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Abstract 

The purpose is to discuss and exemplify how a typological approach could be designed for studying phenomena believed to 

be best understood within a person-oriented theoretical framework. The focus is mainly restricted to the case of studying the 

typological structure of a sample at a single point in time, and restricted to analyzing variable profiles where each variable has 

a “negative” and “positive” endpoint. An artificial data set and an empirical data set were analyzed using two different 

methodological approaches, one more explorative (using LICUR, a cluster analysis-based procedure) and one more   

model-based (using the MCLUST procedure). For the artificial data set, the LICUR procedure was successful in finding the 

true classification structure but the MCLUST procedure performed surprisingly badly. For the empirical data set, both  

procedures produced rather similar solutions and they showed moderate validity. However, the LICUR solution appeared to 

be slightly superior. It was argued that applying a sound classification methodology and carefully validating the resulting 

classifications are extremely important, even more so in a developmental context. It was also argued that, in a number of 

situations, a more explorative approach could be more useful than a standard model-based one. 

Keywords: person-oriented approach, classification, types, typology, cluster analysis, LICUR, model-based analysis 

 

The study of types and typologies are old research areas 

in psychology that have been largely abandoned in modern 

psychology, in contrast to what is the case in, for instance, 

biology. Instead, a dimensional approach has become pre-

dominant, often focusing on models for studying relation-

ships between variables. For this shift of approach there are 

a number of reasons, for instance the extreme subjectivity 

often involved in constructing older typologies and the 

emergence of elegant statistical models for analyzing  

dimensional data. In these models, the variables are treated 

as the fundamental analytic units. However, the theoretical 

framework of the modern person-oriented approach implies 

that a variable-oriented approach is in many research  

contexts incongruent with basic assumptions of the process 

under study (Bergman & Andersson, 2010; Bergman & 

Vargha, 2013). In contrast, an approach focusing on typical 

patterns, akin to a typological approach, can in such   

contexts better match these basic assumptions. A revival of 

the typological approach in a more modern form is called 

for, based on methods of analysis that are to a large extent 

freed from the subjectivity of the old approaches. 

The purpose of this paper is to discuss and exemplify 

how a typological approach could be designed for studying 

phenomena believed to be best understood within a    

person-oriented theoretical framework. The focus is rather 

narrow, being mainly restricted to the case of studying the 

typological structure of a sample at a single point in time. 

Examples of recent, broader presentations of the      

person-oriented approach, including many methodological 

issues, are given by Bergman and Lundh (2015) and by 

Wiedermann, Bergman, and von Eye (2016). 

http://www.person-research.org/
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Definitions 

 

No generally accepted definitions exist of the concepts 

“type” and “typology”. For the sake of clarity we will 

therefore provide definitions of them and of some other 

concepts, recognizing that researchers in other contexts 

might prefer other definitions. Admittedly, our definitions 

are rather restrictive and somewhat limit the scope of our 

paper.  

1. With data is meant data in the sense of Cattell´s data 

box, and, in addition, it is assumed that all variables are 

interval scaled variables (this restriction does not apply to 

Cattell´s data box). The basic unit of analysis we are  

concerned with is the vector of variable values for a given 

individual at a given time point. This vector (value profile) 

is regarded as the natural basic unit that should be retained 

in the analyses (motivated in the next section). 

2. With a type is meant a value profile that tends to occur 

frequently – either for the same person across time (intra- 

individual perspective) or occurs for many persons at the 

same time (inter-individual perspective). A type could have 

been found when analyzing a single sample or it could have 

emerged from a synthesis of the findings from analyzing 

many samples. A type could also refer to a theoretical  

expectation of a certain value profile being frequent. It 

should be pointed out that, in practice, perfect types are 

rarely observed. Therefore a less restrictive definition of 

type is usually applied in which data points with very  

similar value profiles are regarded as belonging to the same 

type.  

3. With a typology is meant a set of types that together 

describe data. It could be with regard to a single sample or 

several samples, and it could also be a classification model 

derived from theory that needs to be empirically tested. 

Often the term “typology” is used for a sample of persons 

divided into mutually exclusive subsamples with each one 

characterized by approximately the same type (e.g. a classi-

fication based on cluster analysis of a sample of persons´ 

value profiles). There exist also more narrow definitions of 

the typology concept, stressing that the classification struc-

ture then is of theoretical relevance and/or has demonstrat-

ed generalizability. 

 

Some basic tenets of the person-oriented theoretical 

framework and their implications for the choice of 

methodological approach 

 

The modern person-oriented approach is an outgrowth 

from the holistic-interactionistic research paradigm    

developed by David Magnusson (e.g., Magnusson, 1988; 

Magnusson & Törestad, 1993). The approach has been 

presented and discussed in numerous papers, including 

some that have been concerned with the basic tenets and 

assumptions of the approach (e.g. Bergman & Magnusson, 

1997; Bergman & Andersson, 2010). A selection of these 

tenets is presented below in a somewhat reformulated form 

to provide a basis for a discussion of their methodological 

implications. 

1. The person-oriented theoretical framework includes a 

dynamic systems view where the studied universe is best 

understood in terms of the operation of one or more    

dynamic systems normally characterized by emerging  

attractors. Often each attractor is a single specific system 

state (or a narrow region of phase space) that in some way 

is “optimal” for the survival of the system for a given set of 

start conditions and, hence, is often frequently observed (~ 

type). This is consistent with a central tenet of the     

holistic-interactionistic research paradigm: Individuals 

function as whole organisms where the different parts work 

together and adjust to each other to achieve “good”   

functioning. It implies that the information the researcher 

has about the studied system should be regarded as “a 

whole” as far as it is possible in order to reflect basic  

system properties and individual functioning. From this 

standpoint, the method for data analysis should strive for 

conserving the totality of the information and analyze 

whole value patterns (value profiles). Hence, in many cases 

the value pattern and not the variable should be the basic 

unit of analysis. Vital information may be lost if this is  

violated (e.g., forming a variance-covariance matrix and 

using it as data in the analysis would be a violation). Of 

course, in some cases and to some extent this conservation 

can be accomplished by using a tailored variable-oriented 

methodological approach (e.g., applying a suitable dummy 

variable coding of some interesting specific value profile).  

From the above it should be clear that, if a person-oriented 

theoretical framework is accepted, a classificatory approach 

aiming at finding typical variable patterns (e.g., by using 

cluster analysis) matches this framework in a number of 

contexts because the holistic character of the information is 

retained in the analysis. 

2. Another central tenet concerns the focus on under-

standing the individual: the findings should be interpretable 

for the single individual. This can normally not be     

accomplished by applying standard statistical methods that 

produce estimates of group parameters (Molenaar, 2004; 

von Eye & Bergman, 2003). For instance, a correlation 

coefficient computed for a sample of persons is a group 

statistic that is not informative of a specific individual’s 

position in the two variables and it is not even very    

informative of an individual´s value in one variable   

conditional on the value in the other variable, except when 

the correlation is very large. This second tenet implies that 

in some contexts a typological approach can also fall short 

of presenting findings that are interpretable at the level of 

the individual (for instance, a classification with classes 

that are heterogeneous). 

3. Taken together, several tenets of the person-oriented 

research paradigm point to that, in most nonexperimental 

settings, the studied systems are complex, imperfectly  

understood, and they exhibit variation across individuals 

and age. From this perspective, the commonly used “big” 
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models, claiming to explain multivariate variation, are  

often premature and unrealistic (Richters, 1997). In such  

cases, a more modest ambition level is called for in which 

the focus is on theory guided exploration and building 

“smaller” models that, at a later stage, can be building 

blocks for “bigger” models. Within typological research, 

this suggests that many forms of model-based classification 

analyses can be premature. Normally, it is not expected that 

there exists only one “true” typology that divides a sample 

into a small set of classes with each class sharing the same 

value profile, except for random noise. In fact, usually sev-

eral different but similar classifications have comparable 

(limited) explanatory power of the data and, in addition, it 

is often to be expected that there exists a residue of data 

points that are unclassifiable (i.e., clearly do not belong to 

any of a small set of types/classes, see Bergman, 1988).  

Researchers engaged in model-based classification 

sometimes claim that this approach is superior to other 

more exploratory approaches like cluster analysis, mainly 

on the grounds that model-based findings “explain” data by 

a simple elegant model with confidence intervals of    

parameter estimates and with the strength of being able to 

test model fit. Considering what was said in the previous 

paragraph, this claim seems overstated because the    

assumptions made in such models are often unrealistic. The 

counter argument is that, if the model fits the data, it is 

shown to be a good model. However, when testing such 

models, model fit is usually not based on discrepancies 

between data points estimated by the model and the actual 

data points. Instead, standard tests compare group     

parameters estimated by the model to the corresponding 

sample group statistics (e.g., actual intra class correlations 

are compared to the zero correlations expected from the 

model). In addition, for moderate sample sizes the power to 

reject such models may be low in many cases (see the  

Discussion section). Often a well-designed explorative 

classification approach is more compatible with the   

person-oriented tenets presented above. In such an     

approach, the aim is to find one or more classification 

structures that reasonably well summarize the data structure, 

and the classification of residue objects (≈ outliers) is 

avoided to prevent them from distorting the classification 

structure. Of course, what has been stated above should not 

be interpreted as a critique of the usefulness of all    

model-based approaches in the context discussed here. 

Their appropriateness in a given context depends on the 

assumptions they make about the data structure, and many 

types of such models exist. 

Finally, we add an admittedly subjective comment: Some 

of us who have extensive experience of classification  

analyses and are active in different research areas have used 

model-based classification analysis and compared its  

findings to those produced by some more explorative 

method. The findings from the former often seemed  

doubtful in relation to what was expected from our 

knowledge of the substantive field under study. For    

instance, using Latent Profile Analysis the analysis    

frequently indicated a three-class solution with one class 

being generally high, one being generally low, and one be-

ing generally intermediate. That a complex multivariate 

system is well described by such a simple model would 

seem to be an exceptional case, and not one that is often 

observed. In comparison, the explorative method often  

indicated that more classes were needed to describe the 

data structure, with some indicating types with more   

complex value profiles that also (partly) fitted theoretical 

expectations. 

 

Comparing findings using some different types of  

classification analysis 

 

Methods for classification are just tools and no method is 

generally superior to any other reasonable method – it all 

depends on the scientific problem, properties of the studied 

data set, and the assumptions about the data generating 

process one can make in the specific research context. 

Nevertheless, it is useful to examine examples of how  

different methods perform in well-defined contexts, as long 

as the findings are not over-interpreted. In this article, a 

cluster analysis-based partly explorative method and a 

more model-based standard method are compared. Perhaps 

the most useful conclusion that may result from a method 

comparison based on a few examples is that if some  

method performs badly, there is some ground for doubting 

its general usefulness.  

In the following, two data sets are analyzed, one data set 

based on artificial data with a typological structure that can 

be expected to be not uncommon, and one empirical data 

set where theoretical expectations exist about the nature of 

the classification structure and some possibilities exist to 

empirically validate an obtained classification by using 

external variables. The method of comparison will concern 

three aspects of how well a classification method     

performed: (1) the degree to which the classes produced are 

homogenous and distinctive; (2) whether the description of 

the classes show internal and external validity, and (3) the 

extent to which the objects that were classified belonged to 

the “appropriate” class. 

 

Data sets 

 

Artificial data set, medium sample size (n=400)  

As an example, we have constructed an artificial data set 

that is rather typical of a number of real data sets that have 

been subjected to classification analysis. First, we assumed 

all variables are scaled from “bad” (coded 1) to ”good” 

(coded 5), like when studying adjustment, and that the  

value profile is constituted by four such variables. Second, 

we assumed there is one small “bad” class (10% of sample, 

Type A), and there are two large classes, one “generally 

good” (40% of sample, Type B), and one “generally   

medium” (40% of sample, Type C). There is also one small 
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additional class, “rather bad” in some variables, and “rather 

good” in some other variables (10% of sample, Type D). 

Further, all subjects in a class (i.e., of a type) are     

characterized by exactly the same value profile in the four 

variables. This theoretical “true” data set (TEO data set) is 

presented in Figure 1.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Theoretical type structure (all cases in a type have ex-

actly the same value profile): Design with four types (A to D) and 

four variables (Var1 to Var4) 

 

Based on the TEO data set, a new data set was then  

constructed with errors of measurement added to the true 

values to reflect the imperfections in measurement that  

almost always exist. This data set, called the MEA data set, 

will be analyzed in the Results section. The MEA data set 

was constructed in the following way. To each variable in 

the TEO data set we added to the true value a random  

normal variable with a mean of zero and a variance that 

corresponded to a reliability of 0.80, which is a rather 

common level of measurement precision. More specifically, 

independently for each original true variable value in the 

TEO data set, a new value was created by adding a rounded 

independent random N(0; 0.5) variate. For an X = N(0; 0.5) 

variable, P(–0.5 < X < 0.5) = 0.68. Data values less than 1 

or greater than 5 were set to 1 or 5, respectively. For TEO 

data set values 1 to 5, the percentages retaining the TEO 

score in the MEA data set after the data generations were 

83.0, 70.1, 68.1, 67.1, and 83.2, respectively (average = 

74.3). This means that in 74.3% of cases, the generated 

rounded data value (TEO value plus random error) did not 

differ from the corresponding TEO value. This is greater 

than the initially expected 68%, because the most extreme 

values (1 and 5) could not freely change due to the ceiling 

and bottom effect, in difference to the values that were 

nearer to the center of the 5-point scale (2, 3, or 4). 

 

Empirical data set (n=541) 

We also analyzed an empirical data set in the Results 

section. The data set was taken from the Swedish longitu-

dinal program Individual Development and Adaptation 

(IDA; Magnusson, 1988). The data concerned teacher  

ratings of boys’ extrinsic school adjustment at age 13, and 

three variables constituted the value profile to be analyzed: 

Aggression (Aggr), Motor Restlessness (Motr), and Con-

centration difficulties (Concd). All variables were coded by 

1 (no adjustment problem), 2 (“normal” level of adjustment 

problem), 3 (tendency to adjustment problem), 4 (a clear 

adjustment problem), and 5 (an extreme adjustment  

problem). All variables were positively skewed. The num-

ber of boys in the analyzed data set was 541 and they can 

be considered fairly representative of the general popula-

tion of Swedish boys aged 13 at the time period of the 

original data collection (1968), see Bergman, Corovic, Fer-

rer Wreder, & Modig (2014). The analyzed data set is 

called the EMP data set.   

From previous research within IDA, and also from  

findings in other studies, we had expectations about three 

types that should emerge from the analyses: 1. One charac-

terized by generalized adjustment problems. 2. One char-

acterized by hyperactivity (i.e., high in both Motor Rest-

lessness and Concentration difficulties), and 3. A type 

characterized by generalized good adjustment.  

 

Results from analyses of the artificial data set with 

measurement errors added (MEA data set) 

        

An explorative cluster analysis-based approach      

 

In all analyses, the ROPstat statistical package was used 

(Vargha & Bergman, 2015). Ward´s (1963) hierarchical 

cluster analysis was applied, in some cases followed by a 

k-means cluster analysis using a Ward solution as the start 

classification. This was done following the LICUR    

rationale that also includes procedures for choosing the 

number of clusters and for handling outliers (Bergman, 

Magnusson, & El-Khouri, 2003). LICUR was developed in 

the context of classifying adjustment problems, and the 

procedure is suitable for the kind of data we have. Of 

course, cluster analysis is not a method but rather a label 

for a large class of different methods used for the classifi-

cation of objects and that have been applied for many dec-

ades in many sciences (see, for instance, Milligan, 1980, 

for an overview and discussion of many types of cluster 

analysis). Other sound methods of cluster analysis could 

have been applied, and they would probably have produced 

similar but not identical findings to the ones we present. 

This does not mean that cluster analysis methods are   

inferior and should be avoided – it is instead a consequence 

of the extreme difficulty in obtaining a single adequate 

summary of the structure of a complex multivariate data set. 

Normally, this structure cannot be summarized by a single 

clear-cut model without resulting in a distorted representa-

tion of the profile structure in the data. We would have 

liked to also present findings from some other sound 

method for cluster analysis but this was not possible within 

the constraints of a short article. In the Discussion section, 

some more general issues of classification analysis are  

presented that relate to what has been said above. 

Before cluster analysis, an analysis was made to identify 

multivariate outliers, following the LICUR rationale 

(Bergman, Magnusson, & El-Khouri, 2003). Standard 

LICUR criteria were used and no outliers were found. 



Journal for Person-Oriented Research, 3(1), 49-62 

 

53 
 

Hence, all objects belonging to the MEA data set were  

included in the cluster analysis. The variables were not 

standardized because they were already scaled in the same 

way (values 1-5 with the same anchors). Then the data were 

cluster analyzed using Ward´s method.  

The following quality coefficients (QCs) were used to 

evaluate a cluster solution (see more detailed descriptions 

in Vargha & Bergman, 2015, and Vargha, Bergman, & 

Takács, 2016).  

1. The homogeneity coefficient (HC) of a cluster is the 

average of the pairwise within-cluster distances of its cases. 

To evaluate a cluster solution, HCmean can be used as a 

QC. It is the weighted mean of the cluster HC values 

(weights are cluster sizes). 

2. Explained error sum of square percentage (EESS%), a 

multivariate generalization of eta-squared, known in 

ANOVA: 

 

EESS% = 100*(SStotal – SScluster)/SStotal,    (1) 

 

where SStotal is the sum over the whole sample of each 

case’s sum of squared deviations between each variable 

value and the mean for the whole sample in that variable,  

and SScluster is the sum over clusters of the within cluster 

sums of squared deviations between cases and variable 

centroids. 

3. Cluster point-biserial correlation (PB), a Pearson- 

correlation computed in the sample of all pairs of cases 

between the binary variable of belonging to the same clus-

ter (0) or not (1), and the distance between the two paired 

cases. A well-known formula of PB (see, e.g., Glass & 

Hopkins, 1996): 

 

.            (2) 

 

 

Here M0 is the average pairwise within-cluster case  

distance, M1 is the average pairwise between-cluster case 

distance, n = N(N-1)/2 is the number of pairs of cases in the 

total sample of size N, and n0 and n1 are the number of pairs 

of cases that belong to the same (n0) or to different (n1) 

clusters; sn-1 is the SD of the pairwise differences between 

cases in the total sample of size n. 

4. Considering that PB depends primarily on the M1 - M0 

difference, the first component in formula (2) that is a kind 

of standardized difference of M1 - M0 can also be used as a 

QC, called CLdelta. It can be explained analogously to the 

well-known Cohen delta effect size measure (Cohen, 1977). 

CLdelta indicates the extent to which cases are closer to 

their own cluster members than to cases from other clus-

ters.  

5. A simplified version of the Silhouette coefficient (SC) 

was defined as follows. First, compute SCi for each case i 

in the sample, using formula (3):  

 

SCi = (B−A)/max(A, B),   (3) 

where A is the distance from the case to the centroid of the 

cluster that the case belongs to, and B is the minimal   

distance from the case to the centroid of every other cluster. 

SC is the average of all cases’ SCi values. A high SC value 

indicates that on the average, cases are substantially closer 

to their own cluster centers than to the nearest of other 

cluster centers.  

6. XBmod, a modified version of the Xie-Beni index 

(Xie & Beni, 1991) was defined as follows:  

 

XBmod = (D − W)/max(D, W),        (4) 

 

where W is the average distance of cases from their own 

cluster centers, whereas D is the distance of the two closest 

cluster centroids. The meaning of XBmod is similar to that 

of SC.  

7. The GDI24 index is a special case of the family of 

generalized Dunn indices and it can be defined as follows 

(Desgraupes, 2013): 

 

                         ,              (5) 

 

 

where D is the same as in (4), and maxk(HCk) is the HC 

value of the most heterogeneous cluster. 

Some QCs of cluster solutions with different numbers of 

clusters are presented in Table 1. Based on the size of the 

QCs, k=4 seems to be the best cluster number, since before 

k = 4 there is a low stepwise decrease in EESS%, but at k = 

3 there is a sudden drop (from 77.20 to 70.77), and this is 

the case for HCmean and the HC range as well. For k > 4 

many QC coefficients (PB, XBmod, SC) worsen (XBmod 

radically from .780 to .067), whereas EESS%, HCmean, 

and the HC range do not change substantially. We tried to 

improve the cluster solution via relocation analysis but 

could not do so to any appreciable extent, so the hierar-

chical 4-cluster solution was accepted (bold face type in 

Table 1). In addition, other things being equal, a hierar-

chical solution is also preferable in that it retains a 

straightforward classificatory relationship to hierarchical 

solutions with more or fewer clusters.      

To obtain further evidence about the quality of a cluster 

solution of real data, it is important to also show that it is 

significantly and in a measurable way substantially better 

than a solution obtained on a random data set of the same 

size, with the same number of variables, and same number 

of clusters. For this purpose, Vargha et al. (2016) developed 

the MORI coefficient. MORI measures the relative im-

provement of a cluster structure (as measured by a QC) 

obtained for real data as compared to that obtained for the 

cluster structures resulting from analyzing several types of 

random data sets with the same general properties as the 

real data set. In our study, we first chose as random controls 

the independent random permutations of the values of the 

input variables, and the independent random normal   

variables.
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Table 1 

Quality coefficients (QCs) of cluster solutions for cluster numbers (k) between 2 and 10, MEA data set. 

  Quality coefficients 

k EESS% PB XBmod SC HCmean HC range 

10 85.48 0.362 0.022 0.639 0.376 0.25-0.57 

9 84.45 0.366 -0.045 0.615 0.402 0.25-0.60 

8 83.42 0.429 0.283 0.639 0.427 0.26-0.60 

7 82.23 0.441 0.122 0.610 0.456 0.26-0.76 

6 80.94 0.473 0.134 0.631 0.488 0.26-0.76 

5 79.44 0.520 0.067 0.705 0.525 0.45-0.76 

4 77.20 0.607 0.780 0.799 0.580 0.45-0.73 

3 70.77 0.622 0.830 0.822 0.741 0.45-1.02 

2 56.48 0.579 0.815 0.832 1.101 0.45-1.54 

 

 

Table 2 

MORI validation coefficients for the 4-cluster HCA solution for seven QCs and three types of random control  

data sets (number of independent random replications = 100), MEA data set. 

 MORI coefficients for different QCs 

Type of random control 

data set  EESS% PB XBmod SC HCmean CLdelta GDI24 

Random permutation 0.63 0.38 0.73 0.64 0.63 0.57 2.59 

Independent normal 0.67 0.46 0.79 0.69 0.67 1.08 3.38 

Correlated normal 0.41 0.37 0.70 0.61 0.41 0.54 2.01 

Note: all MORI coefficients are significantly larger than 0 at the p < .001 level 

 

 

Table 3 

The match of theoretical types (TEO data set, Figure 1) to cluster  

centroids (MEA data set, Figure 2).  

Index Theoretical Type HCA4 ASED 

1 B CL2 0 

2 A CL1 0 

3 C CL3 0.002 

4 D CL4 0.013 

 

Table 4 

Cross-tabulation of the original types in the TEO data set (Type_A to Type_D)  

and cluster membership in the analysis of the MEA data set (CL1 to CL4). 

      Cluster  

Type CL1 CL2 CL3 CL4 Total 

Type_A 160 0 0 0 160 

Type_B 0 40 0 0 40 

Type_C      1 0 159 0 160 

Type_D 0 0 11 29 40 

Total 161 40 170 29 400 
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Using the ROPstat statistical package, we performed 100 

independent random replications (see Vargha et al., 2016), 

and the validation results are summarized in the first two 

lines of MORI coefficients in Table 2 for the 4-cluster HCA 

solution.  

The obtained MORI values indicate that, as measured by 

the seven QCs, the 4-cluster solution based on the MEA 

data set was significantly and substantially better than those 

resulting from the analyses of random data, supporting the 

internal validity of that cluster solution for all QCs (see 

Vargha et al., 2016). The MORI-values are somewhat 

smaller for the random permutation data set than for the 

independent random normal data set, due to the combined 

effect of non-normality and the correlation pattern of the 

input variables.  

An additional, more stringent, random control procedure 

was also applied and is described below. If the joint distri-

bution of the four input variables were multidimensional 

normal, there would be one single center in the distribution, 

which in turn would exclude a multi-cluster structure, and 

would render senseless the search for a natural clustering. 

For this reason, it is of interest to confirm that the cluster 

solution is significantly and substantially better than a 

cluster solution that is based on a random multivariate 

normal data set where the intercorrelations are the same as 

for the MEA data set variables. This is also an (overly) 

strict test that a real clustering structure has been found, in 

that it reflects a pattern structure that cannot be explained 

by the pairwise relationships between the variables. The 

latest development of the ROPstat software includes such a 

test. To create the appropriate data set for the test, ROPstat 

first generates the required number of independent random 

normal variables and then transforms these data with an 

orthogonal rotated factor loading matrix based on the MEA 

data set. In this way, the intercorrelations of the trans-

formed random variables will equal those of the MEA data 

set variables (these correlations are given in Table 5). Then 

we performed the MORI analyses based on the correlated 

random data and the results are summarized in the last row 

of Table 2, confirming that our obtained 4-cluster solution 

is substantially better – in terms of all QCs – than what 

would be expected in a random data set of correlated  

normally distributed variables.  

Our clustering method may be claimed to be inferior  

because we do not have a clear-cut method for identifying 

the optimal cluster number. To address this issue, we   

carried out a series of validating simulations to compute 

MORI values also for cluster numbers 3 and 5. For all QCs, 

k = 4 was the best solution, sometimes (GDI24) with a very 

high advantage. 

An indication of a successful CA is that the correlations 

between the variables within the clusters are close to zero 

( ≈ local independence). This was the case for the k = 4 

solution. Despite the high intercorrelations of the input 

variables (see Table 5), the correlations computed     

separately for the different clusters were not significantly   

different from zero. The corresponding p-values obtained 

by Bartlett’s chi-square statistic for testing the        

independence of the variables were .683, .363, .303, 

and .069, respectively, showing that local independence of 

the obtained cluster solution cannot be rejected. 

 

Table 5 

Pearson correlation matrix of the variables in the MEA 

data set. 

Variables Var1 Var2 Var3 Var4 

Ranvar1 1 0.547** 0.739** 0.600** 

Ranvar2 0.547** 1 0.555** 0.701** 

Ranvar3 0.739** 0.555** 1 0.669** 

Ranvar4 0.600** 0.701** 0.669** 1 

Notation: **: p < .001 

 

The situation when studying the validity of the classifi-

cation of the MEA data set is unusual in that we know what 

the theoretical true classification and types are (they are 

given in the TEO data set, see Figure 1). This enables us to 

study the external validity of the obtained 4-cluster solution 

with regard to whether the theoretical types are reproduced 

in the analysis of the MEA data set. In Figure 2, the cluster 

centroids obtained in the analysis of the MEA data set are 

presented and they are very similar to the theoretical types. 

More formally, this is confirmed by a pairwise matching of 

the theoretical types to the cluster centroids, using averaged 

squared Euclidian distances (ASEDs) between them as in-

verted measures of similarity (Table 3). The ASEDs are 

very small, indicating a very good match. We can conclude 

that the true types have been successfully reproduced by 

the 4-cluster structure, despite the substantial proportion 

(100 – 74.3 = 25.7%) of measurement error introduced in 

the MEA data set.  

 

 

 

 

 

 

 

 

 

  

Figure 2. The obtained 4-cluster centroids in the analysis of 

the MEA data set (raw means). 

 

A second aspect of the validity of the MEA data set 

4-cluster solution is the degree to which its objects have 

been classified into groups in the same way as in the theo-

retical, true TEO data set. To a high degree this is the case, 

as shown by the following high validity coefficients: Cra-

mér's contingency V = .943, Jaccard index = .917, Rand 



 Bergman et al.: Revitalizing the typological approach 

 

56 
 

index = .970, and Adjusted Rand index = .934. The high 

degree of correspondence between TEO type membership 

and MEA cluster membership is also apparent in Table 4. 

 

A model-based approach 

 

If it is believed that the investigated population might 

constitute a mixture of several subpopulations, each  

characterized by its specific variable profile (type), a  

model-based clustering (MBC) approach is often used. It is 

then usually assumed that the theoretical distribution of the 

set of observed input variables form a mixture of simpler 

unimodal (most commonly normal) multidimensional 

component distributions. From this perspective, the basic 

aims of MBC is 

 

(a) to identify the number of components (k); 

(b) to estimate the densities of the k components. 

 

Several types of MBCs are easy to run in well-known 

statistical software. The most comprehensive among them 

is the MCLUST program in R (Fraley & Raftery, 2002), by 

means of which 10 different models allowing for variations 

in volume (cluster size proportion), shape (shape of cluster 

distributions determined by their covariance structures), 

and orientation for a series of cluster numbers (see Fraley & 

Raftery, 2003, Table 1). This set of models includes also the 

equal-volume spherical variance model underlying Ward’s 

HCA method if multidimensional normal component   

distributions are assumed (Fraley & Raftery, 2003). 

Technically the MCLUST assumes the normality of the 

components and performs a HCA with a special classifica-

tion likelihood measure (see Fraley & Raftery, 2003,   

formula (10)) followed by an Expectation-Maximization 

(EM) relocation, for each of the 10 possible models for all 

cluster numbers below a certain upper limit. The suggested 

cluster model (including also the specification of k) is the 

one for which the value of a Bayesian-type information 

criterion (BIC) is the largest. 

We note that the latent profile analysis (LPA) of the 

Mplus program is practically a special model type of 

MCLUST where the cluster sizes are allowed to differ but 

all cluster distributions are normal with a diagonal     

covariance matrix (local independence; see Muthén, 2001).  

In order to test the usefulness of the model-based    

approach for analyzing the MEA data set we performed an 

MCLUST analysis of these data. The generation of our 

random data set was based on independent equal random 

normal errors, which – taking into account the variable 

proportions of the four types – corresponds to a spherical, 

variable volume, equal shape (VII) normal model. However, 

the rounding and the truncations due to ceiling and bottom 

effects yielded a biased normal model, which can be   

regarded as rather typical in practice. Running MCLUST 

the results indicated that the best model was an ellipsoidal, 

equal volume and shape (EEV) model with 6 components. 

The second best model was ellipsoidal, variable volume, 

equal shape (VEV) with 2 components, and the third a 

spherical, equal volume (EII) model with 5 components. 

We have to conclude that none of them equals to the true 

VII model with 4 components, which is a disappointing 

result from using the model-based approach. It is clear that, 

for these artificial data, the cluster analysis-based procedure 

was much more successful in finding the true typological 

structure.  

 

Results from analyses of the empirical data set (EMP 

data set) 

        

Cluster analysis-based approach      

 

As a pre-analysis of the EMP data set, a residue analysis 

of outliers was carried out, following the LICUR rationale, 

and with a standard cut-off point based on the closest 

neighbor (see Bergman, 1988; Bergman et al, 2003). The 

results showed that there were no outliers to be dropped. 

The cluster analysis of the EMP data set was carried out 

using the same procedure that was used and described in 

the preceding section. The three variables in the value  

profile were not standardized because they are on compar- 

able scales. The results of the hierarchical cluster analysis 

in terms of QCs are presented in Table 6. It appears that k = 

5 to 8 are promising cluster numbers. Comparing the clus-

ter centroids of the different solutions, we accepted the 

8-cluster solution (bold type face in Table 6). The theoreti-

cally expected high Motor Restlessness  Lack of Concen-

tration type emerges first when moving from the 6-cluster 

to the 7-cluster solution but the worsening of HCmax from 

k = 8 (0.98) to k = 7 (1.45) is hardly acceptable (it indicates 

that, reducing the number of clusters from eight to seven, 

two reasonably homogeneous and theoretically meaningful 

clusters were merged into one heterogeneous cluster). We 

could further improve the QCs via relocation allowing 

EESS% to increase from 81.32 to 83.07 (see the last row of 

Table 8). Therefore, we finally retained the 8-cluster k- 

means cluster solution, and its centroids are presented in 

Figure 3. Among the eight clusters, the three expected types 

did emerge, namely one cluster with generalized adjust-

ment problems (CLE8), one cluster high only in Motor 

restlessness and Concentration difficulties (CLE6), and one 

cluster with generalized good adjustment (CLE1). 

We then computed MORI coefficients for the 7 QCs (see 

previous section) to find out whether our cluster solution is 

significantly and substantially better than a solution ob- 

tained on a random data set of the same size, with the same 

number of variables, and same number of clusters. One 

hundred independent random replications were performed 

(see Vargha, Bergman, & Takács 2016). The obtained MO-

RI values indicate an acceptable but moderate internal va-

lidity level of the 8-cluster k-means solution for almost all 

QCs, even for the most demanding control (correlated ran-

dom normal variables, see Table 7). 
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Figure 3. The 8-cluster k-means solution centroids in the analysis of the EMP data set (raw means) 

 

 

Table 6 

Results of hierarchical cluster analyses for cluster numbers between k = 2 and k = 10 carried out on  

the EMP data set. Six cluster quality coefficients are presented. 

 Quality coefficient 

k EESS% PB XBmod SC HCmean HC range 

10 84.36 0.382 0.507 0.657 0.514 0.24-0.98 

9 82.96 0.387 0.463 0.660 0.558 0.24-0.98 

8 81.32 0.407 0.606 0.660 0.610 0.24-0.98 

7 79.20 0.407 0.562 0.650 0.678 0.24-1.45 

6 76.98 0.406 0.515 0.623 0.749 0.24-1.55 

5 73.46 0.435 0.473 0.586 0.862 0.24-1.55 

4 69.20 0.437 0.388 0.635 0.997 0.24-1.75 

3 62.66 0.443 0.402 0.633 1.206 0.24-1.75 

2 51.48 0.659 0.821 0.782 1.564 1.50-1.75 

 

 

Table 7  

MORI coefficients of 7 QCs for the chosen 8-cluster k-means solution using three types of random control data sets  

(first three rows), and for the best model-based solution (last row) (number of independent random replications = 100). 

Type of random control 

data set  EESS% PB XBmod SC HCmean CLdelta GDI24 

Random permutation 0.29 -0.02 0.23 0.12 0.28 -0.13 0.15 

Independent normal 0.49 0.14 0.11 0.31 0.49 0.12 -0.24 

Correlated normal 0.22 0.17 0.20 0.27 0.21 0.24 0.07 

Correlated normal, 

MCLUST EII, k = 8 0.18 0.22 0.30 0.19 0.17 0.28 0.20 

Note: all coefficients above 0.07 are significantly greater than 0 at the p < .001 level. 
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Table 8 

Basic quality characteristics of four MBC solutions (rows 1-4), and the 8-cluster k-means solution (last row) 

Clustering 

method 

EESS% PB XBmod SC HCmean CLdelta GDI24 HC 

range 

MBEEV9 66.18 0.377 -0.389 0.345 1.104 0.899 0.189 0.00-1.75 

MBEEV8 73.11 0.374 0.240 0.498 0.877 0.923 0.462 0.62-1.23 

MBEII5 76.00 0.476 0.538 0.646 0.779 1.077 0.580 0.44-1.44 

MBEII8 82.20 0.446 0.628 0.658 0.582 1.079 0.688 0.39-1.12 

kCA8 83.07 0.409 0.573 0.692 0.554 1.052 0.617 0.28-1.03 

 

 

Table 9 

Stepwise LRA on dichotomized crime with the 8 cluster indicator variables as  

independent variables. 

Depvar: YDCrime B Sig. Exp(B) 

Nagelkerke R
2
 = 

0.174 

CLE1I -1.745 .001 .175 

CLE6I 1.277 .010 3.587 

CLE8I 1.421 .000 4.139 

Depvar: ADCrime B Sig. Exp(B) 

Nagelkerke R
2
 = 

0.097 

CLE1I -1.132 .014 .322 

CLE8I 1.223 .000 3.398 

  

 

Table 10 

Stepwise LRA on dichotomized crime with the 3 continuous IDA variables as  

independent variables. 

Depvar: YDCrime B Sig. Exp(B) 

Nagelkerke R
2
 = 

0.178 

MOTR .420 .002 1.522 

CONCD .363 .008 1.438 

Depvar: ADCrime B Sig. Exp(B) 

Nagelkerke R
2
 = 

0.097 

MOTR .539 .000 1.714 

    

 

 

An additional indication that the cluster analysis was  

rather successful is that, despite the high (.49-.68) pairwise 

correlations of the three EMP data set variables, except for 

the first two clusters (CLE1 and CLE2) the Bartlett test of 

overall independence was not significant or just marginally 

significant, whereas in the total sample the test was highly 

significant (p < .0001).  

To find evidence of external validity, cluster membership 

was related to registered crimes below 21 years (YDCrime, 

coded “0” for 0-2 crimes and coded “1” for more than 2 

crimes) and related to registered crimes above 20 years 

(ADCrime, coded “0” for 0-2 crimes and coded “1” for 

more than 2 crimes). It was expected that membership in 

the cluster with generalized adjustment problems or in the 

cluster high in both Motor Restlessness and Concentration 

difficulties would be related to high criminality. The   

external validity was studied by using logistic regression 

analysis (LRA) with a dichotomized crime variable as the 

dependent variable and the eight dichotomized cluster  

indicator variables (denoted CLE1I, CLE2I, etc.) entered 

stepwise in the regression equation using the forward LR 

method (level of entry was p=.05). The results are     

presented in Table 9. The Nagelkerke R
2
 values show that 

young dichotomized crime (YDCrime) was better predicted 

by means of the cluster indicator variables than adult   

dichotomized crime (ADCrime). In both cases, cluster  

indicator variables CLE1I and CLE8I were significant, and 

when predicting YDCrime also CLE6I. Hence, not only did 

the three theoretically expected types emerge as clusters, 

these clusters were also related to high criminality.  

To compare the predictive power of the information 

about cluster membership to the predictive power of the 

three original continuous variables, additional LRAs were 

carried out with a crime variable as the dependent variable 

and the continuous variables entered stepwise as indepen- 

dent variables (level of entry was p = .05), see Table 10. 

Again, the Nagelkerke R
2
 values show that young dichoto-

mized crime (YDCrime) was better predicted than adult 

dichotomized crime (ADCrime). Motor restlessness 

emerged as the best predictor. Comparing the Nagelkerke 
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R
2
 values of Table 9 and Table 10 we can conclude that 

both YDCrime and ADCrime were similarly well predicted 

by means of the binary cluster indicator variables and the 

continuous IDA variables.  

An interesting question is whether the variable-oriented 

or person-oriented information adds to the predictive power 

achieved by the other type of information. We therefore 

performed two additional analyses, one where the three 

continuous variables were added stepwise to the best equa-

tion achieved by the cluster membership variables (i.e. 

those retained in the final step of the stepwise analysis of 

the eight cluster variables), and another analysis where the 

eight cluster membership variables were added stepwise to 

the best equation achieved by the continuous variables (i.e., 

those retained in the final step of the stepwise analysis of 

the three continuous variables). The results indicated that 

the LRA model obtained first, using one type of variables, 

was not significantly improved by allowing the other type 

of variables entering the regression model. Our conclusion 

is that the person-oriented summary of the data in the form 

of a typology retains the predictive power of the original 

variables - but it does not significantly improve it. 

 

A model-based approach   

 

In order to test the usefulness of a model-based approach 

for analyzing the EMP data set we also performed an 

MCLUST analysis of these data. Running MCLUST the 

results first indicated that the best model – having the  

largest BIC values – was an ellipsoidal, equal volume and 

shape (EEV) model with 9 components. However, inspect-

ing closely this solution it turned out that for 3 out of the 9 

clusters the cluster sizes were small (2, 4, and 11), and the 

ellipsoidal forms with varying orientations proved to be 

hardly interpretable. In addition, the BIC values of the dif-

ferent EEV solutions between k = 2 and k = 12 were unsta-

ble, strongly oscillating, indicating that the EEV type is 

unstable, which was also confirmed by the unacceptably 

low QC levels of the 9- and 8-cluster EEV solutions (see 

MBEEV9 and MBEEV8 in Table 8). This evaluation of the 

MBC solutions was performed using the Validation module 

of ROPstat. We then turned to the second best solution type, 

which was the spherical, equal volume and shape (EII) 

model, where the k = 9 and k = 5 solutions had the largest 

BIC values (see Figure 4). However, in the k = 9 solution 

one cluster was empty, thus it was in fact an 8-cluster 

structure that was similar in many respects to the 5-cluster 

solution. Most importantly, all clusters of the k = 5 solution 

appeared also in the k = 8 solution – the differences of the 

corresponding cluster centroids were .001, 007, .029, .043, 

and .056, respectively. Since the HC-range of the k = 5 so-

lution (0.44-1.44) indicated the existence of at least one 

very heterogeneous cluster, we preferred the k = 8 solution. 

This solution is similar to our 8-cluster solution presented 

in the previous section, and it is reflected by the following 

high validity coefficients: Cramér's contingency coefficient 

V = .704, Jaccard index = .580, Rand index = .893, and Ad- 

justed Rand index = .602. Comparing the centroid struc-

tures of our 8-cluster solution and this 8-cluster MCLUST 

solution, two centroid pairs (including our theoretically 

important CLE1 and CLE8 clusters) were very similar 

(with ASED ≤ .01), and three others moderately similar 

(with ASED ≤ .08). Computing the QCs (see the MBEII8 

row in Table 8) and the MORI coefficients (see the last row 

in Table 7) for the 7 QCs of the MCLUST solution, we ob-

tained somewhat poorer values for the cohesion QCs 

(EESS% and HCmean) and SC, and somewhat better  

values for the other QCs (XBmod and GDI24) that give 

more weight to the distance of the closest two clusters.  

To sum up, considering that our previously described 

8-cluster k-means solution has more homogeneous classes, 

and acknowledging that a moderate similarity of some 

clusters (like CLE1 and CLE2, or CLE2 and CLE3, see 

Figure 3) is not incompatible to our person-oriented model, 

it might be regarded as marginally superior to the 8-cluster 

MCLUST solution (MBEII8). 

 

Discussion 

 

Consider a research context in which a person-oriented 

theoretical framework is appropriate. In the presentation of 

this framework, we argued that a typological methodologi-

cal approach is then often a natural choice because it   

preserves the information contained in the whole profile of 

values in the variables. This profile reflects “whole system” 

properties that are lost if a standard variable-oriented 

methodological approach is applied where the profile  

information is “atomized” and the pieces (variables) are 

studied as separate units in the analyses, disregarding the 

information provided only by the profile as a whole. A call 

was made for the revival of a typological approach, using 

newer methods of analysis that are less subjective than 

those used in the heyday of the typological approach in 

Psychology. The purpose of the present paper was to   

discuss and exemplify the use of some such methods and to 

examine the findings they produced for two data sets, one 

artificial “prototype” data set and one empirical data set. In 

doing this, we also compared the usefulness of the findings 

produced by a sound partly explorative classificatory  

analysis using cluster analysis to the findings produced by a 

standard model-based method.   

In the Results section, we first analyzed an artificial data 

set (n=400), constructed so that it exemplifies a typological 

structure that may not be uncommon in real life (each  

individual truly belongs to one of four distinct value   

profiles/types but the variables forming the profile contain 

errors of measurement with rtt=.80). The strength of using 

such an artificial data set is that we know the true     

typological structure and can examine how well the differ-

ent methods for classification analysis succeed in finding 

this structure when moderate errors of measurement are 

present. 
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Figure 4. The BIC values for cluster numbers between 2 and 12, for three types (EII, EEI, EEE) of MBC solutions in the 

analysis of the EMP data set 

 

 

The basic finding was that the cluster analysis-based 

method did quite well, both in identifying the four types 

and in ascribing the correct type membership to the studied 

individual objects. The model-based method (MCLUST, 

Fraley and Raftery, 2003) performed surprisingly badly and 

did not identify the four types; instead the solution that 

according to the method was best was a clearly suboptimal 

6-class solution. This finding was unexpected and it may 

have been caused by that the four variables in the profile 

were discrete, taking only the values 1, 2, 3, 4, or 5, both 

for original true scores and for the analyzed scores after 

errors of measurement were added. Hence, the measure-

ment errors were not really independently normal. However, 

deviations from normality are common for real data (see 

e.g. Micceri, 1989) and our finding exemplifies a possible 

limitation in the usefulness of model-based methods that 

are based on standard assumptions. Of course, the artificial 

data set was only a single simulation but we performed an 

additional one and similar results were found. A nice  

property of the artificial data example we used is that the 

interested readers can easily create their own data set of the 

same type and examine how their preferred method   

performs. It is also possible to omit the rounding to integers 

we used and instead analyze continuous data with     

independently normally distributed measurement errors to 

verify that a method performs well in this ideal case. 

In the Results section, we also analyzed an empirical  

data set with just three variables measuring different   

aspects of externalizing adjustment problems (n = 541). All 

variables were coded 1 (no adjustment problem) to 5   

(extreme adjustment problem). The cluster analysis-based 

method suggested that an 8-cluster solution was preferable. 

It had acceptable values in a number of internal validity 

coefficients (quality coefficients), the three theoretically 

expected clusters were reproduced, the solution was   

significantly better than what would have been found, had 

random data of the same type been analyzed, and the solu-

tion showed a moderate degree of external validity in  

predicting registered criminality. The predictive power of 

cluster membership was also about the same as that when 

the three variables in the profile were used as continuous 

variables. This suggests that no information of predictive 
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value that the three “continuous” variables contained was 

lost by replacing them with the information contained in 

just one categorical cluster variable taking eight values. For 

this data set, the model-based method with an automatic 

BIC-value based decision led again to an obviously poor 

model (EEV with k = 9), but carefully analyzing the BIC 

value patterns for several model types (see Figure 4) we 

finally found a solution (EII with k = 8) that appeared  

satisfactory according to different criteria. It happened to be 

in most respects quite similar to our 8-cluster solution. 

However, our conclusion is that the 8-cluster solution was 

marginally better. 

As pointed out above, variables that are non-normally 

distributed are quite common in empirical data, and are 

often characterized by skewed distributions (Micceri, 

1989). We believe that the simple examples of findings we 

presented are sufficient to suggest that the restrictive   

assumptions that model-based classification analysis   

usually is based on may produce biased findings in a  

number of practical applications. In many cases, it might be 

informative to check the findings from a model-based  

classification by applying in parallel another method of 

classification that makes less assumptions about the proper-

ties of the data to be analyzed. This highlights the issue of 

the limited usefulness of “big” classification models in  

situations characterized by complex multivariate data that 

do not match standard assumptions about model properties. 

As pointed out in the presentation of the person-oriented 

theoretical framework, such an ambitious modeling    

approach might often be premature; a caveat that receives 

some support by that the power of rejecting a false classifi-

cation model appears to be rather low for many      

model-based methods under fairly normal conditions (e.g. 

moderate sample sizes, not very distinct classes, see Dziak, 

Lanza, & Tan, 2014; Tein, Coxe, & Cham, 2013). It should 

also be pointed out that model-based clustering, as it is 

usually applied, is not a fully automatic process. Like when 

applying a sound clustering procedure, some subjective 

decisions are often involved in selecting the best classifi-

catory structure. 

In all classification analyses based on profile data, the 

issue of how to measure (dis)similarity arises and there is 

no generally best way to do it. Our choice of the averaged 

squared Euclidean distance was a sound choice for the type 

of data we cluster analyzed; for many other types of data, 

other types of (dis)similarity measures are more appropri-

ate. For instance, the correlation coefficient could be used 

if the relevant characteristic of the profile is profile form, 

not profile level. Of course, the choice of classification 

method should also be aligned to the specific problem and 

data that are analyzed, and for a thoughtful discussion of 

these issues the reader is referred to, for instance, von Eye, 

Mun, and Indurkhya (2004). 

It is a limitation that both data sets analyzed in this paper 

contained discrete data with variables taking just five  

values. An alternative strategy for analyzing these data is to 

apply the powerful tool of configural frequency analysis 

(von Eye & Pena, 2004) that is well adapted to analyzing 

discrete data of this type. Space limitations prevented us 

from adding such analyses but it would be of interest to do 

so and compare the findings to those we presented. 

In this paper, we discussed only the comparatively  

simple case of classifying individuals based on a value  

profile from a single time point of measurement. A very 

important case that was not treated is the more complex 

issue of the identification of developmental types. Due to 

the frequently high complexity of developmental profiles 

(which often tend to contain very many variables), it is 

usually not suitable to include all the variables in a single 

“big” profile analyzed in a single classification analysis. 

The resulting classes/clusters then often emerge as highly 

heterogeneous groups, without much explanatory value and 

that are hard to interpret. It is often a more sound strategy 

to first perform classifications at each age separately and 

then connect class memberships across time (the LICUR 

approach, see Bergman et al, 2003). However, for this  

approach to produce clear and interpretable findings it is 

important that each classification has been successful in the 

sense that the major “real” types have been identified at 

each age, and it is also important that, to a large extent, 

each individual has been ascribed to the appropriate   

cluster/class. If not, “true” individual development in the 

form of changing/constant type membership will be   

obscured by two types of errors (errors in general type 

identification and errors in individual type identification). 

Hence, in a developmental context, applying a sound  

classification methodology and carefully validating the 

resulting classifications is even more important than it is in 

the cross-sectional case discussed in this paper. Unfortu-

nately, in our experience, this is far from always the case. 

 

Acknowledgment 

 

The preparation of the present article was supported by 

the National Research, Development and Innovation Office 

of Hungary (Grant No. K 116965).   

 

References 

 

Bergman, L.R. (1988). You can't classify all of the people 

all of the time. Multivariate Behavioral Research, 23, 

425-441. 

Bergman, L. R. & Andersson, H. (2010). The person and 

the variable in developmental psychology. Journal of 

Psychology, 218 (3), 155-165. DOI: 10.1027/0044-3409/ 

a000025 

Bergman,, L. R., Corovic, J., Ferrer-Wreder, L., & Modig, 

K. (2014). High IQ in early adolescence and career  

success in adulthood: Findings from a Swedish longitu-

dinal study. Research in Human Development, 11, No. 3, 

165-185. DOI: 10.1007/s12124-009-9102-2 

 



 Bergman et al.: Revitalizing the typological approach 

 

62 
 

Bergman, L. R. & Lundh, L.-G., Eds. (2015). The     

person-oriented approach: Roots and Roads to the Future. 

Journal for Person-Oriented Research, 1, Special issue 

1-2, 1-109. DOI: 10.17505/jpor.2015.01 

Bergman, L. R. & Magnusson, D. (1997). A person-   

oriented approach in research on developmental psycho-

pathology. Development and Psychopathology, 9, 

291-319. DOI: 10.1017/S095457949700206X 

Bergman, L. R., Magnusson, D., & El-Khouri, B. M. (2003). 

Studying individual development in an interindividual 

context. A Person-oriented approach. Mahwa, New Jer-

sey, London: Lawrence-Erlbaum Associates. 

Bergman, L. R. & Vargha, A. (2013). Matching method to 

problem: A developmental science perspective. European 

Journal of Developmental Psychology, 10, No. 1, 9-28. 

DOI: 10.1080/17405629.2012.732920 

Cohen, J. (1977). Statistical power analysis for the    

behavioral sciences (rev. ed.). New York: Academic 

Press. 

Desgraupes, B. (2013). Clustering Indices. University Paris 

Ouest, Lab Modal'X, April 2013. https://cran.r-project. 

org/web/packages/clusterCrit/vignettes/clusterCrit.pdf. 

Downloaded: August 28, 2015. 

Glass, G. V., & Hopkins, K. D. (1996). Statistical Methods 

in Education and Psychology (3rd edition). Boston:  

Allyn & Bacon. 

Dziak, J. J., Lanza, S. T., & Tan, X. (2014). Effect size, 

statistical power and sample size requirements for the 

bootstrap likelihood ratio test in latent class analysis. 

Structural Equation Modeling, 21 (4), 534-552. DOI: 

10.1080/10705511.2014.919819 

Fraley, C., & Raftery, A. E.  (2002). Model-based     

clustering, discriminant analysis and density estimation. 

Journal of the American Statistical Association, 97, 

611-631. DOI: 10.1198/016214502760047131 

Fraley, C., & Raftery, A. E.  (2003). Enhanced software for 

model-based clustering, density estimation, and discri-

minant analysis: MCLUST. Journal of Classification, 20, 

263-286. DOI: 10.1007/s00357-003-0015-3 

Magnusson, D. (1988). Individual development from an 

interactional perspective: A longitudinal study. Hillsdale, 

NJ, England: Lawrence Erlbaum Associates, Inc. 

Magnusson, D., & Törestad, B. (1993). A holistic view of 

personality: A model revisited. Annual Review of   

Psychology, 44, 427-452. 

Micceri, T. (1989). The unicorn, the normal curve, and oth-

er improbable creatures. Psychological Bulletin, 105, 

156166. 

Milligan, G. W. (1980). An examination of the effect of six 

types of error perturbation on fifteen clustering      

algorithms. Psychometrika, 45, 325-342.  

Molenaar, P. C. M. (2004). A manifesto on psychology as 

idiographic science: Bringing the person back into   

scientific psychology, this time forever. Measurement: 

Interdisciplinary Research and Perspectives, 2(4), 

201-218. DOI: 10.1207/s15366359mea0204_1  

Muthén, B. (2001). Latent variable mixture modeling. In G. 

A. Marcoulides & R. E. Schumacker (eds.), New Devel-

opments and Techniques in Structural Equation    

Modeling (pp. 1-33). Lawrence Erlbaum Associates.  

Richters, J. E. (1997). The hubble hypothesis and the   

developmentalist's dilemma. Development and Psycho-

pathology, 9(2), 193-229.  

Tein, J.-Y., Coxe, S., & Cham, H. (2013). Statistical power 

to detect the correct number of classes in latent profile 

analysis. Structural Equation Modeling, 20(4), 640-657. 

DOI: 10.1080/10705511.2013.824781 

Vargha, A., & Bergman, L. R. (2015). Finding typical  

patterns in person-oriented research within a cluster-  

analytic framework using ROPstat. Conference on  

Person-Oriented Research. May 8 and 9, 2015, Vienna, 

Austria. 

Vargha, A., Bergman, L. R. & Takács, Sz. (2016). Perform-

ing cluster analysis within a person-oriented context: 

Some methods for evaluating the quality of cluster solu-

tions. Journal for Person-Oriented Research, 2 (1-2), 

78–86. DOI: 10.17505/jpor.2016.08.  

Vargha, A., Torma, B. & Bergman, L. R. (2015). ROPstat: a 

general statistical package useful for conducting    

person-oriented analyses. Journal for Person-Oriented  

Research, 1 (1-2), 87-98. DOI: 10.17505/jpor.2015.09 

von Eye, A., & Bergman, L.R. (2003). Research strategies 

in developmental psychopathology: Dimensional identity 

and the person-oriented approach. Development and 

Psychopathology, 15, 553-580.   

von Eye, A., Mun, E. Y., & Indurkhya, A. (2004). Classify-

ing developmental trajectories – a decision making  

perspective. Psychology Science, 46, 65-98. 

von Eye, A., & Pena, G. E. (2004). Configural frequency 

analysis: The Search for Extreme Cells. Journal of   

Applied Statistics, 31(8), 981-997. 

Ward, J. H. (1963). Hierarchical grouping to optimize an 

objective function. Journal of the American Statistical 

Association, 58, 236-244. 

Wiedermann, W., Bergman, L. R., & von Eye, A., Eds. 

(2016). Development in methods for person-oriented 

analysis. Journal for Person-Oriented Research, 2,  

Special issue 1-2, 1-12. DOI: 10.17505/jpor.2016.01 

Xie, X. L., Beni, G. (1991). A validity measure for fuzzy 

clustering. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 13 (4), 841-846. 

 

http://dx.doi.org.ludwig.lub.lu.se/10.1017/S095457949700206X
http://dx.doi.org/10.1080/17405629.2012.732920
https://doi.org/10.1080/10705511.2014.919819
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org.ludwig.lub.lu.se/10.1207/s15366359mea0204_1
https://doi.org/10.1080/10705511.2013.824781

