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Abstract 

Background/Objectives: Invariance of intelligence across age is often assumed but infrequently explicitly tested. Horn 

and McArdle (1992) tested measurement invariance of intelligence, providing adequate model fit but might not consider all 

relevant aspects like subtest differences. The goal of the current paper is to explore age-related invariance of the WAIS-R 

using an alternative model that allows direct tests of age on WAIS-R subtests. 

Methods: Cross-sectional data on 940 participants aged 16-75 from the WAIS-R normative values were used. Subtests 

examined were information, comprehension, similarities, vocabulary, picture completion, block design, picture arrange-

ment, and object assembly. The two intelligence factors considered were fluid and crystallized intelligence. Self-reported 

ages were divided into young (16-22, n = 300), adult (29-39, n = 275), middle (40-60, n = 205), and older (61-75, n = 160) 

adult groups. 

Results: Partial metric invariance holds in the WAIS-R. Although most subtests reflected fluid and crystalized intelligence 

similarly across different ages, invariance did not hold for block design on fluid intelligence and picture arrangement on 

crystallized intelligence for older adults. Additionally, there was evidence of a correlated residual between information and 

vocabulary for the young adults only. This partial metric invariance model yielded acceptable model fit compared to   

previously-proposed invariance models of Horn and McArdle (1992). 

Conclusion: Almost complete metric invariance holds for a two-factor model of intelligence. Most subtests were invariant 

across age groups, suggesting little evidence for age-related bias in the WAIS-R. However, we did find unique relationships 

between two subtests and intelligence. Future studies should examine age-related differences in subtests when testing 

measurement invariance in intelligence. 

Keywords: WAIS-R, Measurement Invariance, Intelligence, Cognitive Aging. 

 

Introduction 

Understanding how intelligence differs or changes across 

the lifespan is a question developmental researchers have 

explored for decades (e.g., Schaie, Maitland, Willis, & 

Intrieri, 1998). Intelligence is frequently conceptualized as 

two factors - fluid intelligence, or skills involving adapta-

tion or integration of novel information, and crystallized 

intelligence, or acquired knowledge (Cattell, 1963). When 

examining developmental differences or changes in intelli-

gence, it is critical to establish measurement invariance, or 

http://www.person-research.org/


Journal for Person-Oriented Research, 2017, 3(2), 86-100 

 

87 
 

the assumption that measures function in the same way 

across varied conditions, e.g., age, so that the measures are 

not systematically biased across the varied conditions 

(Millsap, 2011; Sass, 2011). Recently, Wicherts (2016)  

argued that failure to establish measurement invariance is 

problematic because disparities could be perpetuated by 

imposing universal, normative values on groups outside of 

those used to establish the normative values.  

Unfortunately, measurement invariance in intelligence 

testing is assumed but infrequently examined. When 

age-related invariance is examined in adults, it generally 

remains stable except for young and older adults (Schaie et 

al., 1998). Previous work by Horn and McArdle (1992) 

examined age-related invariance in a common intelligence 

battery, the Wechsler Adult Intelligence Scale-Revised 

(WAIS-R; Wechsler, 1981). In brief, they found invariance 

held across adults aged 16-75 when assuming a two-factor 

complex model of intelligence but did not hold when using 

alternative intelligence models like a single-factor g or a 

two-factor simple structure model (see Figure 1 for their 

final model). In this model, alternative fit indices such as 

RMSEA, standardized RMR, CFI, and NNFI were    

acceptable, but the  values were significant, suggesting 

significant omnibus model misfit. This may be due to a 

large sample size (Brown, 2006), but it suggests alternative 

models may be at least as tenable as the Horn and McArdle 

(1992) model. Adapting their model to relax the assumption 

of pure measurement invariance through examining partial 

measurement invariance may address substantive issues 

(Byrne, Shavelson, & Muthén, 1989). For example, if a 

specific subtest was related to both fluid and crystallized 

intelligence (henceforth Gf and Gc, respectively), it would 

be important to examine if the subtest was as influential to 

both constructs across age. If it was not, this could indicate 

the meaning of the subtest was changed either with, or as a 

result of, age. 

Additionally, Horn and McArdle’s (1992) analytic  

strategy poses some limitations. In their analyses, they 

modeled age to predict the two latent intelligence factors 

(Gf and Gc, or performance in verbal in their manuscript) 

instead of modeling age as a predictor of each subtest. This 

was partly problematic due to how previous studies have 

conceptualized intelligence; not all studies used the same 

two-factor performance and verbal intelligence model 

(Bowden, Weiss, Holdnack, & Lloyd, 2006; Molenaar & 

Borsboom, 2013), so the effect of age on intelligence may 

not be consistent across studies if a two-factor intelligence 

solution was not present. This was also problematic    

because the two latent variables did not obey simple struc-

ture, i.e., subtests did not load onto one latent factor only, 

since the subtests could be related to both intelligence  

factors. Although each subtest was allowed cross-loadings, 

some subtests may have had small but statistically signifi-

cant cross-loadings. For example, if vocabulary (concep- 

tualized as a measure of Gc) was allowed to cross-load onto 

the Gf factor but has a small loading on it, one would  

expect that it was less sensitive to age-related differences 

compared to a subtest that had a higher loading on the Gf 

factor (e.g., block design). However, this would not neces-

sarily be evident using the method Horn and McArdle 

(1992) proposed. Rather, a person may erroneously assume 

older adults would uniformly perform worse on all of Gf 

subtests, including vocabulary. In reality, the older adults 

likely have similar performance to younger adults on the 

vocabulary subtest. If the factors were used to examine 

age-related differences without considering age-related 

differences in the subtests themselves, some of the factor 

differences may be dampened by less robust subtests.  

Directly testing the subtests also allows more nuanced 

explorations of the age-subtests relationships. For example, 

certain subtests may be related to each other independent of 

verbal or performance scores, and this relationship may 

only appear for certain age groups. That is, there could be 

more intelligence factors than a two-factor solution that 

appears in certain age groups only. Implementing a more 

flexible, partial invariance model could uncover develop-

mentally meaningful differences in the structure of intelli-

gence across age. 

The proposed analytic strategy is novel in its application 

but not in its rationale. Previously, similar models were pro- 

posed to examine substantively-interesting questions such 

as the effect of age on cognitive and non-cognitive factors 

(Allen et al., 2001). As with any analytic strategy, this 

method will answer specific a priori research questions and 

may not be appropriate for all invariance-related research 

questions. Cases where this method would be preferred to 

other invariance-testing methods (e.g., Horn & McArdle, 

1992) would be instances where restricting age to predict 

the factor itself would be unnecessarily restrictive. This 

model, conversely, will allow age to directly predict subtest 

performance and bypass the emphasis of age on the factors 

only. Practically speaking, this tests whether age is associ-

ated with subtest performance within each age grouping. A 

sample research question this strategy could address would 

be, “Within the young adult age group, is performance 

across the eight WAIS-R subtests predicted by age?” If re- 

searchers are interested in within-group variability in sub-

test scores, this method would be appropriate or preferable.   

Lastly, although this model answers substantively   

different research questions, it tests invariance because the 

underlying model building process is the same as previous 

methods (Horn & McArdle, 1992; Meredith, 1993).    

Although this proposed method is not evaluating pure  

measurement invariance because of the direct age-subtest 

loadings, it does allow for exploration of age-related in- 

variance and whether the direct effect of age on intelligence 

subtests are equivalent across age groups. The critical  

differences between this and the Horn and McArdle (1992) 

model are (1) observed age loading on specific subtests 

instead of the latent factor age loading on the intelligence 

factors, and (2) relaxing the assumption of full metric  

invariance. 
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Note. All subtests were allowed to cross-load on both the fluid and crystallized intelligence factors except Information on Gf and Object 

Assembly on Gc. The factor loadings of information on crystallized intelligence (lambda 1,1; see Appendix 1), object assembly on fluid 

intelligence (lambda 8,2; see Appendix 1), and age on the age factor (lambda 9,3; see Appendix 1) remained fixed to 1 for scaling pur-

poses. 

Figure 1. Visual Schematic of the Original Horn and McArdle (1992) Invariance Model. 

 

Goals of Current Paper 

The current study was a short response to Horn and 

McArdle (1992). Using the same WAIS-R normative data, 

the aim of the current study was to test measurement in- 

variance across age groups, accounting for differences in 

intelligence subtests. This was addressed in two ways. First, 

we examined an alternative model that allowed subtests to  

directly load onto age and relaxed assumptions of factor 

loading equality across age. Relaxing the factor loading 

equality constraint allowed for partial measurement invari-

ance evaluation (Byrne et al., 1989). It is important to note 

that this alternative model did not strictly test invariance of 

the WAIS-R but rather evaluated age-related invariance and 

whether the direct effect of age on WAIS-R subtests was 

similar across age groups. The final model was evaluated 

against the original Horn and McArdle (1992) model using 

two metrics, (1) χ
2
 goodness-of-fit, and (2) χ

2
 difference 

tests. The purpose of the evaluations was to examine 

whether model fit using the most conservative fit index and 

ensure the additional parameters did not unnecessarily 

complicate the proposed model compared to existing  

models, respectively. Second, we examined the factor 

means of the final model to examine whether mean    

performance on the factors differed as a function of age. 

Additional model features, such as within-group variability, 

were also examined. 

Method 

Sample 

 

Data were used from the statistics provided by Horn and 

McArdle (1992). The data used were collected between 

1976 and 1980 by the Psychological Corporation for the 

WAIS-R (Wechsler, 1981), a pencil-and-paper test designed 

to assess intelligence in adults 16 and older. Additional 

details can be found in the WAIS-R manual.  

There were data available for 940 individuals; 

self-reported age at the time of assessment was the only 

demographic covariate of interest for the current analyses. 

The sample was divided into four age groups, abbreviated 

young (16-22, n = 300), adult (29-39, n = 275), middle 

(40-60, n = 205), and older (61-75, n = 160). In the original 

Horn and McArdle article (1992), the analytic sample was a 

random selection of 50% of the full sample.  

Eight of the 11 WAIS-R subtests were used for these 

analyses: information, comprehension, similarities, voca- 

bulary, picture completion, block design, picture arrange-

ment, and object assembly. To keep continuity in naming 

conventions between the current paper and the larger body 

of literature, the two factors were Gf and Gc, representing 

the performance and verbal factors in the original (Horn & 

McArdle, 1992) text, respectively. The raw-score means 

and standard deviations were used in these analyses. Scores 

represented the percent correct.  
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Three WAIS-R variables were omitted in the original and 

the current analyses. These subtests were arithmetic, 

memory span, and digit symbol substitution. In the original 

analyses, these were omitted because work suggested that 

these subtests were narrow or complex indicators of factors 

not well sampled and could not be sampled in the original 

paper (Horn & McArdle, 1992). Other work found these 

subtests may represent a factor of freedom from distracti-

bility (Burton, Ryan, Paolo, & Mittenberg, 1994; Gignac, 

2005; Leckliter, Matarazzo, & Silverstein, 1986; Waller & 

Waldman, 1990), but the three-factor model was not con-

sidered here in order to allow direct comparison to the 

model proposed by Horn and McArdle (1992). 

 

Analytic Strategy 

  

To assess invariance, the current analyses followed 

Meredith’s (Meredith, 1993) invariance testing. Importantly, 

these series of invariance tests modified traditional invari-

ance by including age both as a grouping variable and as a 

factor. That is, configural and metric invariance were tested 

in the Gf and Gc factors across age groups, but these equa- 

lity constraints were not imposed on the age factor. The age 

factor was used for interpreting within-group effects of age 

on subtest performance. Implications of this model inter-

pretation will be discussed. 

Configural invariance was tested by examining if the 

same pattern of freed and fixed parameters held across the 

four age groups for the Gf and Gc factors. Next, metric 

invariance (i.e., weak factorial invariance) was tested by 

examining if the factor loadings were equivalent across 

groups for the Gf and Gc factors. Using modification indi-

ces, parameters were allowed to vary across groups until 

acceptable model fit was obtained. Similarly, non-signifi- 

cant values were constrained to 0 in a modified stepwise 

fashion; to reduce the number of iterations, all values with 

t-values less than 1.5 were constrained to 0 and analyses 

were rerun to determine if any more non-significant path-

ways needed to be pruned. A value of t = 1.5 was chosen as 

a conservative value to ensure that significant values were 

kept, as fixing parameters impacts the significance of other 

values. Significance was set at p < .01 for all χ
2
 tests. Crit-

ical values for the RMSEA and standardized RMR were 

≤ .05, and critical values for NNFI and CFI were ≥ .95. 

More detail on critical values can be found in introductory 

texts for confirmatory factor analysis (Brown, 2006). All 

analyses were run using LISREL 8.12 (Jöreskog & Sörbom, 

1988). 

Results 

Configural Invariance Testing 

  

Configural invariance was obtained across the four 

groups, χ
2
 (52) = 75.61, p = .018, demonstrating that the 

pattern of fixed and freed parameters, i.e., allowing each 

subtest to cross-load onto each intelligence factor and age, 

was the same across age groups. The alternative fit indices 

also suggested configural invariance was tenable (RMSEA 

= .022, standardized RMR = .013, NNFI = .99, CFI = 1.00). 

See Figure 2a for a visual schematic of the final model and 

Table 1 for the omnibus fit statistics. 

 

Complete Metric Invariance Testing 

  

First, complete metric invariance was tested. The model 

had poor χ
2 

model fit, χ
2
(88) = 190.94, p < .001, but the 

alternative fit indices generally suggested acceptable model 

fit (RMSEA = .035, NNFI = .97, CFI = .98) except for the 

standardized RMR (standardized RMR = .11). 

Next, vocabularly’s loading on the Gf factor was con-

strained to zero for all groups due to a small factor loading; 

this model had poor χ
2 

model fit, χ
2
 (89) = 190.95, p < .001, 

but the alternative fit indices generally suggested accepta-

ble model fit (RMSEA = .035, standardized RMR = .11, 

NNFI = .97, CFI = .98). The significant χ
2 

may be due to 

the large sample size. Compared to the model without the 

constraint of vocabulary on the Gf factor, this model did 

not yield significant model misfit using χ
2
 difference test-

ing, χ
2 

difference (1), = .01, p = .92. See Figure 2b for a 

visual schematic of the final model and Table 1 for the om-

nibus fit statistics.

 

 

Table 1. Fit Statistics for Final Models. 

 Configural  

Invariance 

Complete  

Metric Invariance 

Partial  

Metric Invariance 

Partial Metric  

Invariance + Means 

df = χ
2
 value 52 = 75.61 89 = 190.95** 106 = 135.69 126 = 250.27* 

RMSEA .02 .04 .02 .06 

Standardized RMR .01 .11 .06 .05 

NNFI .99 .97 .99 .99 

CFI 1.00 .98 .99 .99 

Note. RMSEA = Room Mean Square Error of Approximation; RMR = Root Mean Square Residual; NNFI = Non-Normed 

Fit Index; CFI = Comparative Fit Index. *p < .01, **p < .001. 
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Note. Figure 2a. All subtests were allowed to cross-load on both the fluid and crystallized intelligence factors. The test for configural 

invariance assessed whether the pattern of freed and fixed parameters (i.e., do all WAIS-R subtests load onto both the fluid and intelli-

gence factors for all age groups) was equivalent across all groups. Fit indices indicated configural invariance was met, χ
2
(52) = 75.61, p 

= .018. The factor loadings of information on crystallized intelligence (lambda 1,1; see Appendix 1), object assembly on fluid intelli-

gence (lambda 8,2; see Appendix 1), and age on the age factor (lambda 9,3; see Appendix 1) remained fixed to 1 for scaling purposes. 

Age was also tested as a latent variable, and the model results did not change. 

 

b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Figure 2b: The test for complete metric invariance assessed whether the factor loadings were equivalent across all age groups. Fit 

indices indicated the final model for complete metric invariance was not tenable using the conservative χ
2
 test, χ

2
 (89) = 190.95, p < .001. 

However, alternative fit indices indicated acceptable model fit (RMSEA = .035, standardized RMR = .11, NNFI = .97, CFI = .98).  The 

factor loading of the fluid intelligence factor on information and vocabulary for all ages was fixed to zero, so the pathway was removed. 

Additionally, the factor loading of crystallized intelligence on object assembly for all ages was fixed to zero and were also removed. Be-

cause the factor loading of age on the intelligence subtests was not of interest in this stage, all factor loadings were constrained to be 

equal across age groups. The factor loadings of information on crystallized intelligence (lambda 1,1; see Appendix 1), object assembly on 

fluid intelligence (lambda 8,2; see Appendix 1), and age on the age factor (lambda 9,3; see Appendix 1) remained fixed to 1 for scaling 

purposes. Age was also tested as a latent variable, and the model results did not change. 
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Note. Figure 2c: The test for partial metric invariance assessed whether the factor loadings were mostly equivalent across all age groups. 

In all but three instances, this invariance held. In fluid intelligence, the factor loading on block design (bolded) was smaller in the older 

adult group only (.74 in young, adult, and middle adults vs. .39 in older adults). In crystallized intelligence, the factor loading on pattern 

arrangement (bolded) was smaller in the older adult group only (1.16 in young, adult, and middle adults vs .67 in older adults). Addition-

ally, the correlated residual between information and vocabulary (dashed line) was in the younger adult group only. The factor loading of 

age on the intelligence subtests varied substantially and are described in Figure 6. Fit indices indicated the final model for partial metric 

invariance was tenable, χ
2
 (106) = 135.69, p = .027. The factor loadings of information on crystallized intelligence (lambda 1,1; see Ap-

pendix 1), object assembly on fluid intelligence (lambda 8,2; see Appendix 1), and age on the age factor (lambda 9,3; see Appendix 1) 

remained fixed to 1 for scaling purposes. Age was also tested as a latent variable, and the model results did not change. 

 

Figure 2. Visual Schematic of the Invariance Models. 

 

 

Partial Metric Invariance Testing 

  

To explore partial invariance testing, several pruning and 

parameter adjustment steps (i.e., freed or fixed parameters 

in the lambda matrix) were run. In these steps, lambda  

matrix estimates, or the estimates of the latent factors (i.e., 

Gf, Gc, age) on the WAIS-R subtests, were either set to 

zero, or the equality constraint across age groups was  

removed. These were done in a modified stepwise fashion; 

estimates were set to zero if the t-value was < 1.5. Equality 

constraints were removed if the modification indices sug-

gested that the constraint removal would significantly im-

prove model fit. These steps were done until χ
2
 difference 

tests revealed significant model misfit. After this, correlated  

residuals (i.e., theta-epsilon matrix, or the residual error of 

the WAIS-R subtests) between the information and voca- 

bulary subtests for young adults were allowed as deter-

mined by modification indices. This final model had   

acceptable fit, χ
2
(106) = 135.69, p = .027. The alternative 

fit indices generally supported partial metric invariance 

(RMSEA = .017, standardized RMR = .056, NNFI = .99, 

CFI = .99). Compared to the final model proposed by Horn 

and McArdle (1992), this model provided significantly 

better model fit, χ
2
(6) = 85.07, p < .001. There were no 

differences in model fit when age was treated as an    

observed variable instead of a latent variable. See Figure 2c 

for a visual schematic of the final model and Table 1 for the 

omnibus fit statistics. 

In the final model, Gf was less predictive of block design 

(BD) for older adults than in the younger three groups 

(Figure 3a). Gc was less predictive of pattern assembly (PA) 

for older adults than in the three younger age groups  

(Figure 3b). All other subtests across the two factors were 

invariant, demonstrating the same factor loadings across 

age groups. For both factors, older adults also had higher 

variance compared to the other age groups, demonstrating 

greater variability in the Gf and Gc factors. For example, 

compared to young adults, older adults had a larger Gf  

variance (231.84 vs. 355.24); similarly, compared to young 

adults, older adults had a larger Gc variance (126.11 vs. 

303.00). See Appendix 1 for the final model syntax.  
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Note. IN: Information, CO: Comprehension, SI: Similarities, VO: Vocabulary, PC: Picture Completion, BD: Block Design, PA: Pattern 

Arrangement, OA: Object Assembly 

 

Figure 3. Factor Loadings of Subtests on (a) Fluid and (b) Crystallized Intelligence Factors. 
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Note. The mean differences with respect to the younger adults of adult, middle adult, and older adult age groups. Fluid intelligence was 

stable for the young and adult groups; there was a steep decrease across the two older adult groups. Meanwhile, crystallized intelligence 

increased in adulthood, was mostly maintained in middle adulthood, and decreased in older adulthood. Older adults performed statisti-

cally equivalent to the young adults in the crystallized intelligence factor. 

Figure 4. Mean Latent Score By Age Group. 

 

 

Figure 5. Within-Group Variability on Intelligence Factors. 
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Note. IN: Information, CO: Comprehension, SI: Similarities, VO: Vocabulary, PC: Picture Completion, BD: Block Design, PA: Pattern 

Arrangement, OA: Object Assembly. 

Figure 6. Factor Loadings of WAIS-R Subtests on Age Factor. 

 

 

Means Modeling 

  

When latent means are not explicitly modeled, as was the 

case in the previous models (Figures 2a-2c), they are 

assumed to be zero (Kline, 2011). Latent mean scores were 

added to the final model to compare performance across the 

age groups. The young adult served as the reference group, 

so mean scores represented deviations in mean from the 

young adult group. That is, if a score was negative, the 

mean score of that group was lower than the young adults. 

This final model had poor model fit when using the  

test, χ
2
(126) = 250.27, p < .01, but this was likely due to a 

large sample size (Table 1). The alternative fit indices 

indicated acceptable model fit (RMSEA = .064, 

standardized RMR = .050, NNFI = .99, CFI = .99). In 

comparison to young adults, adults and middle adults had 

higher mean Gc, and older adults had the same Gc mean as 

young adults. In Gf, however, mean scores for young adults 

and adults were the same, and mean scores decreased for 

middle adults and older adults (Figure 4). See Appendix 2 

for the final means model syntax.  

 

Additional Descriptive Features of Final Model  

  

In addition to means testing, this analysis also modeled 

within-group variability for both intelligence factors. In 

both the Gf and Gc factors, there was higher within-group 

variability for the older adults compared to the other adult 

groups. This was especially true for Gf. This demonstrates 

that within the older adult group, Gf scores were more 

varied compared to other age groups; this is also true but 

less dramatic in Gc (Figure 5).  

Lastly, this analysis modeled age-related differences on 

subtest performance within each age group (Figure 6). For 

young adults, there were higher factor loadings of subtests 

on age, particularly those associated more strongly with Gc. 

In comparison, adults, middle, and older adults did not have 

strong loadings. This indicated that for young adults, higher 

age was associated with better performance on all subtests; 

this association was more pronounced in measures more 

associated with Gc. 

Discussion 

Previous work, notably by Horn and McArdle (1992), 

among others (O'Grady, 1983; Parker, 1983; Silverstein, 

1985), have attempted to understand the factor structure 

and age-related invariance of intelligence using the 

WAIS-R. The major aim of this study was to examine 

whether an alternative model could uncover either full or 

partial metric invariance across different adult age groups.  

Compared to the model proposed by Horn and McArdle 

(1992), the final model in these analyses had both accept- 

able model fit using the most conservative χ
2
 test and found 
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that partial metric invariance held, indicating that Gf and 

Gc were mostly stable across adult age groups. The model 

comparison also suggested the introduction of these addi-

tional parameters did not unnecessarily complicate the 

model. Invariance held on all subtests except block design 

on the Gf factor and pattern assembly on the Gc factor for 

older adults. For both of these subtests, the factor loadings 

were weaker for older adults than the three younger groups, 

indicating that the underlying intelligence factors did not 

predict these subtests as strongly for older adults as they 

did for the other age groups. 

In the young group only, there was a correlated residual 

between the information and vocabulary subtests. This rela-

tionship, equivalently conceptualized as a factor, was un- 

related to Gf and Gc. χ
2
 difference tests indicated this addi-

tional factor should be included, χ
2 

difference = 35.88, de-

grees of freedom difference = 1, p < .001. This unnamed 

factor may be important to explore further, particularly for 

cognitive development in late adolescence and young 

adulthood. It is possible, however, that the factor is in-  

appropriate in other datasets. Future work should examine 

if this represents a true intelligence factor independent of 

Gf and Gc or if this is a dataset-specific artifact. 

Analyses examining latent mean differences between 

groups replicated results found elsewhere (Kaufman & 

Horn, 1996); Gf means were significantly lower for older 

adults, whereas Gc means improved across adulthood and 

were relatively stable for middle and older adults. It is  

important to note that these were cross-sectional data and 

should not be interpreted as changes over time, but these 

findings were similar to previous longitudinal work   

examining age-related intelligence changes (McArdle, 

Ferrer-Caja, Hamagami, & Woodcock, 2002). Even with 

cross-loadings, this model is capable of uncovering patterns 

that theoretically align with previous work. 

This analysis also revealed within-group influences of 

age on specific subtests, particularly for young adults. For 

the young adult group, age played a significant role in  

performance, particularly for the tests considered to typify 

Gc (information, comprehension, similarities, and vocabu-

lary). This relationship demonstrated that within young 

adults (16-22 years old), older age was associated with  

better Gc performance, replicating previous findings 

(Hartshorne & Germine, 2015; Kaufman & Horn, 1996; 

Wisdom, Mignogna, & Collins, 2012). In the other age 

groups, age did not substantially affect subtest performance, 

indicating that subtest performance did not substantially 

fluctuate within a group after the early 20s.  

When examining the within-group variance on the Gf 

and Gc factors, a different pattern emerged. For older adults, 

there was larger within-group variability on both the Gf and 

Gc factors compared to the other adult groups, replicating 

previous work demonstrating increased heterogeneity in 

older adulthood (Ardila, 2007; Christensen et al., 1994; 

Hultsch, MacDonald, & Dixon, 2002; Mella, Fagot, & de 

Ribaupierre, 2016; Rabbitt, 1993; Stone, Lin, Dannefer, & 

Kelley-Moore, 2017; Sylvain-Roy & Belleville, 2015; 

Ylikoski et al., 1999). Some posit that increased variability 

in older age is due to a lifetime of accumulating risk and 

protective factors like increased brain pathology (Rabbitt, 

2011), but others find an increased variability is not inevi-

table across one’s cognitive development (Salthouse, 2011) 

or may be due to ceiling effects in young adulthood (Green, 

Shafto, Matthews, Cam-CAN, & White, 2015). Future 

work should examine if this pattern holds longitudinally, 

and if so, elucidate potential mechanisms of increased  

variability (e.g., ceiling effects in youth).   

 

A Brief Note on Parsimony  

  

Although previous investigations into whether the 

WAIS-R was invariant across age used more statistically 

parsimonious models, there may be instances where statis-

tical parsimony may be overly simplistic. A more statisti-

cally complex model, like that presented in this study, 

would be appropriate if constraining the age-subtest rela-

tionship to be entirely explained through the latent factors 

(i.e., Gf or Gc) would be too restrictive. For example, it 

may be of interest that there is greater within-group varia-

bility in vocabulary than similarities subtest performance 

for young adults. If the more statistically parsimonious 

model was used (Horn & McArdle, 1992), it would be  

erroneously assumed that within-group variability would be 

equal across the two subtests. In this case, the direct path 

from age to the subtest would more faithfully reproduce the 

age-subtest relationships. Ultimately, substantive research 

questions will dictate which invariance test models are  

appropriate. Comparing competing invariance models with 

a χ
2 

difference test may indicate that direct age effects are 

both statistically and substantially meaningful. However, 

using both more parsimonious (Horn & McArdle, 1992) 

and more complex models in tandem can provide a more 

holistic understanding of age-related effects on intelligence 

subtests. 

 

Strengths, Limitations, and Future Directions 

   

This study has a few limitations worth noting. Since 

these are cross-sectional data from the late 1970s, we are 

unable to extrapolate longitudinal changes from these data. 

However, this analytic strategy could be implemented in 

longitudinal research to examine how invariance does or 

does not hold over time. Relatedly, this study should be 

replicated in more recent cohorts and recent versions of the 

WAIS to ensure that the same pattern of invariance holds 

and that these results were not an artifact of period effects. 

These analyses were exploratory, so some patterns such as 

the correlated residual between information and vocabulary 

in the young adults may not hold across samples. Future 

studies with more recent versions of the WAIS are also  

required to replicate and further examine the partial metric 

invariance revealed in the current study, as these are   
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exploratory and may either be substantively meaningful or 

an artifact of this dataset.  

In addition to the exploratory nature of this model, it is 

not clear whether partial metric invariance using this model 

would hold across other, more recent versions of the WAIS. 

Invariance does not necessarily hold from the WAIS-R to 

more recent versions like the WAIS-III or WAIS-IV 

(Benson, Beaujean, & Taub, 2015), so this factor structure 

may not hold across test versions. If researchers or clini-

cians change intelligence measures during their study, it is 

important to test invariance across versions to ascertain if 

comparisons between versions are feasible.  

One last limitation of this analytic strategy is that this 

model is not a pure test of invariance. Instead, this model 

simultaneously tests age invariance and the effect of age on 

subtest performance. If one wishes to only analyze invari-

ance and is not interested in direct effects, such as the effect 

of age or gender on WAIS-R subtests or other manifest 

variables, this analytic strategy would not be appropriate. If 

one wishes to use this model, it is recommended to first 

establish pure invariance before introducing covariates into 

modified invariance tests. 

However, this analytic strategy has several strengths 

worth highlighting. Namely, one is able to directly model 

within-group variability in subtest performance inde-  

pendent of intelligence factors. In gerontological research, 

within-group heterogeneity is implied but rarely examined 

(Stone et al., 2017). Using this alternative model, there are 

two ways to explore within-group heterogeneity: (1) 

through the factor variance (eta) scores, and (2) the factor 

loadings of the WAIS-R subtests on the age factor. This 

approach provides a nuanced understanding of the rela-

tionship between age, intelligence, and the WAIS-R sub-

tests. For instance, older adults had greater variability in the 

intelligence factor scores than young adults (Figure 5), but 

there were larger age effects on WAIS-R subtests in young 

adults compared to older adults (Figure 6). These differen-

tial results suggest within-group variability may be    

dependent on whether a manifest (e.g., WAIS-R subtest) or 

latent (e.g., Gf or Gc) variable is of interest and warrant 

future exploration (Stone et al., 2017).  

Taken together, these results demonstrate the utility of 

using a modified invariance test to evaluate intelligence 

across and within age groups. Future research should  

examine longitudinal invariance to assess whether this 

same pattern of partial metric invariance holds. Similarly, 

future studies could extend these analyses to the middle-old 

and oldest-old (i.e., older adults 75+) to examine both  

factor structure and mean performance changes to explore 

if intelligence is stable throughout older adulthood. 

 

Conclusion 

  

This study found partial metric invariance held across 

different age groups on the WAIS-R using a two-factor  

intelligence model. This method will allow examination of 

questions above pure measurement invariance, like which 

subtests are not invariant for which age groups. Additional-

ly, this model is flexible enough to handle exploration of 

within-group age influences. Although theory and specific 

research questions will dictate the use of this or previously 

proposed models (i.e., Horn & McArdle, 1992), this model 

is not unnecessarily complex (as determined by χ
2
 differ-

ence tests) and yields acceptable model fit across several 

indices. Future work should examine whether partial metric 

invariance holds across newer WAIS versions or longitudi-

nally. 
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APPENDICES 

 

Appendix 1. Final Model LISREL Syntax.  

 

WAIS-R Young 

da no=300 ni=9 ma=cm ng=4 

km sy fi=Cor.doc 

sd fi=SD.doc 

me fi=Mean.doc 

mo ny=9 ne=3 ly=fu,fr te=sy,fi ps=sy,fr 

fi ly(1,1) ly(8,1) ly(9,1) 

fi ly(1,2) ly(8,2) ly(9,2) 

fi ly(9,3) 

va 1 ly(1,1) ly(8,2) ly(9,3) 

fi ps(3,1) ps(3,2) 

fr te(1,1) te(2,2) te(3,3) te(4,4) 

fr te(5,5) te(6,6) te(7,7) te(8,8) 

fi ly(4,2) 

va 0 ly(4,2) 

fr te(4,1) 

st 1 all 

st 500 ps(1,1) ps(2,2) 

st 100 te(1,1) te(2,2) te(3,3) te(4,4) 

st 100 te(5,5) te(6,6) te(7,7) te(8,8) 

ou ns ad=off it=999 ss 

WAIS-R Adult 

da no=275 

km sy fi=Cor.doc 

sd fi=SD.doc 

me fi=Mean.doc 

mo ny=9 ne=3 ly=ps te=ps ps=ps 

eq ly(1,2,1) ly(2,1) 

eq ly(1,3,1) ly(3,1) 
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eq ly(1,4,1) ly(4,1) 

eq ly(1,5,1) ly(5,1) 

eq ly(1,6,1) ly(6,1) 

eq ly(1,7,1) ly(7,1) 

eq ly(1,2,2) ly(2,2) 

eq ly(1,3,2) ly(3,2) 

eq ly(1,4,2) ly(4,2) 

eq ly(1,5,2) ly(5,2) 

eq ly(1,6,2) ly(6,2) 

eq ly(1,7,2) ly(7,2) 

fi ly(2,3) ly(4,3) ly(5,3) ly(6,3) ly(8,3) 

va 0 ly(2,3) ly(4,3) ly(5,3) ly(6,3) ly(8,3) 

fi te(4,1) 

va 0 te(4,1) 

ou 

WAIS-R Middle 

da no=205 

km sy fi=Cor.doc 

sd fi=SD.doc 

me fi=Mean.doc 

mo te=ps 

fr ly(2,3) 

fi ly(1,3) ly(3,3) ly(7,3)  

va 0 ly(1,3) ly(3,3) ly(7,3) 

ou 

WAIS-R Older 

da no=160 

km sy fi=Cor.doc 

sd fi=SD.doc 

me fi=Mean.doc 

mo 

fi ly(2,3) 

va 0 ly(2,3) 

fr ly(6,2) ly(7,1) 

ou 

 

Appendix 2. Means Model LISREL Syntax. 

 

WAIS-R Young 

da no = 300 ni = 9 ma = cm ng = 4  

km sy fi = cor.txt 

sd fi = sd.txt 

me fi = Mean.txt 

mo ny = 9 ne = 3 ly = fu,fr te = sy, fi ps = sy, fr al = fi ty=fr 

fi ly(1,1) ly(8,1) ly(9,1) 

fi ly(1,2) ly(8,2) ly(9,2) 

fi ly(9,3) 

va 1 ly(1,1) ly(8,2) ly(9,3) 

fi ps(3,1) ps(3,2) 

fr te(1,1) te(2,2) te(3,3) te(4,4) 

fr te(5,5) te(6,6) te(7,7) te(8,8) 

fi ly(4,2) 

va 0 ly(4,2) 

fr te(4,1) 
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st 1 all 

st 500 ps(1,1) ps(2,2) 

st 100 te(1,1) te(2,2) te(3,3) te(4,4) 

st 100 te(5,5) te(6,6) te(7,7) te(8,8) 

st 60 ty(1) ty(2) ty(3) ty(4) ty(5) ty(6) ty(7) ty(8) 

ou ns ad=off it=999 ss rs 

 

WAIS-R Adult 

da no=275 

km sy fi=Cor.txt 

sd fi=SD.txt 

me fi=Mean.txt 

mo ny=9 ne=3 ly=ps te=ps ps=ps al = fr ty=in 

eq ly(1,2,1) ly(2,1) 

eq ly(1,3,1) ly(3,1) 

eq ly(1,4,1) ly(4,1) 

eq ly(1,5,1) ly(5,1) 

eq ly(1,6,1) ly(6,1) 

eq ly(1,7,1) ly(7,1) 

eq ly(1,2,2) ly(2,2) 

eq ly(1,3,2) ly(3,2) 

eq ly(1,4,2) ly(4,2) 

eq ly(1,5,2) ly(5,2) 

eq ly(1,6,2) ly(6,2) 

eq ly(1,7,2) ly(7,2) 

fi ly(2,3) ly(4,3) ly(5,3) ly(6,3) ly(8,3) 

va 0 ly(2,3) ly(4,3) ly(5,3) ly(6,3) ly(8,3) 

fi te(4,1) 

va 0 te(4,1) 

fi al(2) 

ou   

 

WAIS-R Middle 

da no=205 

km sy fi=Cor.txt 

sd fi=SD.txt 

me fi=Mean.txt 

mo te=ps al=ps  

fr ly(2,3) 

fi ly(1,3) ly(3,3) ly(7,3)  

va 0 ly(1,3) ly(3,3) ly(7,3) 

fr al(2) 

ou  

 

WAIS-R Older 

da no=160 

km sy fi=Cor.txt 

sd fi=SD.txt 

me fi=Mean.txt 

mo 

fi ly(2,3) 

va 0 ly(2,3) 

fr ly(6,2) ly(7,1) 

fi al(1) 

ou   


