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Abstract 

In this article, we propose a method for the analysis of regime shifts in frequency data. This method identifies those points in the develop- 

ment of a process for which deviations are most extreme. Based on a statistical model, functions are estimated that describe the process. 

This description can represent either the entire series of scores or the series before and after a shift point. The shift point can be either given 

a priori or estimated from the data. The method is hybrid in that it first uses standard models for the estimation of parameters of the process 

that is examined and then, in a second step, elements of Configural Frequency Analysis. Uni- and multivariate versions of the method are 

proposed. In data examples, road traffic data from California and Germany are analyzed before and after particular shift points. Extensions 

of the proposed method are discussed. 

Keywords: regime shift; multivariate; Configural Frequency Analysis; log-linear Modeling; linear models 

 

A regime is defined as a characteristic behavior of a sy- 

stem that is stable over time. Examples of regimes often 

considered time-stable include personality in humans and 

the climate of the earth. When these characteristics change 

to the extent that it is statistically detectable, one observes a 

regime shift. Examples of regime shifts include changes in 

personality that are caused by traumatic events such as  

accidents, and changes in climate that are caused by global 

warming. 

The statistical analysis of regime shift phenomena can 

focus on just any parameter that is used to describe the  

behavior of a system over time. These include, for instance, 

means, trend parameters, covariance structures, or higher 

order moments. Overview articles that summarize such 

methods have been published by, for example, Liu, Wan, 

and Gu (2016) and Rodionov (2005). The latter author 

classifies existing methods for the detection of regime shift 

into the following eight categories: 

1. Non-parametric methods. Among other tests, this  

category includes the non-parametric Mann-Whitney U-test. 

It can also be used for the detection of changes in means 

(for a discussion of tests of changes in means, see Wieder-

mann and Alexandrowicz, 2007). 

2. Parametric methods. The best known of these meth-

ods is the t-test. It requires the assumption that the data are 

normally distributed and homoscedastic. It allows one to 

identify shifts in means over time. 

3. Curve-fitting methods. These methods capture the 

curvature of a series of measures instead of the mean. A 

regime shift in curvature occurs when the shape parameters 

of a curve cease to describe the curve after a particular 

point in time. 

4. Bayesian analysis. Bayesian methods can also be used 

to estimate parameters of time series. They differ from the 

methods listed under 1 – 3, in that researchers need to 

specify prior distributions. With respect to these distribu-

tions, a posteriori distributions are estimated. Uncertainty 

estimates of change points and parameters after the change 

can be calculated. 

5. Cumulative sum methods. These methods focus on 

cumulative deviations from a mean. After a regime shift, 

cumulative deviations increase when the mean from before 

the shift is still used as reference. 

6. Regression-based methods. Most popular are linear, 

curvilinear, and autoregression methods, including vector- 

autoregression models (originally proposed by Granger, 
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1969; cf. Koller, Carstensen, Wiedermann, & von Eye, 

2016; Molenaar, & Lo, 2016; Rovine, & Walls, 2006). 

These methods are relatives of the methods listed under 3, 

in that regime shifts materialize in change in parameters 

that is observable after a particular point in time. 

7. Sequential methods. This group includes, for instance, 

runs tests or Wald statistics. These are methods that exam-

ine the sequencing of events or the magnitude of deviations 

that is considered admissible over time. 

Here, we add an eighth group of methods, one that has 

received considerable attention in recent years. 

8. Methods based on second- and higher-order statistics. 

This group includes structural and dynamic models as they 

are discussed, for instance, by Hamaker, Grasman, and 

Kamphuis (2010). Here again, regime shifts are indicated 

by changes that invalidate the originally estimated para- 

meters after a particular point in time. 

All of the methods in this list (cf. the list provided by Liu 

et al., 2016) share two characteristics. First, they can be 

used to identify an a priori unknown point in time from 

which on the regime shift can be considered established, 

but they can also be used to estimate separate models for 

before and after hypothesized points in time at which the 

regime changes (henceforth called shift point). Most of 

these methods can be used for the analysis of one or more 

shift points in time. Second, these methods use information 

from the entire series of data points, and they allow one to 

talk about the series of data points as a whole, the series 

before, and the series after the presumed shift point. 

In the present article, we propose a configural method 

that shares both characteristics. However, in addition, this 

method also allows the researcher to make statements about 

individual points in time, before and after the estimated or 

hypothesized shift point. The proposed method is configu-

ral in that it uses elements of Configural Frequency Analy-

sis (CFA; Lienert, 1969; von Eye, 2002; von Eye, & 

Gutiérrez Peña, 2004). In contrast to known methods of 

CFA, however, the proposed method does not use log-linear 

models or a priori probabilities to estimate expected values, 

but assumptions or results from applications of other statis-

tical methods about trends that might exist for the entire 

series or part of it. We call the proposed method regime 

shift CFA. 

The remainder of this article is structured as follows. 

First, we provide a review of CFA and introduce univariate 

regime shift CFA. We then present a data example in which 

we combine regime shift CFA with regression-type meth-

ods (Group 5 of the above list). In this example, we exam-

ine traffic data that describe accident rates before and after 

the implementation of a seat belt law in California. In this 

example, regression methods are used to estimate a trend, 

and CFA is used to identify local deviations from this trend. 

This is followed by an introduction of multivariate regime 

shift CFA. This method allows one to simultaneously con-

sider multiple series of data in the same analysis, with re-

spect to the same shift point. The method is exemplified 

using autobahn traffic death data from Germany. 

 

An overview of CFA 

CFA is a method that allows one to identify local, that is, 

cell-wise deviations from a model that is used to describe 

the frequency distribution in a cross-classification of two or 

more categorical variables. In most cases, the distribution 

in such tables is multinomial or product-multinomial.  

Suppose that the cross-classification is spanned by d varia-

bles. Variable i has ci categories, with i = 1, …, d, and the 

cells are numbered 1, 2,… r,…, R, where 

𝑅 = ∏ 𝑐𝑖

𝑑

𝑖=1

 

is the total number of cells of the cross-classification. Let 

mr be the frequency of observations in cell r. When samp- 

ling is multinomial, Mr is binomially distributed with 

 

𝑃(𝑀𝑟 = 𝑚1, . . . , 𝑀𝑟 = 𝑚𝑟│𝑁, π1, . . . , π𝑅)

=
𝑁!

𝑚1!. . . 𝑚𝑅!
∑

𝑅

𝑖=1

π𝑟
𝑚𝑟 , 

where the Mi indicate the configurations (cells), with i = 

1, …, R, the πi are the binomial cell probabilities, Σπi = 1, 

and Σmr = N the sample size. In both cases, the summation 

goes over all cells of the cross-classification (cf. von Eye, 

& Gutiérrez-Peña, 2004). Now, let 𝑚𝑟
′  be the expected 

frequency of Cell r, under some base model. Then, the null 

hypothesis, 𝐻0: 𝐸[𝑚𝑟] = 𝑚𝑟
′  is rejected either because the 

binomial probability for mr is  

𝐵𝑁,π𝑟
(𝑀𝑟 − 1) ≥ 1 − α 

that is, Cell r constitutes a CFA type, or because 

𝐵𝑁,π𝑟
(𝑚𝑟) ≤ α, 

that is, Cell r constitutes a CFA antitype (for more detail, 

see von Eye, & Gutiérrez Peña, 2004; for more CFA tests, 

see von Eye, 2002). Evidently, CFA needs information to 

generate expected cell frequencies. In virtually all applica-

tions, this information stems from two sources. The first 

source is the observed frequency distribution. The second 

source is given by the model that is used to estimate the 

expected cell frequencies (cf. von Eye, 2004). As was indi-

cated above, most of the probability models used for CFA 

are log-linear models of the form log m = Xλ, where X is 

the design matrix and λ is the parameter vector. Sampling 

for these models is binomial or multinomial, and the  

models specify the effects considered in a particular CFA. 

Alternatively, a priori probabilities can be used. 

CFA and regime shifting 

In the present context, we propose a CFA model that dif-

fers from the ones discussed in the literature thus far in one 
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major respect. Specifically, the model uses neither log-  

linear modeling nor a priori probabilities. Instead, a func-

tion is specified that describes ordered data. This function 

describes the data of either the entire series or a segment of 

this series. This function is used to estimate the expected 

frequencies of the series of observations. The CFA model 

that is proposed can be applied to both single and multiple 

variables that are observed over time. 

Thus far, almost all CFA models required that two or 

more variables be crossed. The only exception to this rule is 

constituted by unidimensional CFA in which univariate 

time series were compared with expectations of stability 

(see Ch. 9.7 in von Eye, 2002); that is, the model used was 

an intercept-only model. In the following sections, we de-

scribe regime shift CFA from an algorithmic perspective. 

Let 𝑀𝑟 = 𝑓(𝑥) be the function that describes the rela-

tion of the observed series of frequencies to time. There are 

no limits to the selection of this function, except those that 

are natural for frequency data. For example, functions must 

be avoided that estimate negative frequencies, frequencies 

larger than the sample size, frequencies for scores outside 

the range of the scale, or functions that impose characteris-

tics on the scale of X that are not compatible with the scale 

level of X. 

Under most conditions, for example in unidimensional 

CFA, the parameters of these functions are estimated for 

the entire range of X. In contrast, in regime shift CFA, 

functions are estimated just for the range that ends (and 

begins) at the shift point. In other words, a function is esti-

mated for a segment of the data. For the following segment, 

a different function may apply, or no function is estimated 

at all. Therefore, the functions that we use in regime shift 

CFA can be given by 𝑀𝑟 = 𝑓(𝑥)│𝑟 ≤ 𝑠, where s is the 

shift point on X. 

For the following considerations, we require that this 

function describe the data well, all the way to the shift point, 

s. This point can either be estimated based on the data (cf. 

Zhang & Siegmund, 2007; von Eye, & Schuster, 1998), or 

it is given based on theory, or by some event. The CFA- 

specific element of regime shift detection is that the func-

tion does not necessarily describe the data well after the 

regime shift point. That is, the function that describes the 

data well up until s might fail to represent the data after s, 

and CFA types or antitypes may emerge after s. These are 

defined with respect to the function that describes the sec-

tion of the data before s. They indicate where exactly in the 

series of observations the function from before s does not 

apply any more, and the direction in which the deviation 

goes (this is the definition of CFA types and antitypes). In 

the following section, we present a data example, from 

traffic statistics. 

Data example 

In this section, we present a data example from traffic 

statistics. This example may seem a little radical. We re-

frain, however, from taking sides or from proposing any 

changes in traffic laws. We just discuss data. 

Data Example: Brock Yates’ death rates and seat belt 

statistics. In 2001, Yates published, in the magazine Car 

and Driver, an article about death rates in car accidents 

before and after seat belts were required in California. The 

author concluded that, after seat belts were required in  

California, “… the death rates should have trended down-

ward following the seat belt law implemented in 1986. But, 

in fact, the rate trended upward ...” (Yates, 2001, p. 3). The 

author also reports that, in Tennessee and in Washington 

DC, death rates went upwards as well. 

In the present context, we ask the following, related 

question. Given the downward trend in traffic accident 

death rates in California that was observed before 1986, did 

the enactment of the seat belt law result in a regime shift 

such that this trend was broken? More specifically, one 

would have hoped that the introduction of seat belts would 

have broken the trend such that it accelerated or, in other 

words, that the reduction in traffic accident deaths acceler-

ated. 

To answer this question, we apply regime shift CFA in 

tandem with ordinary least squares (OLS) regression analy-

sis. We proceed in three steps. First, we estimate a function 

that describes the death rates data before 1986. Then, we 

ask whether the same function validly describes the data 

after 1986. Third, we apply the estimates from this function, 

and ask where, in the years after 1986, deviations were 

most pronounced and in which direction they went. For the 

first step, we apply simple, linear regression methods. In 

the second step, we apply piecewise linear regression 

methods. In the third step, we apply regime shift CFA.  

Figure 1 displays the data. The smoothed curves are linear 

OLS approximations for the observed and expected fre-

quencies (to be explained later). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Observed and expected accident frequencies for 

California from 1980 through 1998 (observed frequencies 

from Yates, 2001). 
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Figure 1 shows that the number of deadly traffic acci-

dents in California decreased steadily over the observation 

period, with no visible acceleration or deceleration after 

1986, the year in which seat belts were made mandatory. 

We now ask whether the same linear regression describes 

the data well over the entire observation period, or whether 

the period before 1986 requires a separate regression line. 

To answer the first question, we estimate a simple linear 

regression model in which we regress accident numbers on 

year. Table 1 summarizes results. 

The results in Table 1 show clearly that a single regres-

sion line would be sufficient to describe the development of 

deadly traffic accidents in California for the observation 

period from 1980 through 1998. The coefficient of deter-

mination (R
2
) is 0.940, an exceptionally large value. Still, 

the visual inspection of Figure 1 and the residual plot in 

Figure 2 suggest that the regression residuals increase over 

the range of predicted scores. Therefore, we now estimate 

two piecewise linear regression models (see von Eye, & 

Schuster, 1998). These models split the regression line at a 

particular point on X in two, and separate parameters are 

estimated for the sections before and after this point. The 

point can be either given by the data analyst or estimated, 

thus optimizing fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Residual plot of the OLS regression in Figure 1. 

 

In the first run, we set 1986 as the shift point. Piecewise 

regression results are summarized in Table 2. Regression is 

linear and estimation was performed under least squares. In 

the Appendix, we present the SYSTAT code for this run. 

 

Table 1. Regressing Number of accidents on Year. 

Regression 

Coefficients 
Coefficient Standard Error 

Standardized 

Coefficient 
t p-value 

Constant 11,914.767 629.667 - - - 

Year -108.301 7.065 -0.970 -15.329 <0.001 

 
 
Table 2. Piecewise regression of Number of accidents on Year, with 1986 set as shift point. 

Parameter Estimate 

Asymptotic 

Standard Error 

(ASE) 

Parameter/ 

ASE 

Wald 95% Confidence Interval 

Lower Upper 

Intercept 14,157.816 1,944.127 7.282 9,988.078 18,327.553 

Year before 1986 -135.410 23.331 -5.804 -185.451 -85.370 

Year after 1986 39.687 32.603 1.217 -30.240 109.615 

 
 
Table 3. Piecewise regression of Number of accidents on Year; shift point is estimated. 

Parameter Estimate ASE Parameter/ASE 
Wald 95% Confidence Interval 

Lower Upper 

Intercept 11,895.115 . . . . 

Year before 1990 -106.411 53.493 -1.989 -220.429 7.606 

Year after 1990 -1.889 60.542 -0.031 -130.932 127.153 

shift point 10.401 . . . . 
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The results in Table 2 support the results from Table 1 

and our conclusion from visual inspection of the data. The 

regression parameter for the time period after 1986 fails to 

be significant. This suggests that linear regression for the 

development of accidents after 1986 is no different than the 

regression before this point in time. The overall R
2
 for this 

model is 0.946, only minimally better than for the model of 

the entire data set. 

One reason why the improvement is only minimal might 

be that drivers respond to the new seat belt law only after 

some adaptation period, that is, not immediately (enforcing 

the law several months after enacting it may have played a 

role; see Cohen & Einav, 2003). Therefore, we now re- 

estimate the piecewise regression model, but we estimate 

the possible shift point instead of setting it to 1986. Results 

of this run are summarized in Table 3, and the SYSTAT 

code appears in the Appendix. As in the first piecewise 

regression run, we opted for linear regression and least 

squares estimation. 

The overall R
2
 for this model is 0.946 again, no better 

than for regression of the entire data set. In this model, the 

regression parameter for neither observation period is sig-

nificant. The estimated shift point is 10.4. This corresponds 

to about Year 1991 (10.4 is after the tenth year in the ob-

servation period, that is, after 1990), and points to a possi-

bly long delay in drivers’ responses to the 1986 seat belt 

law. 

Considering the extremely high R
2
 values, one might be 

tempted to conclude that the introduction of the seat belt 

law in California had no effect on the development of 

deadly road accidents. If this is the conclusion, one won-

ders how Yates would justify his statement that “the rate 

trended upward ...” (2001, p. 3). To illuminate this issue, 

we now apply configural regime shift analysis. 

The question we strive to answer with regime switch 

CFA concerns the development of numbers of deadly traffic 

accidents before and after the seat belt law was enacted. If 

there is no regime shift, the decrease in death toll continues 

unchanged after 1986. Regime shift CFA was performed as 

follows. First, we calculated the average decrease from the 

data for the years 1980 through 1986. This number was 180. 

Using this number, we, then, calculated the expected num-

ber of fatal road accidents for all observations, that is, for 

the entire series of frequencies, after 1980; and the z-scores 

for the differences between the observed and the expected 

numbers of deadly traffic accidents. A total of 17 compari-

sons was made. The Bonferroni-protected significance 

threshold for the nominal α = 0.05 is, for 17 tests, 0.00294. 

The corresponding z-score is 2.7543. Every z > ± 2.7543 

points to a CFA type or an antitype. Table 4 displays the 

results from regime shift CFA. 

 

 

 

Table 4. Regime shift CFA of Yates’ traffic deaths data, assuming that the seat belt law did not change the development of 

the number of deadly traffic accidents. 

Year Observed number of deadly 

accidents 

Rate of decrease Expected number of 

deadly accidents 

z Type/Antitype? 

1980 3,500 - 3,500 -  

1980 3,450 180 3,320 2.256  

1982 2,950 180 3,140 -5.596 A 

1982 2,750 180 2,960 -3.391 A 

1984 2,700 180 2,780 0.480  

1986 2,600 180 2,600 0  

1988 2,550 180 2,420 2.643  

1988 2,350 180 2,240 0.836  

1990 2,250 180 2,060 1.324  

1990 2,100 180 1,880 1.605  

1992 1,700 180 1,700 0  

1992 1,750 180 1,520 1.866  

1994 1,850 180 1,340 4.406 T 

1994 1,750 180 1,160 5.478 T 

1996 1,700 180 980 7.273 T 

1996 1,450 180 800 10.062 T 

1998 1,400 180 620 9.906 T 
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Table 4 shows traffic fatalities from 1980 through 1998, 

in raw numbers. The table shows that, from 1980 through 

1986, there were only two significant deviations from ex-

pectancy. In the year 1982, significantly fewer fatal road 

accidents were observed than expected, for both measures. 

Of central importance to the evaluation of Yates’ statement 

about the increase in the trend in number of deadly traffic 

accidents is the development of number of accidents after 

1986. We can first note that, if Yates’ statement is applied to 

raw frequencies, it does not find support in the data. Every 

year, the raw number of deadly traffic accidents decreased. 

This is in contradiction to Yates’ statement, even if one 

interprets this statement as trend in development instead of 

trend in absolute numbers. 

However, Table 4 suggests that this trend is not stable. In 

the years 1994, 1996, and 1998, significantly more deadly 

traffic accidents were observed than suggested from the 

trend from the years before the seat belt law. In addition, 

the deviation in 1996 is the strongest deviation from ex-

pectancy in the entire table. Evidently, this counters the 

trend in development. It is outside the scope of this article 

to ask questions concerning the causes for this trend and the 

deviations from it.  

Still, we note that, for the first 5 years after the law was 

enacted, the effect of the seat belt law on the number of 

deadly road accidents was, in California and for the obser-

vation period, minimal at best. Over the years, the number 

of traffic victims did go down, simple linear regression 

models can capture this development, and regime shift CFA 

identified the observation points in time where deviations 

from the overall trend are most pronounced. The direction 

of these deviations supports Yates’ trend statement, in part. 

Multivariate regime shift 

In the following sections, we discuss and illustrate multi- 

variate regime shift CFA. Specifically, we consider the case 

in which two or more series of frequency scores are ana-

lyzed that were created over the same observation span. In 

addition, we use the same shift point for both series of 

observations.
1
 

For multivariate regime shift, we can estimate multivari-

ate regression models of the form 𝑌 = 𝑋𝐵 + 𝐸 where Y is 

the n x s matrix of s series of n frequency scores, X is the 

design matrix, B is the vector of m + 1 regression parame-

ters, and E is the n x s matrix of regression residuals. This 

model can be applied to the entire series, to the series be-

fore the shift point, and to the series after the shift point. 

                                                             
 
1
 Here and, as we assume, in most applications, the same shift 

point is implemented for the multiple observed series. However, 

there may be reasons why shift points differ over the multiple 

series. 

The usual constraints apply. For example, n must be larger 

than s. 

Similarly, when log-linear modeling is employed for the 

estimation of expected cell frequencies, the model 

log 𝑚 =  𝜆 + 𝜆𝑆 +  𝜆𝑅 +  𝜆𝑆𝑥𝑅 can be used, where m indi-

cates the model frequencies, R indicates the observation 

points and S indicates the series of scores. Assuming no 

time-related change of frequencies, the interaction term is 

omitted. Covariates and special contrasts can be incorpo-

rated in this model. 

Data Example 

In the following section, we illustrate multivariate con-

figural regime shift analysis using a real-world data set. 

The data, downloaded from the web site of the Deutscher 

Verkehrssicherheitsrat (2019), describe the development of 

fatal traffic accidents (D) and injuries in traffic accidents (I) 

on German highways (autobahns) from 1992 through 2017 

(Y). For each year, the number of occurrences is reported. 

Table 8 below displays the year by type of event 26 × 2 

frequency table. The table clearly suggests that the number 

of traffic deaths decreases over the observation period, and 

so does the number of injuries, but less evenly. 

We analyze these data in four ways. First, we perform 

standard multivariate regression analysis of D and I on Y, 

the predictor. This analysis is used to answer the question 

whether there is a systematic, linear change in occurrence 

rates of fatal traffic accidents and injuries in traffic acci-

dents over the observation period. Second, we perform 

piecewise regression separately for D and I. The year 2007 

is used as shift point. The reason for the selection of this 

point is that, in 2007, the blood alcohol level was lowered 

in Germany above which driving under the influence is 

punishable. These two analyses are used to answer the 

questions of whether this new law changed the general 

trend to the better, that is, whether traffic deaths and inju-

ries decreased in numbers even more than before, and 

whether there are deviations from these trends. 

The two regression analyses are followed by one 

log-linear (Agresti, 2007; von Eye, & Mun, 2013) and one 

configural analysis (von Eye, 2002; von Eye, & Gutiérrez 

Peña, 2004). The log-linear analysis is performed to answer 

the question whether, in the 26 × 2 cross-tabulation of type 

of event and year, the independence model can be retained. 

The configural analysis is performed to identify those years 

in which particularly strong deviations are observed when a 

base model is used in which expected cell frequencies are 

estimated separately for the periods before and after the 

shift point, the year 2007. 

Regression analyses. In the multivariate regression mod-

el D and I were the dependent variables, and Y the inde-

pendent variable. The F-tests for this model are given in 

Table 5. Table 5 shows that both dependent variables, D 

and I, are strongly dependent on Y. This suggests that, 
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over the observation period, systematic change occurs 

that can be captured by linear regression analysis. The 

adjusted squared multiple correlations (R
2
 = 0.943 for D 

and R
2
 = 0.675 for I) show that these relations are strong, 

and that they are slightly stronger for D than for I. The 

Wilks Lambda = 0.048 (F2, 23 = 229.881: p < 0.01) indi-

cates that the regression model, overall, explains 95.2% 

of the variance of the dependent measures. 

 

Table 5. Multivariate regression with D and I as the de-

pendent and Y the independent variables. 

Source Type III SS df Mean Squares F p 

DEATHS 1,640,001... 1 1,640,001... 414.634 <.001 

Error 94,927.218 24 3,955.301    

INJ 4.566E+008 1 4.566E+008 52.805 <.001 

Error 2.075E+008 24 8,647,543...    

 

Figure 3 displays the regression slopes. The figure sug-

gests that, for injuries, the shift point of 2007 may have led 

to a regime shift, but not for the development of traffic 

deaths on German autobahns. 

 

Figure 3. Regression of Traffic Death and Injury Rates on 

Time. 

 

Considering that accident counts come with rather small 

errors, we hypothesize that, maybe, even more variance can 

be explained by more detailed analysis. To explore this 

hypothesis, we first perform piecewise regressions sepa-

rately on both dependent variables, D and I. As was ex-

plained above, the shift point was set to the year 2007. 

Table 6 displays the estimated parameters for D. 

Of the three parameters in Table 6, B0 is the constant of 

the model, B1 is the slope parameter for the period before 

2007, and B2 is the slope parameter for the period after 

2006. The table suggests that both slope parameters are 

significant. In addition, the model explains a large portion 

of the variance of D (mean-corrected R
2
 = 0.960, a slight 

improvement over the multivariate model). Figure 4 dis-

plays the slopes of this piecewise regression run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Piecewise regression of traffic Deaths (shift point 

is 2007). 

 

 

 

 

 

 

 

Table 6. Piecewise regression for autobahn accident deaths (D; shift point is the year 2007). 

Parameter Estimate 
Asymptotic standard 

error (ASE) 

Parameter/A

SE 

Wald 95% Confidence Interval 

Lower Upper 

B0 80,622.293 5,171.307 15.590 69,924.629 91,319.957 

B1 -39.889 2.585 -15.430 -45.237 -34.541 

B2 17.920 6.032 2.971 5.443 30.398 
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Figure 4 sheds more light on the results of the piecewise 

regression. For the period before the shift point, we observe 

a steady decline in fatal traffic accident rates on German 

autobahns. After the enactment of the new alcohol limit 

law, this decline seems to level off. Discrepancies between 

observed frequencies and the regression line are small 

throughout. Still, we conclude that, to do justice to the 

effects of the change in law, more detailed analysis may be 

needed. 

Before performing this analysis, we examine the results 

for injuries in autobahn accidents. Table 7 presents the 

results of the corresponding piecewise regression analysis 

for I. As for D, the shift point was set to 2007 again. 

Table 7 suggests that both of the parameters of interest 

are significant. The mean-corrected R
2
 is 0.813, a clear 

improvement over the multivariate model above. Although 

high, this value suggests that there may be variance that, in 

more detailed analyses, can be explained. Figure 5 displays 

the slopes of this piecewise regression run. 

 

 

Figure 5. Piecewise regression of Injuries in traffic (shift 

point is 2007). 

 

Figure 5 suggests that, for the period before the new 

driving under the influence law was enacted, there is a 

steady decline in injuries in autobahn traffic accidents. 

After that juncture, this trend is reversed. The number of 

injuries seems to increase. 

Log-linear and configural analyses. Considering that we 

here analyze frequency data, we can estimate log-linear 

models. Observed and expected frequencies for accident 

deaths and injuries are summarized in Figure 6. The first 

model is a base model that can be used for purposes of 

obtaining an overview and comparison. The model we 

estimate is the log-linear main effect model. Specifically, 

we estimate the model log 𝑚 𝜆 + 𝜆𝐷 + 𝜆𝐼 , where m are 

the model frequencies, and λ
D
 and λ

I
 are the model main 

effect parameters. Table 8 and Figure 6 display the ob-

served and the expected cell frequencies of the 26 × 2 

cross-tabulation of year and type of event. 

The log-linear main effect model fails to describe the 

frequency distribution of the 26 × 2 cross-tabulation of year 

and type of event. We obtain the Pearson Chi-square of 

1,076.279 (df = 25, p < 0.01) and the likelihood ratio 

chi-square of 1,115.364 (df = 25, p < 0.01). Based on these 

values, we reject the model and ask whether a regime shift 

at the year 2007 allows us to explain the data. 

Configural analysis. We now perform a more detailed 

analysis of the cross-classification in Table 8. First, we 

estimate a log-linear main effect model that consists of two 

elements. Separate parameters will be estimated for the 

period that ends at the year 2006, and the period that begins 

in 2007. Considering that the piecewise regression runs 

resulted in improved model fit, we expect the two-part 

log-linear main effect models to result in smaller residuals 

than the one from the overall model in Table 8. The model 

we estimate is 

 

log 𝑚 =  𝜆 +  𝜆𝑌𝑒𝑎𝑟<2007 +  𝜆𝐸𝑣𝑒𝑛𝑡 Ι 𝑌𝑒𝑎𝑟<2007

+  𝜆𝑌𝑒𝑎𝑟>2006 +  𝜆𝐸𝑣𝑒𝑛𝑡 Ι 𝑌𝑒𝑎𝑟>2006, 
 

Second, when these log-linear models still suggest sig-

nificant model-data discrepancies, relations between year 

of observation and type of accident must exist. However, 

instead of modeling these relations, we perform a configu-

ral analysis to identify the years with the biggest change 

and, thus, regime shift. Table 9 and Figure 6 display the 

results of the two-element log-linear model. 

The two-element model with separate parameter estima-

tion for the periods before 2007 and after 2006 does not 

describe the frequency distribution well either. There are 

large standardized residuals. Relations between year and 

type of accident must exist. We now ask where the dis-

crepancies from the two-element base model and the data 

are largest and whether they display an interpretable pat-

tern. 

Table 9 will now be analyzed using configural frequency 

analysis (CFA; Lienert, & Krauth, 1975; von Eye, & 

Gutiérrez Peña, 2004). CFA allows one to identify those 

patterns that contradict a base model. Instead of consider-

ing a base model simply rejected, these patterns are inter-

preted with respect to the characteristics of the base model 

and a priori hypotheses (for more detail on CFA base mod-

els and significance testing in CFA, see von Eye, 2004). 

In the present example, the standardized residuals in the 

last two columns in Table 9 are examined with reference to 

the limits posed by a Holland-Copenhaver-protected sig-

nificance threshold (Holland & Copenhaver, 1987). For a 

nominal significance threshold α, the protected threshold αi 

is, for the ith out of r tests on the same sample, 

 

 

 

 
α i= 1− (1− α )

1

r− i+1
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where the tail probabilities of the individual tests are ar-

ranged in ascending order. The Holland-Copenhaver pro-

cedure is more powerful than the often-used Bonferroni 

procedure. In the present analysis, we select the nominal α 

= 0.05. The first protected threshold is α1 = 0.00197.  

Inspecting the residuals in Table 9, we notice that they 

exhibit two interesting characteristics. First, not a single 

residual in the injuries list exceeds the protected limits (see 

also Figure 6, right panel). The base model can, therefore, 

be retained in the domain of injuries. Second, and in con-

trast, there are extreme discrepancies in the fatal autobahn 

accident list. 

Specifically, in the period before the new alcohol law, 

there are eight significant discrepancies. Four of these are 

located in the first half of this period, the other four in the 

second half. Interestingly, each of the first four constitutes a 

CFA type. That is, more cases were observed than expected. 

Each of the second four constitutes a CFA antitype. That is, 

fewer cases were observed than expected. We conclude that, 

in the space of autobahn accidents that are either fatal or 

result in person injuries, fatal injuries decrease in number 

more rapidly than expected under the assumption of inde-

pendence of the first time period and type of event. 

Looking at the development of type of event after en-

actment of the new alcohol law, a similar picture emerges. 

There are six CFA types and antitypes. The first three of 

these are observed in the first half of this period, and the 

second three in the second half. As before, the first three 

discrepancies are all CFA types, and the second three are all 

CFA antitypes. After enactment of the new law, the number 

of deadly autobahn accidents thus first increased and then 

decreased faster than expected under the assumption of 

independence of the second time period and type of event. 

From the perspective of regime shift analysis, this sug-

gests that, under consideration of the main effects of the 

observation points in time, there is no regime shift in auto-

bahn accident injuries. In contrast, there is a regime shift in 

the development of fatal autobahn accident numbers. Spe-

cifically, these numbers discontinue their smooth decline. 

Instead, the resume their development at a level signifi-

cantly higher than expected, and then decline at a rate that 

is, toward the end of the observation period, more rapid 

than expected. 

On first look, this result could be viewed as contradicting 

the data table and regression results above. However,  

differences between the models that were estimated in the 

analyses of the accident data can be used to explain the two 

sets of results. In the regression models, separate slopes are 

estimated for the two series of data that, in a least squares 

sense, minimize the differences between observed and 

expected accident frequencies (see Figures 4 and 5).   

Distortions and biases can occur, mostly because of the 

correlation between the two series of autobahn accidents. In 

the present log-linear main effect models, the expected 

frequencies are estimated such that the raw differences 

between the observed and the expected values are about the 

same, over the years and for each series of frequencies. 

This applies to both the sections before and after the shift 

point (see Table 9). Considering that the numbers of fatal 

autobahn accidents are smaller than the numbers of auto-

bahn accidents with injuries, the same difference results in 

larger standardized deviates, as can be seen in Table 9. 

This result is both model-specific and data-specific. This 

can be illustrated by simply dividing the numbers of severe 

injuries by 10. The resulting main effect models will still 

not fit, but after this transformation the raw differences 

between the observed and the expected cell frequencies are 

still about equal, but now the larger standardized residuals 

emerge in the column for injuries instead of the column for 

deaths. 

 

 

Figure 6. Observed (solid lines) and expected frequencies of accident deaths and injuries based on log-linear main effects 

(dotted lines) and piecewise models (dashed lines). The shift point for the piecewise models is 2007. 
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Table 7. Piecewise regression for autobahn accident injuries (I; shift point is the year 2007). 

Parameter Estimate ASE Parameter/ASE 

Wald 95% Confidence  

Interval 

Lower Upper 

B0 1,874,627... 220,119.400 8.516 1,419,275... 2,329,978 

B1 -918.789    110.038 -8.350 -1,146.420 -691.158 

B2 1,007.697    256.741 3.925 476.589 1,538.806 

 

 

 

Table 8. Observed and expected cell frequencies of the log-linear main effect model of the 26 x 2 cross-tabulation of year 

and type of event. 

YEAR 

Event Event Event 

Death Injury Death Injury Death Injury 

Observed Expected Standardized Residuals 

1992 1,201 41,586 840.909 41,946.091 12.418 -1.758 

1993 1,109 41,322 833.912 41,597.088 9.526 -1.349 

1994 1,105 42,142 849.949 42,397.051 8.748 -1.239 

1995 978 41,010 825.206 41,162.794 5.319 -0.753 

1996 1,020 39,796 802.172 40,013.828 7.691 -1.089 

1997 933 39,332 791.343 39,473.657 5.036 -0.713 

1998 803 38,619 774.775 38,647.225 1.014 -0.144 

1999 911 41,910 841.577 41,979.423 2.393 -0.339 

2000 907 40,198 807.852 40,297.148 3.488 -0.494 

2001 770 41,069 822.277 41,016.723 -1.823 0.258 

2002 857 38,625 775.954 38,706.046 2.909 -0.412 

2003 811 35,250 708.720 35,352.280 3.842 -0.544 

2004 694 33,027 662.731 33,058.269 1.215 -0.172 

2005 662 32,366 649.111 32,378.889 0.506 -0.072 

2006 645 31,437 630.519 31,451.481 0.577 -0.082 

2007 602 31,340 627.768 31,314.232 -1.028 0.146 

2008 495 28,280 565.526 28,209.474 -2.966 0.420 

2009 475 28,398 567.452 28,305.548 -3.881 0.550 

2010 430 28,873 575.903 28,727.097 -6.080 0.861 

2011 453 28,681 572.581 28,561.419 -4.997 0.708 

2012 387 27,948 556.878 27,778.122 -7.199 1.019 

2013 428 29,202 582.329 29,047.671 -6.395 0.906 

2014 375 30,770 612.104 30,532.896 -9.584 1.357 

2015 414 32,374 644.395 32,143.605 -9.076 1.285 

2016 393 33,945 674.857 33,663.143 -10.850 1.536 

2017 409 33,692 670.200 33,430.800 -10.090 1.429 
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Table 9. Two-element log-linear model of the data in Table 8 (separate parameters estimated for the periods before 2007 

and after 2006). 

YEAR 

Event Event Event 

Death Injury Death Injury Death Injury 

 Observed Expected Standardized Residuals 

1992 1201 41586 970.407 41816.593 7.402 T
a
 -1.128  

1993 1109 41322 962.333 41468.667 4.728 T -0.720  

1994 1105 42142 980.839 42266.161 3.964 T -0.604  

1995 978 41010 952.285 41035.715 0.833  -0.127  

1996 1020 39796 925.704 39890.296 3.099 T -0.472  

1997 933 39332 913.208 39351.792 0.655  -0.100  

1998 803 38619 894.089 38527.911 -3.046  0.464  

1999 911 41910 971.178 41849.822 -1.931  0.294  

2000 907 40198 932.259 40172.741 -0.827  0.126  

2001 770 41069 948.906 40890.094 -5.808 A 0.885  

2002 857 38625 895.449 38586.551 -1.285  0.196  

2003 811 35250 817.861 35243.139 -0.240  0.037  

2004 694 33027 764.790 32956.210 -2.560 A 0.390  

2005 662 32366 749.073 32278.927 -3.181 A 0.485  

2006 645 31437 727.618 31354.382 -3.063 A 0.467  

2007 602 31340 458.885 31483.115 6.681 T -0.807  

2008 495 28280 413.387 28361.613 4.014 T -0.485  

2009 475 28398 414.795 28458.205 2.956 T -0.357  

2010 430 28873 420.972 28882.028 0.440  -0.053  

2011 453 28681 418.544 28715.456 1.684  -0.203  

2012 387 27948 407.066 27927.934 -0.995  0.120  

2013 428 29202 425.670 29204.330 0.113  -0.014  

2014 375 30770 447.435 30697.565 -3.424 A 0.413  

2015 414 32374 471.038 32316.962 -2.628  0.317  

2016 393 33945 493.306 33844.694 -4.516 A 0.545  

2017 409 33692 489.901 33611.099 -3.655 A 0.441  
a
 T indicates a CFA type and A indicates a CFA antitype 

 

 

Discussion 

In this article, we present a hybrid, configural method for 

the analysis of regime shifts. In contrast to existing meth-

ods, this method does not focus on parameters that describe 

the developmental curve of observations before the shift 

point, after it, or the entire curve. This method focuses on 

local deviations from a trend model. Thus, the proposed 

method allows the researcher to identify when exactly, in 

the observed time period, deviations occur, in which direc-

tion they go, and where they are strongest. 

Several extensions of the proposed method can be con-

sidered. First, covariates can be included in the model. In 

the examples with the road accidents, type of vehicle, type 

of road (rural or high way), location of accident (city, out-

side of city), age of driver, weather conditions, and many 

other covariates are meaningful. In European traffic acci-

dent analyses, location of accident and type of vehicle are 

routinely counted. For example, the French journal Le 

Figaro reports on October 18, 2018, that the number of 

traffic deaths increased in raw frequencies in the month 

after the speed limit on rural roads was reduced from 90 to 

80 kilometers/hour, and that this change was the result 

mostly of an increase in motorcycle accident deaths. 

Second, more complex multivariate trends can be con-

sidered. For example, all kinds of accident deaths could be 

counted, including, for instance, accidents in households, at 

work, in sports, or in public transportation. Trend variables 

can be crossed. Models could be devised that represent 

such multivariate trends and shift CFA can be applied to 

detect significant deviations from these trends with respect 

to shift points that are given or derived in a data-driven 

way. 

Third, multiple shift points could be considered. For 

example, in July of 2018, the speed limit for rural roads 

was decreased in France. In February 2019, in response to 

nation-wide protests that were spearheaded by the gilets 

jaunes, this law was softened, and French departments are 

now allowed to set the speed limits on an individual, 

road-specific basis. So, July of 2018 and February of 2019 

could be used as two shift points. Similarly, marriages and 

divorces could be used as two shift points in an investiga-

tion of respondents’ happiness (cf. Lukas, 2007). 
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A fourth domain for which extensions of models and 

their application can be considered concerns the shift point 

variable. Shift points certainly exist on other variables than 

time as well. For example, the characteristics of materials 

change with temperature, or the human skin responds dif-

ferently depending on the amount of sun light it is exposed 

to. To the best of our knowledge, shift points outside of 

time have not been investigated extensively. The methods 

proposed in this article can certainly be used in all of the 

domains discussed in the present context. 

Finally, generalized linear models (GLM) for the analy-

sis of count data could be considered. One of the benefits 

from using GLM approaches is that possible overdispersion 

issues can be taken care of. In the present data example, we 

recalculated the regression models using Poisson and quasi 

Poisson regression. Results were largely unchanged. Simi-

larly, partial least squares regression resulted in almost 

identical residual plots. These results do not necessarily 

generalize to other data situations. 

Whenever new methods are proposed, one can ask 

whether existing methods can answer similar questions. In 

the present context, methods that allow one to identify the 

moment at which a trend has changed are of particular 

interest. One group of such methods is popular in contexts 

of stock trading where changes in trends can have major 

implications for sell/buy decisions. Most popular is 

Sperandeo’s (1993) 3-step method that is propagated as 

being capable of predicting a change in trend in 80% of the 

time. This method requires the following observations: 

1. Drawing a trend line and checking when it is broken 

such that the observed scores cross this line; this line can be 

the line for the regression of observed data points on time, 

parallel-shifted to lie completely above (for downward 

trends) or below (for upward trends) the observed data 

points; when this line is crossed, the trend is broken; 

2. Retest and failure: check whether a stock that has an 

upwards trend exhibits, in its oscillations, increasingly 

higher highs and higher lows (or lower highs and lower 

lows for a downwards trend); when this sequence is inter-

rupted, the trend is broken; 

3. A low falls below the low prior to it (for an upwards 

trend; the inverse for a downward trend); when this is the 

case, the trend is broken. 

This and other methods are certainly interesting and have 

been employed with success. There are clear differences to 

the methods proposed here that suggest that the new meth-

ods can answer different questions than the methods that 

are based on Sperandeo’s approach. Here, we focus on four 

differences. 

The first difference is that, as presented, Sperandeo’s 

methods are descriptive. There is no stochastic element that 

would allow the scholar (or the trader) to come up with a 

probability statement as to whether one point is lower than 

some other, or whether a line has indeed been crossed. In 

the methods proposed here, type and antitype decisions are, 

in contrast, decisions based on statistical inference. 

The second difference is that Sperandeo’s methods allow 

one to follow the ongoing development of a trend. This can 

certainly be important in stock trading or in psychotherapy. 

The methods proposed here require, in contrast that a com-

plete series be available. Based on this, log-linear or con-

figural models are estimated, one or several shift points are 

determined and the points in time are identified at which 

significant deviations from the two or more trends can be 

observed. It can be discussed whether the methods pro-

posed here can also be used to track ongoing developments. 

If this is considered, it may be necessary to re-estimate the 

models whenever a new data point becomes available. 

The third difference is that the methods proposed here 

are not restricted at all to just one shift point. This was 

discussed in the context of the second data example, above, 

where traffic rules changed twice. In contrast, Sperandeo’s 

methods focus on identifying the one shift point that may 

be decisive for trading decisions or decisions on the course 

of a therapeutic intervention. 

Finally, the fourth difference is that, in contrast to 

Sperandeo’s methods, the methods proposed here can be 

employed in multivariate contexts, covariates can be con-

sidered, moderator analysis (group comparisons) is con-

ceivable, and pre-set shift points can be considered. We 

conclude that the methods proposed here and Sperandeo’s 

methods serve purposes that overlap only in part. 

In sum, shift point analysis as proposed here is a prom-

ising approach when abrupt events occur that can lead to 

abrupt changes that are not meaningfully captured by 

smooth curves. 
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Appendix 
 

SYSTAT code for piecewise regression models 

 

Model 1: shift point is set to 1986 

NONLIN 

>MODEL ACCIDENTS =b0+b1*YEAR 

+b2*(year-1986)*(year>1986) 

>ESTIMATE 

 

Model 2: shift point, Sh, is estimated 

NONLIN 

>MODEL ACCIDENTS =b0+b1*YEAR 

+b2*(year-Sh)*(year>Sh) 

>ESTIMATE 

 


