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Abstract: Model-based cluster analysis (MBCA) was created to automatize the often subjective model-selection procedure 
of traditional explorative clustering methods. It is a type of finite mixture modelling, assuming that the data come from a 
mixture of different subpopulations following given distributions, typically multivariate normal. In that case cluster analysis 
is the exploration of the underlying mixture structure. In MBCA finding the possible number of clusters and the best clus-
tering model is a statistical model-selection problem, where the models with differing number and type of component dis-
tributions are compared. For fitting a certain model MBCA uses a likelihood based Bayesian Information Criterion (BIC) to 
evaluate its appropriateness and the model with the highest BIC value is accepted as the final solution. The aim of the present 
study is to investigate the adequacy of automatic model selection in MBCA using BIC, and suggested alternative methods, 
like the Integrated Completed Likelihood Criterion (ICL), or Baudry’s method. An additional aim is to refine these proce-
dures by using so called quality coefficients (QCs), borrowed from methodological advances within the field of exploratory 
cluster analysis, to help in the choice of an appropriate cluster structure (CLS), and also to compare the efficiency of MBCA 
in identifying a theoretical CLS with those of various other clustering methods. The analyses are restricted to studying the 
performance of various procedures of the type described above for two classification situations, typical in person-oriented 
studies: (1) an example data set characterized by a perfect theoretical CLS with seven types (seven completely homogeneous 
clusters) was used to generate three data sets with varying degrees of measurement error added to the original values, and (2) 
three additional data sets based on another perfect theoretical CLS with four types. It was found that the automatic decision 
rarely led to an optimal solution. However, dropping solutions with irregular BIC curves, and using different QCs as an aid in 
choosing between different solutions generated by MBCA and by fusing close clusters, optimal solutions were achieved for 
the two classification situations studied. With this refined procedure the revealed cluster solutions of MBCA often proved to 
be at least as good as those of different hierarchical and k-center clustering methods. MBCA was definitely superior in 
identifying four-type CLS models. In identifying seven-type CLS models MBCA performed at a similar level as the best of 
other clustering methods (such as k-means) only when the reliability level of the input variables was high or moderate, oth-
erwise it was slightly less efficient. 

Keywords: mixture models, person-oriented methods, model-based cluster analysis, integrated completed likelihood 
criterion, Baudry’s method 

Introduction 

Model-based cluster analysis (MBCA) was created to 

automatize the demanding model-selection procedure of 
traditional explorative clustering methods (e. g., hierar-
chical and k-means clustering). With these methods the 
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standard procedure for selecting the number of clusters is 
first selecting a set of quality coefficients (QCs) and as-
sessing the given cluster structure (CLS) by evaluating 
whether most of these QCs reach a predetermined cutoff 
value (Vargha et al., 2016; Vargha & Bergman, 2019). 

The problem with this approach is the researcher’s sub-
jectivity. A problem with selecting the optimal number of 
clusters is the wide variety of rather heuristic approaches. 
By using different methods researchers may obtain entirely 
different solutions, thus the replicability of these studies 
could be questionable. Instead of using a cutting point ap-
proach as with the QCs and the MORI coefficients (see 
Vargha & Bergman, 2019), MBCA offers a basically au-
tomatized way of choosing the best solution of clustering. 

Model-based cluster analysis 

MBCA is a type of finite mixture modelling, assuming 
that the data come from a mixture of different subpopula-
tions following given distributions, typically multivariate 
normal. In that case cluster analysis is the exploration of 
the underlying mixture structure. According to Fraley and 
Raftery (2002) finding the possible number of clusters and 
the best clustering model is a statistical model-selection 
problem, where the models with differing number and type 
of component distributions are compared. For fitting a cer-
tain model MBCA uses an iterative Expectation-Maxi-  
mization (EM) algorithm initialized by hierarchical model- 
based clustering, and the BIC criterion to evaluate its ap-
propriateness (Hasnat et al., 2016; Scrucca et al., 2016; 
Vaithyanathan & Dom 2013). According to Fraley et al. 
(2012) the larger the value of the BIC1, the stronger the 
evidence for the model and the number of clusters. 

Once we fitted a mixture model with k components, a 
probabilistic clustering of the data into k clusters can be 
obtained by using the posterior probabilities of component 
memberships. Unlike traditional clusterings, MBCA uses a 
soft assignment, where each data point (case) in the multi-
dimensional space has a probability of belonging to each 
cluster (fuzzy clustering). By means of these probabilities 
we can fix cluster belongingness by assigning each case to 
the cluster of a component distribution that generates the 
case's expression profile with maximum probability. 

Selecting the best cluster solution 

Fraley and Raftery (2002) proposed a solution to the 
problem of choosing the right number of clusters. After 
conducting the analysis for a set of cluster numbers (i.e., 
1-10) and structure types (see, e.g., Scrucca et al. 2016),
one can decide the best cluster solution by plotting the

1 We note that the BIC in this approach has an opposite sign than in its 
usual formula (see, e.g., Wit, Heuvel, & Romeijn, 2012), that is why one 
looks for BIC maximum in MBCA and not BIC minimum. 

BIC curve and searching local maximums of BIC. A 
decisive first local maximum indicates strong evidence 
for a model (Fraley & Raftery, 1998). This process allows 
a certain automatization of finding the best cluster solu-
tion, without the need of using heuristic approaches like 
the elbow-method (Myers, 1996) on one of the QCs 
(Vargha & Bergman, 2019).  

Biernacki et al. (2000) assert that clustering in MBCA is 
not merely choosing the best approximating mixture model, 
but rather finding a meaningful taxonomy of the data, and so 
BIC may not be ideal to determine the number of clusters. 
They argue that the goal of selecting the number of mixture 
components for estimating the underlying probability den-
sity is well met by BIC (Dasgupta & Raftery, 1998). It may 
occur, however, that a non-Gaussian cluster will be repre-
sented by a mixture of two or more Gaussian distributions, 
leading to the overestimation of the number of clusters 
(Baudry et al., 2008; Bertoletti et al., 2015).  

To overcome this problem, Biernacki et al. (2000) pro-
posed the integrated completed likelihood (ICL) criterion, 
which is the BIC penalized through an entropy term which 
measures cluster overlaps. Here they assumed that every 
object belongs to one distribution with a probability of 1 and 
to all others with a probability of 0. This way ICL can be 
regarded as an adjusted maximized log-likelihood criterion, 
which takes the special clustering goal of MBCA into ac-
count. Therefore, the ICL-based MBCA should be regarded 
as a cluster-oriented approach whereas the BIC-based 
MBCA is a component-oriented approach. According to 
Biernacki et al. (2000), ICL may outperform the traditional 
BIC-based evaluation when the data consist of non-Gaussian 
components.  

Baudry et al. (2010) suggested another method combining 
the principles of the BIC and the ICL approach. Their pro-
posed algorithm consists of the following steps. First, one 
fits a Gaussian mixture model, and using BIC, selects the 
best number of components. Second, one hierarchically 
combines mixture components of this solution using the 
entropy of the conditional membership distributions to de-
cide which two components to merge at each stage. Last, one 
should inspect the entropy plot and looking for an elbow (see, 
e.g., Figure 5).

The purpose of the paper 

In a perfect classification every object belongs to one of k 
possible classes in the p-dimensional space of the p input 
variables, and all objects in the same class have the same 
value pattern, falling into the same p-dimensional point. 
This theoretical, ‘true’ data set is regarded to be error free 
and can be defined by k discrete points in the p-dimensional 
space, where these k points, the theoretical centroids, define 
k different types (Vargha and Bergman, 2019). All objects 
falling into one such p-dimensional centroid is regarded as a 
theoretical cluster. In practice, such theoretical clusters do 
not exist because variables defining them are always sub-
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mitted to some degree of measurement error.  If these errors 
are independent and normally distributed, the multivariate 
distribution of the empirical data set will follow a mixture of 
p-dimensional normal distributions with k components, 
whose centers are the k theoretical centroids (Vargha & 
Bergman, 2019). 

If we select a set of variables for submitting to cluster 
analysis in a certain population, three situations are possible: 

A. There is a CLS in the population with well-identifiable 
types that can be more or less hidden by error. 

B. There is a partial CLS in the population, where some 
clear types exist, but they do not cover the whole population. 

C. No real CLS and no real types exist. 
The purpose of the present paper was to clarify the use-

fulness of different MBCA methods (BIC- and ICL-based, 
and Baudry’s method) for automatic model selection in 
MBCA when situation A holds, and to give usable instruc-
tions for determining the optimal number of types in a typ-
ical person-oriented scenario. If the automatic interpretation 
of MBCA does not recover the given structure, an important 
question is what indicators can help in identifying the true 
model and number of clusters. An additional aim was to 
refine these MBCA procedures by analyzing BIC-curves and 
using QCs to help in the choice of an acceptable cluster 
structure, and also to compare the efficiency of MBCA in 
identifying a theoretical CLS with the efficiency of different 
other clustering methods. 

Method 

In the following, we will create two concrete theoretical 
CLSs with some continuous unobservable theoretical traits, 
one based on a real empirical study, the other being an arti-
ficial one. Then we define observable variables (measuring 
tools) to each trait that include a certain amount of error and 
see how the theoretical CLS can be identified by MBCA, 
using either the BIC criterion, the ICL criterion, or Baudry’s 
method. 

The selection of theoretical cluster structures 

In a sociolinguistic study of Romanian ethnic minority 
living in Hungary, Vargha and Borbély (2017) applied five 
sociolinguistic variables (minority language competence, 
language use in family and church, minority identity, and 
attitude toward minority language). They explored seven 
clusters with attractive QCs and MORI indices (see Vargha 
& Borbély 2017). The explored clusters identified seven 
types of speakers which coincides with the clearly not linear 
process of language shift and assimilation from a bilingual 
minority status to a monolingual Hungarian status. Based on 
these positive results we chose our artificial theoretical CLS 

the centroids of this solution2 (see Figure 1 and Appendix 
2).  

The second theoretical structure, borrowed from Bergman 
et al. (2017), was a simpler one, having four artificially 
defined types with four variables (see Figure 2). 

Data generation based on theoretical cluster structures 

The applied theoretical and empirical samples were the 
same as the ones in Vargha and Bergman (2019). The only 
difference was that Vargha and Bergman (2019) studied the 
adequacies of conventional hierarchical and k-means solu-
tions in terms of several QCs and MORI coefficients based 
on them, whereas the present study focused on the adequacy 
of MBCA solutions.  

 The first theoretical sample (Teo7types) was defined 
the following way. It consisted of 7 clusters based on 5 
variables just as in Figure 1. Each theoretical cluster was 
errorless, consisting of cases with exactly the same value- 
pattern corresponding to the CLS of Figure 1. Cluster sizes 
were borrowed from the study of Vargha and Borbély (2017), 
multiplying those values by 5 (with resulting cluster sizes 
195, 160, 175, 115, 95, 50, and 115, respectively), yielding a 
substantial sample size of 905. 

 The second theoretical sample (Teo4types) was defined 
similarly. It consisted of 4 clusters based on 4 variables just 
as in Figure 2. Each theoretical cluster was errorless, con-
sisting of cases with exactly the same value-pattern corre-
sponding to the CLS of Figure 2. Cluster sizes were bor-
rowed from Bergman et al. (2017): 160, 40, 160, and 40, 
respectively, for types A to D, to have a sample of moderate 
size (N = 400). 

For both theoretical samples three artificial empirical 
samples (Emp7type1, Emp7type2, and Emp7type3 for 
Teo7types, and Emp4type1, Emp4type2, and Emp4type3 for 
Teo4types) were defined the following way. For each orig-
inal true variable value in the theoretical data set, a new 
value was created by adding an independent random N(0; σi),  
variable, where σi was set to .5, .75 and 1 for the three 
samples, respectively. Then each data value was rounded to 
the nearest integer. Data values less than 1 or greater than 5 
were set to 1 or 5, respectively. This algorithm yielded 
five-point integer valued variables in the empirical samples, 
which is a usual case in psychological practice. The three 
different σi values yielded three levels of measurement 
reliability. These levels were identified by computing r2 
values (explained variance proportions) between the theo-
retical and the corresponding empirical variables, used as 
reliability estimates. In Emp7type1 these fall into the .65-.81 
region (mean = .74), in Emp7type2 into the .52-.71 region 
(mean = .61), and in Emp7type3 into the .40-.57 region 
(mean = .50). Similarly, in Emp4type1 these fall into 

 
 
2 The original scales were modified by appropriate linear transformations 
to scales whose theoretical minimum and maximum values were 1 and 5. 
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the .71-.86 region (mean = .78), in Emp4type2 into 
the .53-.72 region (mean = .65), and in Emp4type3 into 
the .43-.60 region (mean = .50). These three means in both 

cases represent three (high, moderate, or low) levels of re-
liability of the empirical variables in the three empirical 
samples (Cohen, 1977). 

Figure 1 
The chosen 1st artificial theoretical (Teo7types) CLS with 7 clusters and 5 variables: Design with seven types (TC1 to TC7) 
and five variables (V1 to V5). 

Figure 2 
The chosen 2nd artificial theoretical (Teo4types) CLS with 4 clusters and 4 variables: Design with four types (Type A to Type 
D) and four variables (Var1 to Var4).
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The SD values varied between 0.99 and 1.24 for the high, 
between 1.03 and 1.28 for the moderate, and between 1.15 
and 1.34 for the low reliability samples, so the variation of 
the SD values can be regarded small. The correlations be-
tween the empirical variables were small also within the 
theoretical types.  

The normality of all final variables in each theoretical 
cluster for both CLS types were checked via sample skew-
ness and kurtosis. For the 7-type situation 24 (22.9%) out of 
the possible 105 cluster by variable by reliability level 
combinations either skewness or kurtosis was significant at 
p < .001 level, and for the 4-type situation 14 (23.3%) out of 
the possible 60 cluster by variable by reliability level com-
binations either skewness or kurtosis was significant at p 
< .001 level. This means that due to rounding and truncating 
the resulting variables were definitely nonnormal in a sub-
stantial proportion (23%) of cases. 

Statistical analyses 

We conducted the MBCA analyses with the mclust 
package in R (Fraley and Raftery 2003), and the post-hoc 
analyses in ROPstat (Vargha, Torma, and Bergman 2015). 
We performed MBCA using both the BIC and the ICL cri-
terion, and also with Baudry’s method in all six empirical 
samples. (1) First, we identified the model with the highest 
BIC and ICL values in the component range k = 2 to 10. If 
this maximum was attained with an irregular curve (due to a 
sudden jump), the model was excluded and the next best 
model was selected. (2) Then, saving the promising solution 
(solutions) we checked whether there are cluster centroids 
close to each other in a solution, using the Centroid module 
of ROPstat. If two clusters were close to each other, we 
combined them. (3) Then, we identified the optimal solution 
also with Baudry’s method. Here we used the cluster number 
and model from the original MBCA having the highest BIC 
value, and merged clusters pairwise until only one cluster 
remained (using the clustCombi function of mclust package). 
(4) Next, we compared the – occasionally improved – em-
pirical cluster solutions with the true theoretical clustering
looking for good matches between pairs of centroids of the
two CLSs. We computed also the percentage of correctly
classified cases to measure the match between the empirical
and the theoretical CLSs the following way. An empirical
cluster was regarded as a representative of a theoretical
cluster (type) that occurred with the highest frequency in
that empirical cluster. We summed the frequencies of the
represented types over the clusters and divided it by the total
sample size. (5) Finally, if there were several competing
empirical solutions, we compared and evaluated them using
the following QCs according to the suggestions of Vargha et
al. (2015, 2016), Vargha and Bergman (2019), and Bergman,
Vargha, and Kövi (2017): HC cluster homogeneity coeffi-
cients and their average (HCmean), explained error sum of
square percentage (EESS%), simplified version of the Sil-
houette Coefficient (SilCoef), and a generalized Dunn index

(GDI24). Their detailed formulas can be found in Appendix 
1. 

In the mclust package there are 14 available models for 
more than two groups represented by triplets EII, VII, EEI, 
VEI, EVI, VVI, EEE, EVE, VEE, EEV, VEV, EVV, and 
VVV. The first letter in a triplet refers to the cluster size
(volume), the second to the shape, and the third to the ori-
entation of the multivariate distribution. E always stands for
“equal”, V for “variable” and I for “coordinate axes”. For
example:

• EVI denotes a model in which the volumes of all
clusters are equal (E), the shapes of the clusters may vary (V), 
and the orientation is the identity (I) or coordinate axes; 

• EEE means that the clusters have the same size, shape
and orientation in the p-dimensional space; 

• VEI means that the cluster sizes vary, but they have the
same shape and the orientation equal to coordinate axes (see 
in detail in Scrucca et al. 2016). 

Results 

In the high reliability Emp7type1 sample an EEV (ellip-
soidal, equal shape) model with 10 components, denoted by 
EEV10 (see Figure 3) had the largest BIC value, and using 
the ICL criterion we had a very similar result. But regarding 
that the EEV curve has a sudden huge jump from k = 9 to k = 
10, differing strongly from all other curves, we labelled it an 
irregular one and dropped it. Among the remaining solutions 
an EII7, an EEI7, and a VII7 model proved to be the best 
both with regard to the BIC and the ICL criterion (see Fig-
ures 3 and 4). 

To check the adequacy of these three 7-cluster solutions 
we compared their centroids with those of the theoretical 
model (see Figure 1) by means of the Centroid module of 
ROPstat, and found a high level match for all three solutions. 
The pairwise ASED differences between corresponding 
cluster centroids were smaller than 0.016 for all three mod-
els.  91.4% of the observations were correctly classified for 
EII7, 91.7 for EEI7, and 91.4 for VII7, despite the substan-
tial error put on the theoretical scores, the enforced rounding, 
and the applied restricting 5-point scale.  

It should be noted that the EEV10 solution had substan-
tially worse QCs than those of EII7, EEI7, and VII7 
(EESS%: 61.8 vs. 75.8-75.9; SilCoef: 0.10 vs. 0.65-0.66; 
GDI24: 0.03 vs. 1.14-1.20; HCmean: 0.77 vs. 0.48-0.49), 
showing that it was really inadequate. Baudry’s automatic 
method, starting with this wrong EEV10 solution could not 
obviously yield an acceptable solution. Baudry’s 6-cluster 
solution (see Figure 5) had only two centroids having an 
ASED difference less than .10 from the nearest theoretical 
centers, and its QCs were even worse than those of the 
EEV10 solution. 

In the moderate reliability Emp7type2 sample the best 
solution was an isolated irregular VEV10 model for both 
BIC and ICL. Dropping it, two 7-cluster models (EII7 and 
EEI7) turned out to be the most appropriate ones with BIC. 
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The ICL-plot showed a totally different picture with a local 
maximum yielded by the VVI and VVE curves at k = 3 (see 
Figure 6). The QCs of VEV10, VVI3, VVE3 were substan-

tially worse than the QCs of EII7 and EEI7 in terms of 
HCmean, measuring the average cluster homogeneity (for 
the former three: 0.98-1.10, for the latter two: 0.67).

Figure 3 
The BIC-plot of MBCA curves in the high reliability Emp7type1 sample for k = 1 to 10 

Figure 4 
The ICL-plot of the best three MBCA curves in the high reliability Emp7type1 sample after dropping the irregular EEV curve 
for k = 4 to 10 
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Figure 5 
The Entropy plot of Baudry’s method in the high reliability Emp7type1 sample 

Figure 6 
The ICL-plot of MBCA curves in the moderate reliability Emp7type2 sample for k = 2 to 8 
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We compared the centroids of EII7 and EE7 with the 
theoretical model as in the high reliability case and found 
an acceptable match. The pairwise ASED differences 
between corresponding cluster centroids were never 
greater than 0.08. Out of the 905 theoretical observations 
76.4% were correctly classified for both EII7 and EE7 
MBCA solutions, and there were only three theoretical 
clusters where the percentage of correct identifications 
did not exceed 85% (they fell between 62.5% and 
71.4%). 

Baudry’s method, starting with the wrong VEV10 so-
lution, could not yield an acceptable final solution. It 
indicated a 7-cluster solution having only one centroid 
having an ASED difference less than .10 from the nearest 
theoretical center, and all of its QCs were substantially 
worse than those of EII7 and EEI7, especially in terms of 
GDI24 (.53 vs. .90 and .86). 

In the low reliability Emp7type3 sample the automatic 
decision led to a VEI6 model. Comparing this solution 
with the theoretical model, two of the six clusters had a 
good match with two theoretical types (with ASED dif-
ferences .022 and .046) and two others had an acceptable 
match (with ASED differences .062 and .101). This 
shows that if the reliability of the input variables is only at 
the 50%-level, a partial identification of the original CLS 
is still possible. The analysis with the ICL criterion 
yielded a messy picture very similar to the one of Figure 6, 
having a first high peak at k = 3 on the VVI and VVE 

curves (see Figure 7). Here again, Baudry’s method led to 
a bad four clusters solution. 

In the high reliability Emp4type1 sample the automatic 
decision with both BIC and ICL led to a wrong model 
selection with EEV9 and EEV6 yielding decisive local 
peaks (see Figure 8). After dropping this irregular EEV 
curve, EII5 and EEI5 seemed to be best models with both 
BIC and ICL. In the EII5 and EEI5 solutions the first two 
clusters had similar centroids (with ASED = .45 for both 
models), so we fused them and obtained a modified 
4-cluster solutions from EII5 and EEI5 (denoted by
EII5m and EEI5m). The ASED differences between
corresponding theoretical and empirical centroids were
never greater than 0.02. EII correctly identified 98% of
the cases, while EEI correctly identified 97.3%.
Baudry’s method, starting with the EEV9 model, yielded
here a bad 7-cluster solution.

In the moderate reliability Emp4type2 sample the au-
tomatic decision led again to a wrong model selection 
with both BIC and ICL due to a huge jump on the EEV 
curve at k = 8, similar to the one in Figure 3. After drop-
ping this irregular curve, EII5 and EEI5 seemed to be the 
best models. In the EEI5 solution one cluster had no el-
ement, so it was really a 4-cluster solution, denoted by 
EEI5(4). In the EII5 solution the first two clusters had 
similar centroids (with ASED = .47), so we fused them, 
yielding a 4-cluster modified EII5m solution.  

Figure 7 
The ICL-plot of MBCA curves in the low reliability Emp7type3 sample for k = 1 to 10 
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Figure 8 
The BIC-plot of MBCA curves in the high reliability Emp4type1 sample for k = 3 to 10 

Figure 9 
The BIC-plot of MBCA curves in the low reliability Emp4type3 sample for k = 3 to 10 
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The pairwise ASED differences between the corre-
sponding cluster centroids were never greater than 0.1. 
Out of the 400 observations 91.8% were correctly classi-
fied for EII5m and 93.3% for EEI5m, and there were only 
one theoretical cluster in both solutions where the per-
centage of correct identifications did not exceed 90% 
(81.3% and 85.6%, respectively). Baudry’s method, 
starting with the EEV8 model, yielded here a bad 
5-cluster solution, where three clusters fell very close to
each other (with pairwise ASED differences less
than .40).

In the low reliability Emp4type3 sample, after ex-
cluding the irregular curves of VEV9, EEV10, and VEI8 
models, the VII7 model had the highest BIC and ICL 
value (see Figure 9). In the VII7 solution four clusters 
were close to each other, so we fused them, and this 
4-cluster solution (VII7m) happened to be acceptable.
The ASED differences were not greater than 0.06 and
83.5% of the theoretical cases were correctly identified.

Baudry’s method, starting with the VEV9 model, 
yielded a 5-cluster solution, where the centroids of three 
clusters fell very close to each other (with pairwise ASED 
differences less than .06). When we fused them, the re-
sulting 3-cluster solution had three clusters fairly similar 
to the theoretical clusters (with pairwise ASED differ-
ences not greater than 0.037), but being much weaker 
than the former VII7m solution in terms of the QCs 
(EESS%: 33.6 vs. 51.6; SilCoef: 0.48 vs. 0.57; GDI24: 
0.68 vs. 0.90; HCmean: 1.33 vs. 0.97). 

In Table 1 we summarized the MBCA results of the six 
empirical samples with BIC and ICL criteria and for 
Baudry’s method. It is astonishing that the automatic 
decision rarely leads to an optimal solution. Quite often 

there is local maximum on an irregular curve (see Figures 
3, 8, 9), yielding an obviously bad solution. But even if 
we drop these irregular curves, the next best solutions 
often have to be submitted to some further modification 
by fusing close clusters. These modifications were 
needed in the Emp4type samples, where the starting 
models had more than four clusters. 

It is worth to note that – quite unexpectedly – the 
ICL-based decisions were never better than the 
BIC-based ones. In the ICL-plots we found almost always 
the same irregular curves than on the BIC-plots, and if not, 
we found local maximums far from the optimal one (see 
Figures 6 and 7). Baudry’s method did not lead to good 
solutions either.  

In Table 2 we summarized some adequacy measures of 
the best final MBCA solutions. Here, column Type# de-
notes the number of theoretical clusters (types), and 
Correct% the proportion of correctly classified cases in 
the different cluster solutions. The main conclusions that 
can be drawn based on Table 2 are as follows. 

• MBCA can recover the theoretical CLS very well if
the reliability level of the set of input variables is high, 
and quite well if it is moderate. 

• MBCA can recover the theoretical CLS at least par-
tially even if the reliability level of the set of input vari-
ables is low. For example, in the Emp4type2 sample the 
two best MBCA solutions could correctly identify the 
true type of more than 90% of 400 cases. 

• The QCs of the best cluster solutions are always
excellent for the high reliability measurements (EESS% > 
0.75, SilCoef > 0.65, GDI24 > 1.1, HCmean < 0.50), and 
they are fairly good even for the moderate reliability 
measurements.

Table 1  
Summary of MBCA results on the six empirical samples with BIC and ICL criteria and for Baudry’s method. Suffix m after 
a model name indicates that the cluster solution was modified by fusing some close clusters. 
Sample BIC ICL Baudry 

Emp7type1 1. Irregular bad EEV10; 2.

Good EII7, EEI7, VII7.

Irregular bad EEV10 solu-

tion. 

Starting with EEV10, bad 6-cluster solu-

tion. 

Emp7type2 1. Irregular bad VEV10; 2.

Good EII7, EEI7.

Bad VVI3, VVE3 solu-

tions. 

Starting with VEV10, bad 7-cluster solu-

tion. 

Emp7type3 Weak VEI6 solution. Bad VVI3, VVE3 solu-

tions. 

Starting with VEI6, bad 4-cluster solu-

tion. 

Emp4type1 1. Irregular bad EEV9; 2.

Good EII5m, EEI5m.

Irregular bad EEV9 solu-

tion. 

Starting with EEV9, bad 7-cluster solu-

tion. 

Emp4type2 1. Irregular bad EEV8; 2.

Good EII5m, EEI5.

Irregular bad EEV8 solu-

tion. 

Starting with EEV8, bad 5-cluster solu-

tion. 

Emp4type3 1. Irregular bad VEV9; 2.

Acceptable VII7m.

Irregular bad VEV9 solu-

tion. 

Starting with VEV9, weak 5-cluster so-

lution. 
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Table 2  
Basic characteristics of the final best MBCA solutions. Suffix m after a model name indicates that the cluster solution was 
modified by fusing some close clusters. 

Type# Reliability Model EESS% SilCoef GDI24 HCmean HC range 

7 High EII7 75.9 0.66 1.15 0.49 0.46-0.52 

7 High EEI7 75.8 0.65 1.14 0.49 0.47-0.52 

7 High VII7 75.8 0.65 1.20 0.49 0.45-0.52 

7 Moderate EII7 66.6 0.54 0.90 0.67 0.51-0.71 

7 Moderate EEI7 66.6 0.54 0.86 0.67 0.51-0.73 

7 Low VEI6 54.6 0.48 0.57 0.91 0.57-1.07 

4 High EII5m 79.0 0.81 1.76 0.42 0.22-0.49 

4 High EII5m 78.9 0.80 1.68 0.43 0.22-0.48 

4 Moderate EII5m 67.8 0.71 1.00 0.65 0.56-0.73 

4 Moderate EEI5(4) 67.1 0.70 0.96 0.66 0.53-0.77 

4 Low VII7m 51.6 0.57 0.90 0.97 0.45-1.33 

Table 3 
Percentage of correctly classified cases in the solutions of different clustering methods in the six simulated datasets  

Percentage of correctly classified cases 

Sample 

HCA 

Ward 

KCA 

ROPstat 

HCA 

R/diana 

KCA 

R/kmeans 

k-medoids

R/pam 

Best MBCA 

solution 

Emp7types1 83.6 91.3 87.3 91.3 85.2 91.7 

Emp7types2 67.2 77.0 66.3 77.9 74.0 76.4 

Emp7types3 60.8 66.6 55.5 65.7 63.4 60.1 

Emp4types1 95.5 94.8 95.3 94.8 95.5 98.0 

Emp4types2 81.8 90.0 84.8 90.0 90.8 93.3 

Emp4types3 81.0 79.0 73.0 78.5 82.3 83.5 

Comparing MBCA with other clustering methods 

In order to check the adequacy of MBCA we compared 
its efficiency in identifying the true theoretical CLSs with 
different other clustering methods. 

First, since we used the same datasets as Vargha and 
Bergman (2019), we were able to compare the results of 
our MBCA analyses with these hierarchical (HCA) and 
k-means (KCA) clustering results (see Vargha and Bergman,
2019, Table 6). The former was a Ward-type agglomerative
HCA (Ward, 1963), the latter a relocation procedure per-
formed on the result of a Ward’s HCA (Vargha et al., 2015).
In addition, we performed in all empirical datasets the fol-
lowing cluster analyses (all in R): DIANA divisive HCA3

(Kaufman and Rousseeuw, 1990), Hartigan-Wong type

3 With diana function of package cluster (see 
https://www.rdocumentation.org/packages/cluster/versions/2.1.2/topics/dia
na) 

KCA4 (Hartigan and Wong, 1979), and k-medoids cluster-
ing5 (Park and Jun, 2009). In all these new analyses the 
cluster number was specified based on the cluster number 
of the best MBCA solution, although in the case of our spe-
cial theoretical CLSs and empirical samples there are other 
efficient ways of determining the optimal cluster number 
(Vargha and Bergman, 2019). After performing these clus-
ter analyses we computed for each solution the percentage 
of correctly classified cases and summarized them in Table 
3 along with the same data of the best MBCA solution.  

4 With kmeans function of package stats (see 
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kme
ans) 
5 With pam function of package cluster (see 
https://www.rdocumentation.org/packages/cluster/versions/2.1.2/topics/pa
m)

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans
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Based on Table 3 one can conclude that in the case of 
Emp7types samples MBCA yielded very similar results as 
the best of the competing clustering methods (mainly KCA) 
in the high and the moderate reliability case, and yielded a 
weaker result only in the low reliability case. In the 
Emp4types samples MBCA always yielded the best classi-
fication. Overall higher percentages in the Emp4types cases 
indicate that the recovery of the original structure seems to 
be more efficient in simpler structures, where there are 
fewer theoretical types. 

Discussion 

Some studies have reported that the BIC-based approach 
of MBCA can sometimes overestimate the number of clus-
ters, because it is possible that a cluster consists of several 
mixture components following a Gaussian distribution 
(Fraley & Raftery, 1998, 2002; Dasgupta & Raftery, 1998). 
To improve the efficiency of MBCA, Biernacki et al. (2000) 
suggested that the ICL criteria could be a better method to 
find the appropriate number of clusters. Baudry et al. (2007) 
suggested that starting with the best model of the automatic 
interpretation of MBCA and hierarchically merging the 
clusters until only one cluster remains, one can find the 
appropriate cluster number by evaluating the mean entropy 
plot and searching for an elbow. 

The aim of the present study was to check the adequacy 
of the automatic interpretation of MBCA with all of the 
above methods. An additional aim was to refine these 
MBCA procedures by using QCs to help in the choice of an 
appropriate cluster structure, and compare the efficiency of 
MBCA with the efficiency of other clustering methods in 
the same datasets.  

To achieve this goal we created empirical datasets, one 
based on a theoretical CLS with seven types (Teo7types) 
and one based on a theoretical CLS with four types 
(Teo4types). After assigning the value pattern of every par-
ticipant to the given cluster’s centroid (Teo7types and 
Teo4types) the empirical datasets were created by adding 
different amounts of random errors to the theoretical mod-
els, so the generated empirical samples could be character-
ized with varying (low, medium, and high) levels of relia-
bility. Due to rounding and truncating the resulting varia-
bles were strongly nonnormal in 23% of the possible clus-
ter by variable by reliability level combinations for both 
CLS types. We performed MBCA with BIC, ICL and 
Baudry’s method in all six datasets.  

The most important result of the performed analyses is 
that the automatic decision rarely leads to an optimal solu-
tion. Quite often there is local maximum on an irregular 
curve yielding a bad solution. Even if one drops the irregu-
lar curves, the next best solutions may have to be submitted 
to some further modifications by fusing close clusters. This 
occurred actually in our four-type samples. It is also im-
portant that the ICL-based decisions were never better than 
the BIC-based ones, and the automatic Baudry’s method 

did not lead to good solutions either. Consequently it ap-
pears that the model-based approach also contains subjec-
tive elements in that a variety of different models are pro-
duced and the final solution is chosen according to the in-
terpretation of the values of different quality indices, such 
as EESS%, HCmean, MORI coefficients, etc. 

The resulting structures were always better for Teo4types. 
In the high reliability situations, we obtained excellent so-
lutions for both theoretical models. Quite unexpectedly, the 
resulting structures were often acceptable even in the low 
reliability case. In case of competing solutions, the values 
of the computed quality coefficients (EESS%, SilCoef, 
GDI24 and HCmean) were consistent with the goodness of 
the solution in terms of the similarity to the true theoretical 
model and the reliability level of the variables in the dif-
ferent empirical samples. 

Vargha and Bergman (2019) analyzed the same datasets 
using HCA and KCA. Thus we were able to compare the 
efficiency of MBCA with these methods. In addition, we 
performed in all empirical dataset DIANA divisive HCA, 
Hartigan-Wong type KCA, and k-medoids clustering. These 
results indicated that MBCA yielded definitely better re-
sults (in terms of correctly classified cases) in all three 
four-type datasets and the same quality results in the high 
and moderate reliability seven-type datasets. 

Although these results indicate that a not automatized, 
sophisticated use of MBCA can be successfully applied in 
exploring theoretical types in person-oriented research, 
further investigations are needed to identify those circum-
stances where MBCA is obviously better than the compet-
ing clustering methods.  

A limitation of our conclusions is that they are based on 
analyses with just two examples of theoretical CLSs. We 
can argue, however, that if a method does not perform well 
in such clear-cut, ideal situations, there are good reasons to 
question its general usefulness. This failure refers mainly to 
the automatized use of MBCA. Our suggested approach of 
improving MBCA often yielded high quality results as 
compared with those of other clustering methods. This has 
to be certainly confirmed by using other types of theoretical 
CLSs as well. 

 With the given datasets we wanted to simulate a de-
sign typically used in practice. So, in the data generation 
process, we used linear transformation to create a five-point 
scale, rounding the obtained continuous data and enforcing 
them to the 1-5 range. Owing to this specific design of data 
creation, our results need to be carefully interpreted. 
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Appendix 1 

1. HC (Homogeneity Coefficient) of a cluster. This is the average of the pairwise within-cluster distances of its cases. To evaluate a cluster
solution, HCmean can be used as a QC. It is the weighted mean of the cluster HC values (the weights are the cluster sizes).

2. EESS% (Explained Error Sum of Square percentage). This is a multivariate generalization of eta-squared used in analysis of variance:
EESS% = 100*(SStotal – SScluster)/SStotal,     (1)

where SStotal is the sum, over the entire sample, of each case’s sum of squared deviations of each variable value from the mean for the
entire sample in that variable, and SScluster is the sum, over the clusters, of the within-cluster sums of squared deviations of the cases
from the variable centroids.

3. SilCoef (a simplified version of the Silhouette Coefficient). This is defined as follows: First, compute SCi for each case i in the sample
using formula (2):

SCi = (B – A)/max(A, B),         (2)
where A is the distance from the case to the centroid of the cluster which the case belongs to and B is the minimal distance from the case
to the centroid of any other cluster. SilCoef is the average of the SCi values of all cases. A high SilCoef value indicates that, on average,
cases are substantially closer to their own cluster centers than to the nearest of the other cluster centers.

4. GDI24 (Generalized Dunn Index). The GDI24 index is a special case of the family of generalized Dunn indices and it can be defined as
follows (Desgraupes, 2017):

GDI24 = D/HCmax,          (3)
where D is the distance of the two nearest cluster centroids, and HCmax is the HC value of the most heterogeneous cluster.

Appendix 2 
We made the analysis script and the simulated data publicly available. See: 
https://osf.io/ghvrk/?view_only=1be719cafe3c473380641205000cb3eb 
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