 2005; von Eye & Gardiner, 2004): 

(1) Split each of the d components into two or more 
segments. Thus, component j will have cj segments, 
with j = 1, …, d; 

(2) Cross the segmented components to obtain a cross-
classification with 𝛱𝛱𝑗𝑗𝑐𝑐𝑗𝑗 sectors. 

To illustrate, we use the responses from a self-declared 
male alcoholic who participated in a prospective longitudi-
nal study on the development of alcoholism (Perrine et al., 
1995). This individual provided responses on a series of 
questions on 733 consecutive days. These questions included, 
among others, the number of beers, hard liquor, glasses of 
wine, and cigarettes consumed the day before the interview, 
the amount of stress experienced, mood, subjective health, 
and an overall rating of the day. These eight variables are 
hard to analyze with standard CFA. Just consider that each 

of these responses is split into three segments. The cross-   
classification of these eight categorized variables would con-
tain 38 = 6561 cells. For this large table, even the many re-
sponses given by this respondent would be insufficient. On 
average, each cell would contain no more than 0.11 re-
sponses. 

We now perform a PCA on the eight variables. This PCA 
results in two components. To create the sectors, we split the 
two components in five segments each. Crossed, the scatter-
plot of the components looks as given in Figure 1. 
 
Figure 1. 
Scatterplot of two principal components with five sectors each. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 shows that the majority of the responses can be 

located near the origin of the component space. This is under 
the assumption of a bivariate normal distribution of the com-
ponent scores, as expected. The method proposed by von 
Eye and Gardiner (2004; see also von Eye & Bogat, 2005) 
can be used to test whether there are deviations from this 
distribution. Evidently, in this example, there is a number of 
responses that are extreme on one or both axes. This issue is 
discussed in the context of CFA, later in this article. 

Configural Frequency Analysis 

In this section, we give a brief overview of CFA (for more 
detail, see von Eye & Gutiérrez Peña, 2004; von Eye & 
Wiedermann, 2021). Consider a cross-classification of d 
completely crossed categorical variables. The cell frequen-
cies in this cross-classification are estimated based on a data 
generation process (DGP; von Eye, Wiedermann, & von 
Weber, 2021). From this process, probability models are de-
rived, the so-called base models, in which none of the hy-
potheses of interest is part of the effects that are considered. 
Therefore, when the process is rejected, at least some of 
these hypotheses are bound to exist, statistically. 



Journal for Person-Oriented Research 2022, 8(1), 1-9 
 

 
3 

In contrast to variable-oriented methods of analysis such 
as log-linear modeling that focus on variable relations, CFA 
focuses on individual cells, that is, configurations. For each 
configuration, the observed cell frequency is compared with 
the expected cell frequency. As was mentioned above, when 
more cases are observed than expected, the configuration is 
said to constitute a CFA type. When fewer cases are observed 
than expected, the configuration is said to constitute a CFA 
antitype. 

To test the null hypothesis of no type or antitype, either 
tests from residual analysis of log-linear models can be em-
ployed, or tests that were developed specifically for CFA (for 
an overview of the former, see von Eye & Wiedermann, 2021; 
for an example of the latter, see von Eye & Mair, 2008). 
These tests are either exact or approximative, they either can 
be used under any sampling scheme or require product-  
multinomial sampling, and, depending on sample size, they 
can differ considerably in power. Usually, CFA tests are ap-
plied to many cells of a cross-classification. Therefore, in the 
domain of frequentist statistical inference, the protection of 
the significance threshold α is de rigeur. 

CFA is conducted in the following four steps. The first 
step is the specification of a base model. This is a model that 
is derived from the a priori-specified DGP. The second step 
involves the selection of a significance test. The third step is 
the selection of a procedure for α protection. The fourth step 
involves the estimation of expected cell frequencies, the 
comparison of observed and expected cell frequencies and 
the interpretation of CFA types and antitypes. 

In the next section, we briefly review principal component 
analysis. 

Principal Component Analysis 

Principal component analysis (PCA; Pearson, 1901) is 
widely known as a method that can be used for dimension 
reduction, without loss of important information. The 
method is used to reduce t variables to d components, with d 
< t. The d - 1st component is orthogonal to all components 
before. Most important for the purposes of the present article 
is that the results of PCA are considered useful in particular 
when, in subsequent steps, other multivariate statistical 
methods are applied (see Raykov & Markoulides, 2008). For 
that, there is no need to substantively interpret the compo-
nents. 

PCA is performed in the following steps (see Jaadi, 2021). 
(1) Standardization of raw data: each of the t variables is 

standardized. This step is necessary to prevent variables that 
differ in variance from making unequal contributions to the 
final solution (alternatively, the correlation matrix can be an-
alyzed instead of the covariance matrix); 

(2) Calculation of the t × t covariance matrix, X, of the 
observed variables. PCA uses this matrix for further analysis. 

(3) Calculation of the eigenvectors and eigenvalues of the 
covariance matrix with the aim of identification of compo-
nents. The right eigenvector of X, R, satisfies XR = λRR, 

where λR is the eigenvalue of the right eigenvector. The left 
eigenvector of X, L, satisfies LX = λLL, where λL is the ei-
genvalue of the left eigenvector. Both R and L are diagonal 
matrices. When X is symmetrical, which is the case for a co-
variance or a correlation matrix, then C = LR is diagonal as 
well, L and R are the transpose of each other, and, for the 
scalars λL and λR, it holds that λL = λR ≡ λ. The λs are the 
eigenvalues. They indicate the amount of variance retained 
by the corresponding components (eigenvectors). The first 
eigenvector represents the largest portion of variance of the 
original data. The subsequent eigenvectors represent de-
creasingly less variance. The feature vector is a matrix that 
contains the d eigenvectors the researcher wishes to keep and 
use. 

(4). Express the original data in terms of the feature vector. 
This can be done by multiplying the transposed original data 
matrix by the transposed feature vector. This operation re-
expresses the original data in terms of the component space 
that is d-dimensional instead of t-dimensional, as is the orig-
inal data set. 

Alternative methods of calculating component scores ex-
ist. The selection from these methods depends, for example, 
on whether or not the researchers wish to rotate components, 
desire component scores that are as close to a normal distri-
bution as possible, desire components that are orthogonal, or 
wish that variances of the scores are 1 or not. In the remain-
der of this article, we use the method described above. This 
method is known as the regression method. 

In the following section, we jointly use PCA and CFA in 
the sense suggested by Raykov and Marcoulides (2008). 
Specifically, we propose, first, performing PCA, second, cre-
ating sectors of the resulting component space, and, third, 
performing CFA on the components of the sector space. 

CFA of the sectors from a PCA 

To create sectors in the component space, we adapt the 
method proposed by von Eye and Gardiner (2004) who dis-
cussed sectors in a normal linear factor space (Bartholomew 
et al., 2002). The component space can be created to have 
the following characteristics (for characteristics of the nor-
mal linear factor space, see Bartholomew, et al., 2002): 

(1) the components are uncorrelated with each other (data 
analysts relax this characteristic when they perform oblique 
rotation of components); 

(2) the components have a mean of zero and a variance of 
one; 

(3) the residuals are uncorrelated with each other and with 
the components; 

(4) the residuals have a mean of zero but can have differ-
ent variances (when X is not standardized); 

(5) the component scores follow a multivariate normal 
distribution (depending on how they are calculated and on 
how well the components represent X). 

Violations of the last characteristic can have various rea-
sons. One reason is the presence of outliers (see Figure 1). 
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Another reason is the shape of the distribution of the compo-
nent scores (see bullet 5; Yuan, & Bentler, 2001). A third rea-
son is that the raw data in X stem from non-normal popula-
tions. von Eye & Gardiner (2004) propose methods that al-
low the researcher to identify the sectors that contain more 
or fewer cases than expected under the assumption of a nor-
mal distribution (see also von Eye & Wiedermann, under re-
view). Here, we jointly apply the method of identifying out-
lying sectors and CFA. 

To create sectors in the component space, consider d com-
ponents that create a d-variate distribution of component 
scores. These scores are calculated as described in the last 
section, on PCA. Now, let the range of scores of component 
m be divided in cm segments. Then, the space of the d crossed 
components has 𝛱𝛱𝑚𝑚=1

𝑑𝑑 𝑐𝑐𝑚𝑚 sectors. The number of segments 
for each component is determined based on the sample size 
and the desired resolution of the subsequently applied CFA. 

CFA of component scores 

Most CFA base models are log-linear models of the form 
log  𝑚𝑚� = 𝑋𝑋𝑋𝑋, where 𝑚𝑚�  is the vector of estimated cell fre-
quencies (also called model frequencies), X is the design ma-
trix, and λ is the parameter vector. X contains the effects that 
represent the CFA base model. This model represents all ef-
fects that are not of interest to the researcher. If this model 
fails, the effects of interest are bound to statistically exist. In 
addition, for failing models, some of the cells (configura-
tions) can constitute CFA types or CFA antitypes. 

CFA base models that are not log-linear do exist. However, 
they are of interest only in specific cases, and they are rarely 
used. Examples of such cases can be found in von Eye and 
Wiedermann (2021). These models are outside the scope of 
this article. Here, we consider base models of the form 

log𝑚𝑚� = [𝟏𝟏 | 𝑋𝑋𝑠𝑠] �𝑋𝑋1𝑋𝑋𝑠𝑠
�, 

where 1 represents the model constant, that is, a vector of 1s 
in the design matrix, used to estimate the model intercept, 
and Xs contains the part of the model that represents the sec-
tors of the segmented components. Unless the components 
are subjected to an oblique rotation, Xc, contains just the 
main effects of the components. 

We now give an example of a CFA of a sectored compo-
nent space. In this example, we continue the analysis of the 
data that were used for Figure 1. The 25 sectors are subjected 
to a first order CFA. We perform the four steps of CFA. 

Step 1: Specification of base model. The base model for 
this CFA is the one given above, that is, 

log𝑚𝑚� = [𝟏𝟏| 𝑋𝑋𝑠𝑠] �𝑋𝑋1𝑋𝑋𝑠𝑠
�, 

or, expressed in terms of the effects in this model, log𝑚𝑚� =
𝑋𝑋 + 𝑋𝑋𝐶𝐶1 + 𝑋𝑋𝐶𝐶2,  , where C1 and C2 are the two segmented 
components of PCA. When this model fails to well describe 
the data in Figure 1 and in Table 1 (below), there may be 
sectors in which more or fewer cases are found than expected 
under the assumption of independence of the two 

components. In the present example, the components are 
split into five segments of equal length. The first segment 
begins with the lowest score and the last segment ends with 
the largest score. 

Step 2: Selection of significance test. In this example, as 
can be seen in Figure 1, some of the sectors contain just a 
few cases, or none. Therefore, we select the binomial test, 
that is, an exact test that can be applied under any sampling 
scheme. 

Step 3: Selection of procedure for the protection of α. Here, 
we select the procedure that was proposed by Holland and 
Di Ponzio Copenhaver (1987). In comparison to the well 
known Bonferroni procedure, the one by Holland and Di 
Ponzio Copenhaver (1987) results in less extreme protected 
thresholds. 

Step 4: Performing CFA and interpreting types and anti-
types. Table 1 displays the results of this CFA. 
 
Table 1.  
First order CFA of the two components of an alcoholic’s responses 

Configu-
ration 

    

C1 C2 m 𝑚𝑚�  p  
11    5.00     2.7534 .14478289  
12   23.00    15.2316 .03612895  
13   14.00    20.3869 .08765653  
14    1.00     4.3937 .06608557  
15     .00      .2343 .79106919  
21    9.00    23.2439 .00059623 Antitype 
22  108.00   128.5831 .02372470  
23  204.00   172.1035 .00357491  
24   41.00    37.0913 .27716455  
25    1.00     1.9782 .41157701  
31   19.00    17.9932 .43710466  
32  113.00    99.5368 .08286101  
33  117.00   133.2262 .06427071  
34   31.00    28.7125 .35716602  
35    1.00     1.5313 .54720928  
41   11.00     2.3052 .00002870 Type  
42   13.00    12.7520 .51013082  
43   11.00    17.0681 .07981952  
44    1.00     3.6785 .11756099  
45     .00      .1962 .82183839  
51    3.00      .7044 .03459785  
52    3.00     3.8965 .45347800  
53    2.00     5.2153 .10680884  
54    1.00     1.1240 .69022506  
55    2.00     .0599 .00172435 Type 

 
The overall goodness-of-fit of the base model is poor (LR-

X2 = 76.850 df = 16; p < 0.001). We, therefore, expect that 
types and antitypes emerge. Table 1 suggests that two types 
and one antitype exist. The types are constituted by Sectors 
4 1 and 5 5. The antitype is constituted by Sector 2 1. 

It is an interesting characteristic of sector CFA of PCA 
components that the interpretation of types and antitypes 
cannot resort to semantic characteristics of the components. 
PCA usually is employed to reduce the dimensionality of 
variables. In contrast to factor analysis, there is no semantic 
interpretation of factors. Reduction of space is the main aim, 
not the identification of interpretable factors. All we note is 
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that the two components explain 28.655 + 14.562 percent of 
the total variance, that is, in all, 43.217%. 

One may ask whether adding a third component would be 
useful in the sense that a larger portion of variance is ac-
counted for. In the present example, however, the scree test 
suggests using the two-component solution. The elbow of 
the scree plot is strongly prominent between two and three 
components. 

From CFA, we realize that the two components are not 
independent. There are two sectors in which significantly 
more responses are found than expected under the hypothe-
sis of component independence, and there is one sector in 
which significantly fewer responses are found than expected 
under this hypothesis. We conclude that 

(1) the PCA solution explains only a relatively small por-
tion of the overall variance, and 

(2) the postulate of independence of PCA components is 
violated in three of the 25 sectors created by partitioning the 
two components in five segments each. 

In the present article, we propose applying log-linear base 
models to the cross-classification of the segments of compo-
nents of a PCA of multiple variables. Any base model can be 
used, and the sector-component space can also be crossed 
with such categorical variables as type of vehicle, diagnose 
of disease, or gender. When sectors are crossed with categor-
ical variables, the base model becomes 

log𝑚𝑚� = [𝟏𝟏 |𝑋𝑋𝑠𝑠 | 𝑋𝑋𝑐𝑐] �
𝑋𝑋1
𝑋𝑋𝑠𝑠
𝑋𝑋𝑐𝑐
� 

where Xc indicates the vectors that represent the effects that 
are considered for the additional categorical variables, and λc 
are the corresponding parameters. Xc contains at least the 
main effects of the categorical variables. Higher order effects 
require theoretical justification. When there are no effects 
that link the components and the additional categorical vari-
ables, this base model is one of Prediction CFA. 

In the present article, we do not follow this line of base 
model development. Instead, we now ask, how, under the as-
sumption of a d-variate normal distribution, the probability 
that an object is located in one of these sectors can be calcu-
lated. To answer this question, we adapt the methods pro-
posed by von Eye and Gardiner (2004) and von Eye and 
Wiedermann (under review). 

CFA of component sectors under multinormality 

We first consider the univariate case, that is, the case in 
which there is just one PCA component. Let zm be the stand-
ardized component score of the lower limit of segment m. 
The first segment then begins at z1 = -∞. Correspondingly, 
the last segment ends at 𝑧𝑧𝑐𝑐𝑚𝑚 = +∞  Then, the probability 
for a component score to be located in the segment between 
zm and zm+1 is  

𝑝𝑝(𝑧𝑧𝑚𝑚+1) − 𝑝𝑝(𝑧𝑧𝑚𝑚) = � Ψ
𝑧𝑧𝑚𝑚+1

−∞
(𝑧𝑧)𝑑𝑑𝑧𝑧 − � Ψ

𝑧𝑧𝑚𝑚

−∞
(𝑧𝑧)𝑑𝑑𝑧𝑧 

This is the area under the normal curve, Ψ, in the segment 
that is bounded by zm and zm+1. 

In the multivariate case, the probability for an element to 
be located in the sector that is bounded by 𝑧𝑧𝑖𝑖1 and 𝑧𝑧𝑖𝑖+11  on 
variable 1, 𝑧𝑧𝑗𝑗2 and  𝑧𝑧𝑗𝑗+12  on variable 2, ..., and 𝑧𝑧𝑘𝑘𝑑𝑑 and 
𝑧𝑧𝑘𝑘+1𝑑𝑑 on variable d, where the subscripts index the segments 
and the superscripts index the variables, is 

𝑝𝑝�𝑧𝑧𝑖𝑖1 − 𝑧𝑧𝑖𝑖+11 , 𝑧𝑧𝑗𝑗2 − 𝑧𝑧𝑗𝑗+12 , . . . , 𝑧𝑧𝑘𝑘𝑑𝑑 − 𝑧𝑧𝑘𝑘+1𝑑𝑑 �

= � � . . .� Ψ(𝑧𝑧1, 𝑧𝑧2, . . . , 𝑧𝑧𝑑𝑑)𝑑𝑑𝑧𝑧1𝑑𝑑𝑧𝑧2. . .𝑑𝑑𝑧𝑧𝑑𝑑
𝑧𝑧𝑘𝑘+1
𝑑𝑑

𝑧𝑧𝑘𝑘
𝑑𝑑

𝑧𝑧𝑗𝑗+1
2

𝑧𝑧𝑗𝑗
2

𝑧𝑧𝑖𝑖+1
1

𝑧𝑧𝑖𝑖
1

 

(cf. Genz, 1992; for estimating the probability for convex 
sectors, see Somerville, 1998), where Ψ indicates, as before, 
the area of the normal distribution. In what follows, we ab-
breviate this probability with pi, j,...,k. The corresponding sec-
tors are denoted by si,j,...,k. 

The expected frequency of objects in Sector si,j,...,k is 
�̂�𝑒𝑖𝑖,𝑗𝑗,...,𝑘𝑘 = Npi,j,...,k, where N is the sample size. von Eye and 
Gardiner (2004) proceeded, from this point on, as follows. 
They proposed, to identify sectors in which multinormality 
is violated, comparing, in each Sector si,j,...,k, the observed 
frequency of objects, mi,j,...,k, with the expected frequency, 
�̂�𝑒𝑖𝑖,𝑗𝑗,...,𝑘𝑘 , under the null hypothesis that E[mi,j,...,k] =�̂�𝑒𝑖𝑖,𝑗𝑗,...,𝑘𝑘 . 
When this comparison suggests that a sector contains signif-
icantly more or fewer objects than expected based on the 
joint density function of the d variables under study, this sec-
tor evinces a violation of multivariate normality. Therefore, 
the assumption of multivariate normality must be rejected at 
least for this sector. 

Here, we move in a different direction. Keeping the null 
hypothesis unchanged, we propose considering three ap-
proaches to estimating the expected sector frequencies, 
�̂�𝑒𝑖𝑖,𝑗𝑗,...,𝑘𝑘 . The first of these approaches incorporates the 
method proposed by von Eye and Gardiner (2004). This 
method allows the researcher to answer the questions 
whether (i) the component scores are multinormally distrib-
uted, and (ii), if not, which sectors stand out by containing 
too many or too few cases. These questions are of im-
portance in particular when component scores were esti-
mated using methods that are supposed to result in multinor-
mal component scores, but also in standard methods, e.g., 
the regression method described above. This approach can 
be viewed as analogous to Wiedermann and von Eye’s (2016) 
approach in which they ask whether local independence ex-
ists in latent classes. 

The second approach considers the ordinal (interval) level 
nature of the segments created for each component. Natu-
rally, the segments created on a component range from low 
to high on the scale that is used to segment the component 
are ordinal even when the segments are not evenly spaced. 
Here, we use Goodman’s (1979, 1894, 1991) linear-by-linear 
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association model that was also used by von Eye and 
Wiedermann (under review). Not using the information that 
is carried by the ordinal nature of the component segments 
can result in unnecessarily complex models. 

The last approach combines the three approaches previ-
ously used in this article, that is, the approach of segmenting 
components, the approach of taking distributional character-
istics of component scores into account, and the approach of 
taking the ordinal nature of segments into account. 

Data example of CFA of component scores under multi-
normality 

In this section, we illustrate the analysis of sectored com-
ponents under the hypothesis of multinormality. To this ef-
fect, we employ the method proposed by von Eye and 
Wiedermann (under review; cf. von Eye & Gardiner, 2004). 
We continue the analysis of the above data example. To esti-
mate the sector-specific bivariate normal probabilities, we 
use Somerville’s (1998) algorithm. The resulting probabili-
ties are (from Sector 1 1 through Sector 5 5) 0.004324, 
0.027888, 0.033776, 0.007755, 0.000317, 0.025478, 
0.164319, 0.199015, 0.045696, 0.001871, 0.024469, 
0.157811, 0.191138, 0.043888, 0.001797, 0.003820, 
0.024640, 0.029844, 0.006853, 0.000281, 0.000089, 
0.000571, 0.000691, 0.000159, and 0.000007. We now per-
form the four steps of CFA. 

Step 1: Specification of base model. The base model that 
takes these probabilities into account is 

log𝑚𝑚� = [𝟏𝟏|𝑋𝑋𝑠𝑠| 𝑋𝑋𝑛𝑛] �
𝑋𝑋1
𝑋𝑋𝑠𝑠
𝑋𝑋𝑛𝑛
�, 

where Xs represents the main effects of the two components, 
and subscript n indicates the bivariate normal probabilities. 
In the present example, the covariate is hypothesized to be 
independent of the main effects of the two categorized com-
ponents. This model corresponds to a model of first order 
CFA with covariate Xn in which the covariate is hypothesized 
to be independent of the main effects of the two categorical 
variables. If this model fails to describe the data well, the two 
components are related to each other, relations among these 
main effects and the bivariate normal probabilities exist, sta-
tistically, or both. Types and antitypes will, then, indicate 
where these effects are most prominently visible. 

Step 2: Selection of significance test. To be able to com-
pare this analysis with the one in Table 1, we select, again, 
the binomial test. 

Step 3: Selection of procedure for the protection of α. Also 
as before, we select the procedure of Holland and Di Ponzio 
Copenhaver. 

Step 4: Performing CFA and interpreting types and anti-
types. Table 2 contains the results of this CFA. 
 

 
 
 

Table 2.  
First order CFA of sectored data of an alcoholic’s responses with 
the covariate bivariate normality of the component scores. 

Configu-
ration 

   

C1 C2 m    𝑚𝑚�  p 
1  1    5  5.2482 0.42765830 
1  2   23 14.1174 0.01720805 
1  3   14 15.5377 0.41009288 
1  4    1  7.5983 0.00418122 
1  5    0  0.4984 0.39257152 
2  1    9 19.7752 0.00522375 
2  2  108  130.0454 0.01696646 
2  3  204 178.9555 0.01846990 
2  4   41  32.6109 0.08226669 
2  5    1     1.6130 0.47947860 
3  1   19    15.9633 0.25275163 
3  2  113 100.5954 0.10200376 
3  3  117 136.9675 0.03073052 
3  4   31 26.1622 0.19156068 
3  5    1 1.3116 0.37736608 
4  1   11 4.4693 0.00618686 
4  2   13 11.7692 0.39744612 
4  3   11 12.8847 0.36323991 
4  4    1 6.4508 0.01152419 
4  5    0 0.4259 0.34692334 
5  1    3 1.5439 0.20213818 
5  2    3 3.4725 0.45766034 
5  3    2 3.6546 0.29247568 
5  4    1 2.1778 0.35958313 
5  5    2 0.1511 0.01032187 
 
The overall goodness-of-fit of the base model is poor (LR-

X2 = 62.625, df = 15; p < 0.001). We, therefore, expect that 
types and antitypes emerge. Table 2 suggests, however, that 
neither types nor antitypes exist. Evidently, we encounter, 
again, the situation in which the overall goodness-of-fit of 
the base model suggests rejecting the model, but none of the 
discrepancies between individual observed and expected cell 
frequencies is large enough to result in types and antitypes. 
We, therefore, conclude that considering distributional char-
acteristics can change the results of CFA considerably. 

Clearly, this would apply to the results of log-linear mod-
eling as well (see von Eye, & Wiedermann, under review). 
The model under the hypothesis of a normal distribution is 
significantly better than the model without this hypothesis 
(ΔLR- X2 = 14.225, Δdf = 1; p < 0.001). Still because of the 
poor overall fit of the base model, we cannot interpret the 
parameters (the parameter for the normal distribution vector 
would have made a significant contribution). 
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Discussion 

In this article, the development of CFA is advanced by 
(1) deriving an approach that allows one to perform 

CFA of multiple continuous variables; this ap-
proach involves subjecting these variables to PCA, 
creating sectors in the space of PCA components, 
and analyzing the sector space using the methods of 
CFA; additional categorical variables can be taken 
into account; 

(2) incorporating recent data generation processes in-
cluding those that result in variables that are ordinal 
in nature or multinormal. 

In the following paragraphs, we discuss characteristics of 
the proposed approach. The first concerns the application of 
PCA. PCA cannot be automatically used when there are 
many more variables from one behavior domain than another. 
Over-represented variables can have the effect that compo-
nents reflect this weight. Therefore, data analysts may wish 
to make sure that variables and variable groups carry the in-
tended weight. 

Application of PCA filters data through a linear lens. This 
procedure implies that data patterns that are based on pair-
wise variable relations can disappear, that is, may not be de-
tected by CFA. Types and antitypes, therefore, may reflect 
higher than first order relations. In the parts of this CFA, 
types and antitypes can, therefore, be compared with types 
and antitypes from second order CFA (see von Eye & 
Wiedermann, 2021). 

Accordingly, principal components are the weighted sums 
of the original variables. Therefore, component scores tend 
to be normally distributed to a degree that exceeds that of the 
original variables. However, as was noted above, higher or-
der relations are not affected by this characteristic. Therefore, 
CFA of component scores can still detect sectors that contain 
fewer or more cases than expected under the assumptions of 
relations that were specified in the base model that is em-
ployed in a particular analysis (cf. von Eye & Bogat, 2005; 
von Eye & Gardiner, 2004).  

In the examples given in this article, we applied PCA to 
all variables subjected to CFA. This, however, is, by no 
means, a necessary procedure. Researchers might consider 
subjecting multiple variables from specific domains to sepa-
rate PCAs. For example, when intelligence is measured us-
ing multiple variables, PCA may be used just for the intelli-
gence variables. Other variables can be subjected to separate 
PCAs or even used without any transformation. When this is 
done, types and antitypes indicate local relations among var-
iable groups. 

In either case, principal components are rarely interpreted, 
substantively. PCA serves to reduce the variable space. 
When researchers wish to interpret the dimensions of a re-
duced space, they may wish to perform factor analysis or, 
when variables are categorical, latent class analysis (Wieder-
mann & von Eye, 2016) rather than PCA. Either of these 

methods is also applicable in the present context.  
Principal components are just orthogonal, new variables 

that represent linear combinations or mixtures of the un-
transformed variables. It should be noted, however, that 
some researchers tend to interpret principal components just 
as they would interpret factors in factor analysis. In this case, 
the magnitude of the correlation of variables with the indi-
vidual component guides interpretation. The magnitude that 
justifies interpretation is, as in factor analysis carried by cri-
teria that are often subjective. 

Similarly, the rules that guide the decision concerning the 
number of principal components are often subjective. The 
scree plot is used by some researchers, but there are more 
rules. The discussion of this topic is beyond the scope of this 
article. Data analysts may inspect textbooks on multivariate 
statistics (e.g., Raykov & Marcoulides, 2008). 

We now discuss possible generalizations and extensions 
of the approach proposed here. The first of these concerns 
the method that is used to reduce the dimensionality of the 
variable space. 

When factor analysis is used, it is important to take into 
account obliquely rotated factors. In this case, the segmented 
dimensions are related, and types and antitypes can reflect 
these relations. They indicate the sectors of the factor space 
in which the relations are most prominently visible. When 
moderator CFA is applied, types and antitypes can differ over 
the groups that are defined by moderator variables. 

When latent class analysis is applied, the validity of a so-
lution can vary over the latent classes. When, in addition, 
moderator variables are used, differences between latent 
classes can vary over the categories of the moderator varia-
bles. 

Another issue of interest concerns the underlying distribu-
tion of the component or factor space, or the latent classes. 
In this article, we used the normal distribution as an example. 
Other sampling distributions could have been used a well. It 
is important to realize that, depending on the method used to 
calculate component or factor scores, not just any distribu-
tion is meaningfully applied. For example, when component 
or factor scores are calculated such that they approach mul-
tinormality, the uniform distribution or asymmetric distribu-
tions can lead to biased results. Therefore, in the present con-
text, symmetric distributions such as the normal or the bino-
mial (for, e.g., p = 0.5) are often the most appropriate ones. 
This can be different in other contexts. 

A third option to extend the approach proposed here con-
cerns the method of data analysis after reduction of the vari-
able space. In this article, we focused on CFA. For the same 
cross-classifications, however, log-linear models can be es-
timated (cf. von Eye & Wiedermann, under review). Moving 
from CFA to log-linear modeling corresponds to a move 
from person-oriented research to variable-oriented research. 
CFA focuses on individual profiles. In contrast, log-linear 
modeling focuses on variable relations. Still, in either 
method, the ordinal nature of variables can be taken into ac-
count, models can be estimated for sectored data spaces, 
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underlying distributions can be made part of a model, covari-
ates can be considered, and a large number of hypotheses can 
be tested. Still, the foci of analysis are fundamentally differ-
ent. 

In contrast to both, LCA does not analyze cross-classifi-
cations directly. Instead, it reduces the variable space focus-
ing, in a person-oriented way, on the creation of profiles that 
are optimally separated from other profiles. These profiles 
describe data carriers, e.g., respondents in a survey study. 
Complementing Wiedermann and von Eye’s (2016) ap-
proach in which CFA is used to evaluate LCA solutions with 
respect to the postulate of conditional independence, the pre-
sent approach allows researchers to employ class member-
ship in the function of a moderator variable. It can, then, be 
studied whether PCA solutions vary across classes. Types 
and antitypes indicate where and how strong class-specific 
violations are, and, when distributional assumptions are 
made, whether violations of such assumptions are also class-
specific. 

Finally, it can be discussed whether the variable space can 
be reduced by other methods than factor analysis and PCA. 
Cluster analysis is a prime option. Using cluster analysis var-
iables can be grouped, and the relations among variables that 
were not part of the cluster analysis can be inspected by clus-
ter. The clusters function, in this approach, as moderators of 
variable relations. 

In sum, the approach proposed here is a first step toward 
CFA or log-linear modeling of multiple continuous variables 
that, thus far, prevented data analysts from using either CFA 
or log-linear modeling. 
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