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Abstract 

Objective: Dichotomizing clinical trials designs into nomothetic (e.g., randomized clinical trials or RCTs) versus idiographic 

(e.g., N-of-1 or case studies) precludes use of an array of hybrid designs and potential research questions between these 

extremes. This paper describes unique clinical evidence that can be garnered using idiographic clinical trials (ICTs) to 

complement RCT data. Proposed and illustrated herein is that innovative combinations of design features from RCTs and 

ICTs could provide clinicians with far more comprehensive information for testing treatments, conducting pragmatic trials, 

and making evidence-based clinical decisions. Method: Mixed model trajectory analysis and unified structural equations  

modeling were coupled with multiple baseline designs in (a) a true N-of-1 pilot study to improve severe autism-related 

communication deficits and (b) a small sample preliminary study of two complimentary interventions to relieve wheelchair 

discomfort. Results: Evidence supported certain mechanisms of treatment outcomes and ruled out others. Effect sizes in-

cluded mean phase differences (i.e., effectiveness), trajectory slopes, and differences in path coefficients between study 

phases. Conclusions: ICTs can be analyzed with equivalent rigor as, and generate effect sizes comparable to, RCTs for the 

purpose of developing hybrid designs to augment RCTs for pilot testing innovative treatment, efficacy research on rare 

diseases or other small populations, quantifying within-person processes, and conducting clinical trials in many situations 

when RCTs are not feasible. 

Keywords: Clinical trials, statistical analysis, trajectories, structural equations modeling, idiographic, nomothetic, treatment 

mechanisms, N-of-1, personalized medicine, pragmatic trials 

 

The decades-long debate pitting nomothetic research 

(aggregating group data to generalize results to populations) 

versus idiographic research (using short-term, intensive, 

time series data from individuals to reveal within-person 

processes) has renewed in psychology and healthcare (Cat-

tell, 1952; Guyatt et al., 2000; Kratochwill & Levin, 2010; 

Molenaar, 2004; Nesselroade & Ghisletta, 2003; Shadish, 

2014; Skinner, 1938). This debate is occurring primarily 

among statisticians, without consideration of evidence 

needed by clinicians and clinical researchers who stand to 

gain considerable rigor for treating clients/patients by an 

evolution in evidence-based, individualized treatment  
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(Davidson, Peacock, Kronish, & Edmondson, 2014; Khoury 

& Evans, 2015). Statistical foundations for nomothetic and 

idiographic strategies were laid by Cattell (1952) and soft-

ware developments can quantify both strategies from one 

dataset using hybrid clinical studies (e.g., Beltz, Wright, 

Sprague, & Molenaar, 2016).  This paper is to provide a 

clinician-oriented introduction and argument for developing 

hybrid combinations of features from both designs, using 

two studies to demonstrate the range of clinical knowledge 

that could emanate.    

Regarding clinical studies, nomothetic research (e.g., 

randomized clinical trials or RCTs) could be considered a 

top-down approach that uses cross-sections, panels, or 

waves of population-level data to acquire evidence needed 

for population-level decisions (e.g., epidemiology, health 

policy, or developers of clinical products). One advantage of 

RCTs is an ability to detect small effect sizes (e.g., by using 

large samples). They might also reveal subpopulations of    

clients/patients characterized by categories of outcomes or 

other treatment-related characteristics to inform treatment 

strategy (Lei, Nahum-Shani, Lynch, Oslin & Murphy, 2012).  

A disadvantage of RCTs is their limitation for generalizing 

results to clinical settings, small subgroups, or individuals 

due to exclusion criteria, efficacy that is moderated by 

unanalyzed conditions, and heterogeneity of treatment re-

sponses.   

Traditional idiographic clinical trials (ICTs) termed 

N-of-1 or case studies, in contrast, focus intensely on   

individual-level data over shorter time spans to inform 

clinical decision-making for individual clients/patients.  

Rather than population estimates, idiographic techniques 

resemble a clinician’s milieu by carefully investigating  

individuals’ conditions, treatment-related processes and side 

effects, as well as dynamic person-treatment interactions 

over time (Molenaar, 2004). ICT advantages include an 

approach for evidence-based, personalized treatment  

(Guyatt et al., 2000) and when using medium- to small-sized 

samples they typically require far less resources and time 

compared to RCTs. ICT disadvantages include limitations to 

generalizing results especially when samples represent small 

proportions of a population or N=1. Indeed, the historical 

tradition in ICTs is not to analyze data statistically, and to 

generally limit investigations to focus on large effect sizes.  

ICTs might identify subgroups of clients/patients in terms of 

similar longitudinal patterns (e.g., homogeneous clusters) or 

similar outcomes, but doing so in a bottom-up manner 

(Gates & Molenaar, 2012; Raiff et al., 2016; Zheng, Wiebe, 

Cleveland, Molenaar & Harris, 2013).   

The purpose of this paper is to describe and illustrate 

potential benefits to clinicians and their clientele that are 

offered by advancing rigorous ICTs and hybrid designs.  

For example, such designs might test treatment efficacy for a 

rare disease (there are several thousand rare diseases, which 

combined are estimated to affect 25 million U.S. citizens 

alone; National Institute of Health, 2014). Sample sizes 

needed for RCTs frequently cannot be recruited because the 

population is too small. Yet, using an ICT approach, a large 

proportion of the population could be recruited (albeit using 

a small “N”) and studied to estimate efficacy.   

ICTs have largely been neglected in favor of RCTs. In 

certain ways, this is unfortunate for clinicians because 

treatment requires (a) decision-making about how to best 

treat an individual using the available interventions while 

taking into account individual differences in response to 

interventions (whereas RCT evidence is largely limited to 

population- or large subpopulation-aggregate estimates of 

efficacy and effectiveness); (b) short- and long-term moni-

toring of individuals (e.g., to confirm that a treatment is 

having the desired impact or to change treatment strategy); 

and (c) techniques, tools, and combinations thereof which 

are specialized to remedy an illness according to the needs of 

each individual client/patient. This need for evidence-based 

clinical decision-making and the limits of dichotomizing 

RCT vs ICT has led to (a) repeated calls to understand which 

treatments work for whom and under what conditions 

(Fishbein & Ridenour, 2013; Guyatt et al., 2000; Roth & 

Fonagy, 2006); (b) evolving medical home models (Fisher, 

2008; Hunter & Goodie, 2010; Rosenthal, 2008; Tarter, 

Horner, Ridenour, & Bogen, 2013); and (c) movements to 

promote personalized and value-based medicine. To illu- 

strate, the Patient-Centered Outcomes Research Institute 

was founded in 2010 because “traditional medical research, 

for all of the remarkable advances in care it produces, hasn’t 

been able to answer many of the questions that patients and 

their clinicians face daily…” (PCORI, 2014).   

Since the 1980s, nomothetic studies have dominated 

peer-reviewed research reports (Gabler, Duan, Vohra & 

Kravitz, 2011; Smith, 2012). Three recent trends have  

motivated a resurgence in ICTs: recognition of the limits of 

RCTs (Ferron, Farmer & Owens, 2010; Kratochwill et al., 

2010; Van den Noortgate & Onghena, 2003); needs for  

patient-centered healthcare (Davis, Schoenbaum, & Audet, 

2005); and development of statistical techniques that   

rigorously and elegantly analyze ICTs (Ferron, Bell, Hess, 

Rendina-Gobioff, & Hibbard, 2009; Ridenour, Pineo,  

Maldonado Molina, & Hassmiller-Lich, 2013; Molenaar, 

2004; Zheng et al., 2013). However, dichotomizing RCTs vs 

ICTs is misguided because the essence of human clinical 

conditions is characterized by combinations of tools and 

treatments designed for populations, subtypes of persons,   

heterogeneity within those subtypes, within-person longi-

tudinal change, and heterogeneity in response to treatment.   

The ideal clinical trial dataset would reflect reality by in-

cluding a large sample, randomization with subject-as-own 

control design features, and detailed time series data from 

each participant (Beltz et al. 2016; Cattell, 1952; Nessel-

roade & Ghisletta, 2003). This dataset would provide RCT 

outcomes while understanding and accounting for     

within-person processes and individual differences that lead 

to heterogeneity of outcomes. Currently, however,      

researchers are largely limited to methods designed either 

for nomothetic investigation of long-term, population   
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average treatment outcomes (e.g., 6 or 12 months after  

administering treatment) or idiographic investigation of 

short-term outcomes and processes that occur during treat-

ment administration in few persons.   

Combinations of clinical trial methods could provide a 

mosaic of techniques for clinical research to sample far more 

regions of the ideal clinical dataset. To demonstrate this 

mosaic, certain methods traditionally limited to either ICTs 

or RCTs were integrated herein. Because of space      

constraints and existing comprehensive sources, only terse 

summaries are presented herein of (a) the ICT approach, (b) 

the RCT approach, (c) how clinicians and their clientele are 

poorly serviced by relying solely on RCTs, (d) current ICT 

limitations, and (e) the clinical trials design mosaic.    

Because far greater development has occurred for RCTs, this 

paper emphasizes advancing ICT and hybrid techniques to 

adeptly address important yet innovative clinical trials  

research questions.    

 

Traditional ICT Approach to Inform Clinical Decisions 

 

ICT Designs. Kazdin (2011), Ottenbacher (1986), and 

others have written comprehensive presentations of ICT 

designs. Fundamentally, designs of ICTs collect time series 

data from each participant during both control and experi-

mental study phases (hence the moniker “subject-as-own- 

control design”) in place of RCT randomization. ICT de-

signs have the advantage of ensuring that “control” and 

“treatment” data come from exactly equal persons. Time 

series data from the baseline phase (i.e., control phase) 

quantify how an illness would progress under care as usual 

or without intervention.   

ICTs most often utilize some variant of the multiple 

baseline design (Brossart et al., 2006; Gabler et al., 2011; 

Kazdin, 2011; Smith, 2012). In place of RCT randomization, 

a multiple baseline design controls for extraneous influences 

(e.g., historic events, participant practice, maturation) by 

randomly staggering the longevity of baseline phase among 

participants (Kratochwill & Levin, 2010), some of whom 

also could serve as true controls (e.g., in a “wait list” con-

dition). This control for extraneous influences can be 

strengthened by enrolling participants on different dates and 

using statistical techniques described later. If a treatment has 

therapeutic impact, illness severity should abate during 

treatment phases, but only following onset of treatment in 

each participant. The treatment impact effect size is then 

estimated by differences between intercepts and/or slopes- 

over-time among study phases.   

An alternative is the ‘reversal’ designs (e.g., ABAB), 

which are limited to special circumstances because treat-

ment is withdrawn during a subsequent phase (e.g., the 

second 'A') to test whether treatment impact correspond-

ingly wanes (Kazdin, 2011).  One required circumstance is 

a rapid “washout” of treatment effect (e.g., sudden removal 

of a reinforcer or a drug with a short half-life) to show that 

treatment impact wanes soon after treatment is withdrawn to 

rule out alternative explanations. Education and most  

psychotherapies typically cannot be unlearned and therefore 

could not be tested using a reversal design. A second   

circumstance is that sufficient time is needed for an outcome 

to “stabilize” after treatment is withdrawn; it may be   

unethical to withdraw treatment for the duration required for 

an outcome to re-stabilize. Variants of the statistical tech-

niques described herein for multiple baseline studies also 

can be used with reversal designs (Ridenour et al., 2009).     

Strengths. As illustrated later, ICTs provide techniques 

for homogenous samples; intensive investigation of   

within-person processes including treatment mechanisms or 

mediators that occur over the course of treatment admini- 

stration (rather than at 12-month outcomes); and experi-

mental research when populations or funding are small such 

as: rare diseases (several thousand are known, National 

Health of Institute, 2014), emerging illnesses (e.g., Ebola), 

genetic micro-trials, hard-to-reach or underrepresented   

populations (e.g., Native American tribes), in-the-field 

treatments such as soldiers at war or emergency department 

patients (Ridenour et al., 2016), research in third world 

countries, pilot studies, and studies of policy changes that 

are comprised of few states or other regions. As illustrated 

and cited below, recent advances in adapting statistical tech- 

niques to psychology from aeronautics, econometrics, neu-

roimaging, and animal husbandry (using small samples to 

N=1) promise to make ICTs more rigorous and informative.   

Limitations. The greatest ICT limitation occurs with an 

N=1 study because the generalizability of results to others is 

inestimable. On the other hand, an N=1 design provides the 

strongest evidence for clinical decision-making regarding 

the client/patient whose data are analyzed (Guyatt et al., 

2000). ICTs generally involve intensive data collection from 

individuals, thereby usually precluding large samples and 

thus population-level estimates for large populations.  

Nevertheless, meta-analysis techniques are available to 

aggregate multiple ICTs (Braver et al., 2014; Ugille, 

Moeyaert, Beretvas, Ferron, Van den Noortgate, 2012; Van 

den Noortgate et al., 2003; Zucker, Schmid, McIntosh, 

Agostino, Selker, & Lau, 1997). The sample sizes needed to 

adequately generalize results of ICTs to a population are 

unknown, including how homogeneity/heterogeneity of 

within-person processes at the population level ought to be 

accounted for in the sample design (Gates et al., 2012; 

Zheng et al., 2013). Another traditional limitation arises 

from how, historically, ICT researchers usually have limited 

data analysis to visual inspection. Recent reviews indicated 

that statistical analysis is employed in less than 1/3 of con-

temporary psychology ICTs (Brossart, Parker, Olsen &    

Mahadevan, 2006; Smith, 2012).   

Traditional RCT Approach to Inform Clinical Decisions 

 RCT Designs. In the simplest RCT, participants are 

randomly assigned to either treatment or control (often care 

as usual) in the attempt to equate the groups on all charac-
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teristics except the treatment. When randomization fails to 

sufficiently equate the groups, statistical techniques are 

used to account for group differences. Many variants of 

RCT designs exist including recent developments of 

SMART designs (Lei, Nahum-Shani, Lynch, Oslin & Mur-

phy, 2012), MOST designs (Collins, Murphy, & Strecher, 

2007), and propensity scoring to refine efficacy estimates 

(Lee, Lessler & Stuart, 2010).   

Strengths. RCTs offer a rich and sophisticated history of 

methods and evidence. RCT power analysis and other 

nomothetic techniques have been evolving for over 30 

years. Sampling strategies and data weighting have been 

well-delineated. RCTs have become well-funded and 

gold-standards for many features of RCT research have 

been identified. The most common clinical use of RCTs is 

estimating an intervention’s efficacy or effectiveness at the 

population or subpopulation level.       

Limitations. RCTs often require large samples (e.g., to 

detect small effect sizes and minimize confidence intervals) 

and resultant expenses lead to numerous scenarios when 

RCTs are not feasible. Fortunately, ICTs offer complemen-

tary, rigorous alternatives for those scenarios (see ICT 

Strengths).  Perhaps the greatest RCT limitation is that 

their efficacy estimates are often used to inform clinical 

decisions for individual clients/patients. However, to do so 

a clinician is nearly always forced to violate well-     

established limits of statistical generalization including the 

ecological fallacy, ergodicity theorem and Simpson’s para-

dox (Simpson, 1951). Next, these phenomena are described 

and illustrated by physicians’ resultant dilemma in the con-

text of treating diabetes. 

Ecological fallacy occurs if inferences are made about 

subgroups or individuals based on large sample-level data 

when those persons are distinct from the prototype of the 

full sample (Piantadosi, Byar, & Green, 1988; Roux, 2002; 

Schwartz, 1994). Proofs of the ergodicity theorem specify 

the rare conditions under which the ecological fallacy does 

NOT occur (Birkhoff, 1931; Gayles & Molenaar, 2013; 

Molenaar, 2004): stationarity (statistical properties such as 

mean, variance and covariances among clinical characteris-

tics are invariant over a given time interval) and homogene-

ity across persons (no interindividual differences exist 

among the statistical parameters and models of individuals’ 

clinical characteristics). A common exercise in psychologi-

cal and healthcare nomothetic research involves drawing 

inferences from a study’s results about the nature of indi-

viduals (i.e., assume ergodicity), yet few aspects of human 

health or psychology meet the conditions of ergodicity.   

Thus, efficacy results from RCTs generalize poorly to 

most individuals (everyone except the average). Indeed, 

situations have been demonstrated in which group averages 

(i.e., population estimates) fail to resemble any individuals 

(Miller & Van Horn, 2007). RCTs rarely present data to 

understand heterogeneity in treatment responses. As a result, 

person-centered, value-based medicine, and medical home 

model movements have risen in healthcare and psychologi- 

cal treatment in attempt to enhance RCTs by obtaining 

treatment-related evidence specifically for clinical     

decision-making (Fishbein et al., 2013; Fisher, 2008;  

Guyatt et al., 2000; Hunter & Goodie, 2010; Rosenthal, 

2008; Roth & Fonagy, 2006; Tarter et al., 2013), joining 

long-standing champions of ICTs (e.g., Ferron, et al., 2009; 

Kazdin, 2011; Kratochwill et al., 2010; Ottenbacher, 1986; 

Shadish, 2014) in recognizing the limits of RCTs for   

informing clinical decisions.   

Clinicians’ dilemmas from RCTs 

Treatments to control diabetics’ glucose level illustrate 

the clinical upshot of the ergodicity phenomenon.   

Weissberg-Benchall et al. (2003) conducted a high quality, 

widely-cited meta-analysis of 11 RCTs that compared mul-

tiple daily injections to insulin pumps. Insulin pump  

therapy was associated with better glucose control on  

average in each study. The aggregate efficacy, Cohen’s d 

(the mean difference in treatment outcomes, computed as: 

[ T – C] / Variancepopulation) (Cohen, 1988), was quite large, 

d = .95 (CI=.8-1.1), in favor of the insulin pump. It was 

concluded that, insulin pump therapy “… is associated with 

improved glycemic control compared with traditional  

insulin therapies … [without] significant adverse out-

comes.” (p. 1079). However, complications of the insulin 

pump that were reported in the reviewed studies included 

dangerous glucose levels (both high and low), pump mal-

function, and site infections. Also, 37.5% of insulin pump 

recipients discontinued its use in favor of injections 

(Weissberg-Benchall et al., 2003). Thus, a large efficacy 

supported using insulin pumps on average, but no guide-

lines were provided to determine who benefits from insulin 

pumps vs. daily injections. Guidelines are still lacking to 

anticipate which treatment offers greater benefits for   

individual patients (Reznik, et al., 2014).      

ICT Solution for the Clinician’s Dilemma. Physician 

Pineo’s recent dilemma illustrates how ICTs can supple-

ment RCTs to inform clinical decisions (Ridenour et al., 

2013). His nursing home patients with diabetes frequently 

experienced ketoacidosis while receiving the sliding scale 

method of glucose control (insulin levels are adjusted only 

bi-weekly). Although antiquated, the sliding scale is com-

mon practice within nursing homes because insulin pumps 

are costly, easily damaged (e.g., while moving a patient 

between a bed and wheelchair), injurious to patients (e.g., 

due to misuse by patients with dementia), and can increase 

the aforementioned health risks. No research literature 

could be located regarding treatment of uncontrolled blood 

glucose in this population. Dr. Pineo developed an algo-

rithm to use at each meal (accounting for blood glucose 

level and anticipated food consumption) to determine bolus 

doses of insulin for a nurse to administer (termed “manual 

pancreas”). A multiple baseline ICT pilot tested the manual 

pancreas with Dr. Pineo’s patients as they entered his care 

(N=4), which demonstrated statistical and meaningful re-
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duction in blood glucose levels (Cohen’s d =.84) as well as 

the need for the individualized bolus dosing (Ridenour et 

al., 2013).       

Clinical Trials Designs Mosaic  

Historically, polarization of RCT vs. ICT has reflected 

differences in seven design features: effect size, sample size, 

number of observations per participant, length of study 

enrollment, randomization strategy, type of inference drawn, 

and analysis techniques. As mentioned, a dataset that  

provides the most comprehensive evidence for clinical    

decision-making would consist of the sample size of a tra-

ditional RCT, the time series of a traditional ICT, randomi-

zation scheme(s) to address the relevant treatment research 

question(s), and analytic techniques to simultaneously es-

timate (a) efficacy/effectiveness and  (b) within-person 

processes (Beltz et al, 2016; Cattell, 1952; Nesselroade & 

Ghisletta, 2003). Such a dataset has not yet been compiled 

due to the expense, copious effort, and singular focus  

required to conduct it. Even so, all extant studies could be 

considered subsets of this population of data, including 

RCT-ICT hybrid designs. One widely-used hybrid design 

that has combined features traditionally used in RCT or 

ICT designs is the double-blind, cross-over clinical trial 

using trajectory analysis (Hahn, Bolton, Zochodne, & 

Feasby, 1996).   

Hybrid clinical trial designs would utilize combinations 

of the seven features of traditional ICTs and RCTs that best 

address a particular hypothesis and/or clinical deci-

sion-making research question(s). Some benefits of doing 

so include: (1) optimal combination of features that are 

selected to address a particular research question; (2) 

strengths and limitations of each feature can be delineated 

by study, as per the research question(s) it is intended to 

answer; (3) the limitations of a study can be better specified 

and redressed in replication research; and (4) over time, a 

richer mosaic of studies could represent more segments of 

the aforementioned comprehensive dataset. Clinical   

decisions could consider how well/poorly the evidence in-

forms an expected treatment outcome for an individual or 

even use an N-of-1 study for an evidence-based, individu-

alized clinical decision.    
Two investigations presented later illustrate the clinical 

trials designs mosaic. They use idiographic statistical tech-

niques that have parallel techniques in nomothetic research, 

thereby permitting results from RCTs and ICTs to be coa-

lesced and potentially meta-analyzed. Elsewhere are 

demonstrations of ICTs in natural experiments, to test 

moderation/mediation effects of a treatment, and for    

researching treatment-by-subgroup interactions (Raiff, 

Barry, Jitnarin & Ridenour, 2016; Ridenour et al., 2013; 

Ridenour, Wittenborn, Raiff, Benedict & Kane-Gill, 2016). 

Prior to presenting the illustrations, the statistical models are 

succinctly described. 

Methods: Statistical Techniques for Hybrid 

Clinical Trials 

Mixed Model Trajectory Analysis (MMTA). MMTA 

uses the hierarchical linear modeling approach with certain 

adaptations specifically for small samples (described later). 

An individual’s time series observations are quantified at 

level 1 while the aggregates of individuals’ data are ana-

lyzed at level 2 (also providing a statistical test for individ-

ual differences) (Bryk &  Raudenbush, 1987; Curran, 

Howard, Bainter, Lane, & McGinley, 2014; Ferron et al., 

2009 & 2010; Hedeker & Gibbons, 2006; Ridenour et al., 

2013; Ridenour et al., 2016; Singer & Willet, 2003; Shadish 

& Rindskopf, 2007). Considerable evidence in using 

MMTA to quantify individual time series and outcomes is 

available from health and non-health fields (e.g., animal     

husbandry and genetics) in the context of best linear  un-

biased predictors (Henderson, 1963; Littell, Milliken, 

Stroup, Wolfinger, & Schabenberger, 2006; Robinson, 

1991). Within-person MMTA can be represented using a 

single regression equation:  

 

(1) Yit =ß0 + u0i + ß1(Time) + u1i(Time) + ß2Intxit + 

ß1(Intxit*Time)it + eit 

 
where Yit is an outcome for individual i at time t; the inter-

cept for individual i (in ICTs the intercept may be when a 

baseline phase transitions to intervention) is a function of 

the average sample intercept (ß0) plus individual i’s devia-

tion from this average (u0i, which is assumed to have a 

normal distribution and each time point is uncorrelated with 

all others, using an error covariance structure to parse out 

autocorrelation); change in the outcome over time is a 

function of the sample average trend (ß1[Time]) plus indi-

vidual i’s deviation from that trend (u1i[Time], assumed to 

be normally distributed); differences between baseline and 

intervention phases are modeled as differences between 

phase intercepts (ß2Intxit) and trends (ß3(Intx*Time)it); and 

finally eit denotes random error (an aggregate term that can 

be parsed into multiple sources of error). This model can be 

expanded into vectors and matrices to accomodate multi-

variate predictors. 

The term “mixed model” refers to categorization of 

model variables into “fixed” or “random” effects. Fixed 

effects involve variables assumed to have no measurement 

error, are constant across individuals, and their values are 

equivalent across studies (e.g., most demographics, passage 

of time, study arm assignment). Random effects involve 

variables that represent random values from a larger popu-

lation or involve generalizing inferences from the effect 

beyond the observed values (e.g., Gaussian psychological 

characteristics, an effect of time that varies across persons).  

While not discussed here due to space limits, this distinc-

tion is fundamental both in terms of analytic techniques and 

interpretation of results (Borenstein, Hedges, Higgins, & 
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Rothstein, 2010). Within ICTs, fixed effects are typically of 

greatest interest whereas random effects serve as statistical 

controls.      

Herein, maximum likelihood estimation and common fit 

statistics (likelihood-ratio 2
, Akakie’s Information    

Criterion, Bayesian Information Criterion) tested whether 

competing predictors and error covariance structures   

provided best fit to the data using SAS 9.3. Results of 

MMTA fit tests are not reported herein to conserve space 

but are available from the first author. Misspecifying error 

covariance structures in MMTA can result in biased esti-

mates of parameter confidence intervals, random effects, 

and possibly fixed effects (Ferron et al., 2009; Kwok et al., 

2007; Sivo et al., 2005). Thus, multiple error covariance 

structures were tested (autoregressive, heterogeneous auto-

regressive, autoregressive moving average, and toeplitz, 

each with a lag 1).   

One of MMTA’s adaptations for small samples is to ob-

tain model parameters using restricted maximum likelihood 

estimation because the full maximum likelihood under- 

estimates parameter variance components (due to how df 

are allocated) (Dempster, Laird & Rubin, 1977), which is 

particularly problematic for small samples (Kreft et al., 

1998; Patterson et al., 1971). The second adaptation is  

using the Kenward-Roger adjusted F-test (when an F-test is 

used) to reduce potential for Type I error (Ferron et al., 

2009; Kenward & Roger, 1997; Littell et al., 2006).   

Unified Structural Equations Modeling (USEM). 

Conceptually, USEM is a form of state-space modeling 

which resembles SEM in many ways, but models 

day-to-day changes (or more generally timet to timet+1) of 

multiple variables while accounting for autocorrelation 

(e.g., Figure 2, later). Chow and colleagues (2010)   

thoroughly review similarities and differences between 

SEM and state-space models, but demonstrate that each is a 

special case of the other (depending on model constraints) 

– consistent with the aforementioned ideal dataset. Proto-

typical SEM best models “simultaneous structural relations 

among latent variables and possible interindividual    

differences in such relationships” whereas prototypical 

state-space techniques best model “more complex intrain-

dividual dynamics, particularly when time points are great-

er than sample size” (such as ICTs) (p. 310). Table 1 briefly 

compares three statistical modeling approaches with poten-

tial for analysis of hybrid and ICT studies. The analytic 

model that is employed in any particular study should be 

selected according to the objectives, hypotheses, assump-

tions, and design of the particular study. Herein, USEM 

was chosen for time series data, emphasis on short-term 

(e.g., day-to-day) change, and an assumption that contem-

poraneous and lagged associations among variables would 

not change over the course of the study, except by study 

phase.    

USEM is among the least used techniques for clinical 

trials. Indeed, few studies to date have analyzed ICT data 

using USEM (Kim, Zhu, Chang, Bentler & Ernst, 2007; 

Gates et al., 2012; Molenaar & Nesselroade, 2009; Ram, 

Brose & Molenaar, 2013; Ridenour et al., 2013; Zheng et 

al., 2013). Herein, USEM mathematical notation is based 

on the recently created set of analytic programs, Group 

Iterative Multiple Model Estimation (GIMME), because 

their features most resemble the ideal clinical trial dataset 

and individualized analytic options needed to inform clini-

cal decisions (Beltz et al., 2016; Gates et al., 2012). Unlike 

other linear algebraic packages, within a single analysis 

GIMME-MS can parse variance and covariance among 

study variables into individuals’ own autocorrelation   

patterns, across-person common effects, individual-specific 

effects, and detection of subgroups of participants with 

similar individual-specific effects (Beltz et al., 2016). 

Equation 2 presents the general USEM formula (with 

constant means fixed at zero) in which study variables are 

observed each day. Associations among variables are   

described as either contemporaneous (same-time) or lag 1 

(effect from a preceding time point to the next time point). 

This model assumes that (a) only one solution best    

accounts for each individual’s data (including group- and 

individual-level effects) and that (b) autocorrelation with a 

lag of 1 [i.e., 1(t)] fully accounts for unexplained correla-

tion among each individual’s observations over time.  

Within GIMME, violation of the former assumption can be 

handled within GIMME-MS by its search for multiple  

solutions and violation of the latter assumption can be  

handled by allowing for additional autocorrelations (e.g., 

lags of 2 and/or 3) (Beltz et al. 2016). The error matrix for 

Equation 2 contains a diagonal covariance matrix with 

means of zero. Time points are notated as t = 1, 2, … T 

(with 1 indicating length of lag), study variables as , indi-

viduals as the subscript i, and group-level effects as the 

superscript g.

 

i(t) =  (i + g)i(t)  +  (1,i + 1
g)i(t – 1)  +  1(t) 
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Table 1. Prototypical uses of three analytic techniques of longitudinal data 

 

 

 

GIMME State-Space Models 

(USEM) 

Hierarchical Linear Modeling 

(MMTA) 

Bivariate ALT, Parallel Process 

Models (SEM) 

Introductory 

References 

Beltz et al. (2016); 

Gates et al. (2012) 

Bryk et al., (1987); Ridenour et al., 

(2016); Singer, et al., (2003)  

Bollen et al. (2004); McArdle 

(1988); Sher et al. (1996) 

Objective 

Quantify intraindividual dynamic 

relations in one, or among many,  

variable(s) over short time periods 

Quantify/model one outcome 

trajectory; ICT quantifies para- 

meters changes in an experiment 

Quantify interindividual structure 

relations among latent variables 

over long time periods 

Design 
Small ‘N’, manifold ‘T’, short 

lags between observations 

Wide range of ‘N’, ‘T’, and ob-

servation lag times 

Large ‘N’, few ‘T’, long lags  

between observations 

Assumptions 

Error terms are normal, homosce-

dastic, not autocorrelated, and don’t 

correlate with other model terms for 

the same ‘Y’ 

Error terms are normal, homosce-

dastic, not autocorrelated, and 

don’t correlate with other model 

terms 

Error terms are normal, homoscedas-

tic, not autocorrelated, and not corre-

lated with other terms for the same 

‘Y’; exogenous variables are error free 

Traditional orientation Idiographic, autoregression 
Nomothetic, hierarchical regres-

sion 

Nomothetic, structural equations 

modeling 

Intended data type Multiple variables of time series 

data 
Time series or panel data 

Panel data with fewer than 10 

waves spaced months or years apart 

Method for testing com-

peting models 
SEM fit statistics SEM fit statistics SEM fit statistics 

Can test among sub-

groups or treatment arms 
Yes Yes Yes 

Emphasis on correctly 

modeling error covari-

ance structure  

Error structures tested and de-

termined prior to estimating  

other parameter coefficients 

Error structures tested and deter-

mined prior to estimating other 

parameter coefficients 

Error structure typically assumed to be 

heterogeneous autoregression (lag 1), 

that is largely decayed due to time 

span between observations  

Can accommodate N=1 

data? 
Yes Yes No 

Heterogeneity in error 

structure among persons? 
Yes Only in person-specific analyses No 

Explicitly models parallel 

and same-time relations 

among multiple varia-

bles? 

Yes No Yes 

Explicitly models lagged 

relations among multiple 

variables? 

Yes No Yes 

Explicitly models change 

in same-time, lagged 

relations?  

Assumes same-time and  

lagged relations are  

equivalent for study duration 

Assumes same-time and  

lagged relations are  

equivalent for study duration 

Yes 

Can test for fixed effects? Yes Yes Yes 

Can test for random  

effects? 
Yes Yes Yes 

Note: Chow et al. (2010) describe general similarities and differences between structural equations modeling and state-space modeling, 

including how each can be a special case of the other given specific model constraints.  N=sample size.  T=number of measurement 

occasions (times).  USEM=unified structural equations modeling.  MMTA=mixed model trajectory analysis.  SEM=structural equa-

tions modeling.
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Treatment mechanisms can be modelled, and moderation 

of them between baseline and intervention phases can be 

tested in terms of improved fit to the data between (a)  

forcing individuals’ model coefficients to be equal during 

control and treatment phases versus (b) freeing the coeffi-

cients to differ among phases. Herein, Study 2 compared 

three competing models of treatment mechanisms using 

traditional SEM fit statistics for longitudinal data (likeli-

hood ratio 
2
, Akakie’s Information Criterion, Bayesian 

Information Criterion) and AMOS 19.   

The primary aim of Study 2 was to derive coefficients at 

the aggregate level rather than detailed individual differ-

ences. Within this context, traditional SEM programs may 

be used to analyze data from each participant and per study 

phase as if they came from different subsamples (e.g., to 

account for clustering within individuals and differential 

weighting due to varying numbers of observations among 

participants). Fixing parameters to be equal among the sub- 

samples of data (not necessarily subsamples of participants) 

provides comparison fit statistics when no differences 

among study phases are modelled (i.e., H0). Then, by free-

ing the parameters to be estimated separately among the 

study phases (i.e., H1), the change in fit to observed data 

provides a test of moderation. This approach assumes that 

the critical study interest is comparing between study phas-

es, as in a clinical trial. When, in contrast, individual dif-

ferences are the critical aspect of the analysis then an  

analysis program that is specifically designed for this pur-

pose such as GIMME-MS is required (Beltz et al., 2016; 

Gates et al., 2012).   

 Recently, USEM in the form of P-technique more ac-

curately modelled observed values compared to MMTA and 

time series analysis (ARIMA) with N=4, multiple baseline 

design, a time series of 400 observations per participant, 

and large intraindividual variability (Ridenour et al., 2013).  

However, compared to MMTA, USEM required such a 

large number of parameters that for single-person analyses 

it was unable to converge on a solution. Gates et al. (2012) 

and Zheng et al. (2013) provide examples of USEM for 

N=1. Another recent state-space modeling advance is a 

technique for testing mediation analysis within persons (Gu, 

Preacher, & Ferrer, 2014). 

Study 1: Traditional N-of-1 Study Analyzed 

with MMTA 

Background 

Autism spectrum disorders (ASD) are often first recog-

nized because of delayed or abnormal speech or communi-

cation. Approximately 1 in 68 children has an ASD (Baio, 

2014), about 50% of whom develop limited or no speech 

(Johnson, 2004), and these deficits usually continue into 

adulthood (Howlin, Goode, Hutton, & Rutter, 2004).  

Augmentative and Alternative Communication (AAC) 

technologies have been designed specifically for children 

with ASD (Hill, 2012). One recently-developed AAC in-

tervention consists of teaching children to use a computer-

ized, icon-based, touch-screen system that also generates 

digitized speech to strengthen verbal communication (Chen, 

Hill, Ridenour, Sun, Su, & Chen, 2015). The user interface 

allows icons to be hidden, so that more complex vocabulary 

can be introduced gradually and tailored to a child’s skill 

level, learning rate, and evolving interests. However, three 

barriers have largely precluded using RCTs to test efficacy 

of AAC technologies: limited funding, availability of only 

small samples, and large population heterogeneity (e.g., 

comorbidities).  

The first hypothesis was that the AAC treatment provides 

growth in communication skills in children with severe 

communication deficits. A critical component of the AAC 

intervention is training family members to deliver AAC so 

that speech-language therapy can be more affordable,  

individualized, and flexible in delivery times and ‘dosage.’ 

Accordingly, the second hypothesis was that the communi-

cation improvement associated with the AAC intervention 

would be equivalent among a speech language pathologist 

(SLP) and two family members, with the intervention  

deliverer being tested as a treatment mechanism (statistical 

moderation).  

Methods 

Study Design. The participant was a 6-year, 3-month-old 

boy, with an ASD, pervasive developmental disorder,  

moderate-to-severe speech disorder, and language delay; 

his communication level equaled a 10- to 18-month age 

range of normative development. He was recruited at the 

clinic where he had received traditional speech therapy for 

six months without improvement. Per the university IRB-  

approved protocol, the boy’s mother and grandmother were 

recruited as communication partners to deliver the AAC 

intervention in addition to his SLP. The baseline phase con-

sisted of introducing the boy to the AAC system on a 

touchscreen laptop, which was placed on a desk in the  

intervention environment (home), but without further  

instruction. Communication partners also self-talked and 

used the AAC system at set intervals to encourage the boy’s 

usage of it. Baseline lengths of three, five, or seven    

sessions were randomly assigned among communication 

partners.   

During intervention, communication partners imple-

mented strict instruction and modeling protocols to teach 

AAC usage to the boy. Each correct touch of an icon and 

attempt to speak the corresponding word was reinforced 

with the boy’s favorite cookie, music, and verbal praise. 

Each intervention session was divided into 20 minute  

segments, starting with the grandmother as partner,    

followed by the mother, and then SLP. During      

grandmother- and mother-led sessions, the SLP guided the 

others’ intervention when needed.  
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Figure 1. Multiple Baseline across Intervener Design to Test Frequency of Icon Touching and Speaking 
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Instrumentation. The outcome variable was a count of 

the number of times the participant correctly touched the 

AAC display and spoke to imitate the computerized speech 

output (Hill, 2004). Vocabulary evaluation allowed the  

participant to produce meaningful utterances that were 

more similar to his natural speech and language develop-

ment than the pre-recorded computer digitized output (Hill 

et al, 2012). Sessions were video recorded; interrater relia-

bility Pearson r = .82. 

Results 

Data analyses utilized only MMTA because there were 

too few observations for USEM. Data were missing for one 

of the grandmother’s sessions and three SLP sessions.  

Error covariance structures differed slightly among partners 

with autoregressive(1) fitting best for grandmother and SLP, 

but variance components structure for mother. Figure 1 

presents observed time series data as solid lines, best fitting 

MMTA models as dotted lines, and the MMTA formulas to 

compute Y’. The Pearson correlation was r = .90 between 

predicted and observed outcomes. In individual and aggre-

gate analyses, communication growth was statistically 

greater for AAC than Baseline (p<.05).   

Random slopes, but not random intercepts, statistically 

improved fit to the data (p<.05), indicating that shape of 

trajectories differed among communication partners.   

Specifically, faster growth occurred with mother-led AAC  

intervention. Visual inspection suggested that improvement 

in communication during the grandmother and mother  

sessions begins at initiation of SLP intervention. Thereafter, 

curvilinear improvement in communication occurred with 

all three partners.        

Conclusions 

Results are consistent with both hypotheses, with two 

minor exceptions. First, although the AAC intervention was 

associated with improved communication with each partner, 

growth appeared to begin only after the SLP intervention 

was initiated. Second, the fastest growth occurred with   

the mother-delivered AAC intervention. Thus, AAC tech-

nology functioned according to design, family members 

proved able to deliver AAC treatment, and evidence sup-

ported expanding the testing of this AAC language-based 

system. Although not reported here, these findings have 

been replicated in a larger, school-based sample (Chen, Hill, 

Ridenour, Sun, Su, Chen, 2015). 

MMTA models replicated the observed data well and 

provided proof-of-concept information regarding mecha-

nisms of intervention effects. Replicating previous com- 

parisons between statistical techniques, MMTA proved to 

be viable with few study participants and observations (Ri-

denour et al., 2013). For example, these data were much too 

sparse for USEM or time series analysis.     

Documenting treatment efficacy and effectiveness in the 

field of AAC is challenging. One central barrier is showing 

that gains in speech and language skills are due to the 

treatment rather than maturation. Another substantial barri-

er is the heterogeneity of the population needing AAC  

interventions, thus making accumulation of small sample or 

N-of-1 studies useful to advancing the evidentiary base to 

guide clinical practice.   

Compared to traditional visual inspection methods, 

MMTA models provide rigorous evidence to answer a 

question often posed by third-party payers, “are the results 

due to treatment or merely the child’s maturation?” Data 

clearly show that AAC clinical services are warranted,  

especially in light of the lack of clinical progress over the 

six months preceding the study. Clinical services to train  

family members add significant value to payment for AAC 

treatment, since time spent on training family members 

helped to achieve the targeted communication outcomes 

without requiring the SLP to conduct all the sessions  

needed for progress (saving costs and increasing dosage).  

Finally, the child had unique co-morbidities related to his 

speech-language disorder that demonstrated the challenge 

of using RCTs for investigating AAC treatment. 

Study 2: Randomization with Multiple   

Baseline Design Using MMTA and USEM 

Background 

Using a wheelchair for extended periods can lead to 

pressure sores, muscle spasms, altered blood pressure and 

flow, joint problems, muscle contractures, and painful  

discomfort. The team at the Human Engineering Research 

Laboratories has developed a series of devices to assist 

people with physical disabilities (Cooper et al., 2006; 

Cooper et al., 2010; Ding, Cooper, Pasquina, & Fici- 

Pasquina, 2011). The Power Seat (PS) was designed to re- 

lieve discomfort due to sitting in a wheelchair in one posi-

tion for extended periods by allowing users to adjust wheel- 

chair positioning (Dicianno, Mahajan, Guirand, Cooper, 

2012; Ding et al., 2010; Lacoste, Weiss-Lambrou, Allard, & 

Dansereau, 2003). Positions range from traditional 90 de-

gree angles to nearly supine using adjustments to the foot-

rest, seat bottom, and seatback. However, during a pilot 

study, PS users largely failed to comply with prescribed PS 

usage but rather relied on infrequent and small angle ad-

justments to their seating position; they also continued to 

complain of pain and discomfort (Ding, et al., 2008; 

Lacoste, et al., 2003).   

Two contributors to poor adherence were hypothesized: 

(1) confusion regarding PS usage and (2) neglecting to use 

the PS due to forgetting, failing to self-monitor discomfort  

levels, or low ‘buy in.’ To improve adherence, an extended 

education/assistance program was devised to improve  

understanding of PS functioning (termed Instruction). A 

second intervention, termed Virtual Coach, consisted of 

computer-delivered reminders to mindfully monitor physi-

cal discomfort level at the proscribed intervals and alter PS 
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Figure 2. Competing Models of How Power Seat Usage is Associated with Discomfort.
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Note: “0” on the x-axis (also location of vertical dotted lines) denotes the end of baseline phases and beginning of intervention. 

Figure 3. Observed Power Seat Compliance Rates from Study 2
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angles for relief (Ding et al., 2010; Liu et al., 2010).  

Compared to Baseline, both the Instruction and Virtual 

Coach interventions were hypothesized to be associated 

with (a) greater compliance with proscribed PS usage, (b) 

reduced discomfort, and (c) increased frequency of PS us-

age and duration of large angle (>15°) positions (the theo-

rized mechanisms of discomfort relief). 

Methods 

Participants. Consistent with the IRB-approved protocol, 

participants were recruited from the Pittsburgh region at an 

assistive technology clinic and a Veterans Administration 

wheelchair seating clinic by their clinicians. Interested cli-

ents were introduced to a study investigator to provide ad-

ditional information, answer questions, and administer in- 

formed consent. Inclusion criteria were: 18 years of age or 

older; use of a medically-necessary, electronic powered 

wheelchair; the client’s sitting surface could be examined 

daily for redness or pressure ulcers either by the client or 

another individual; no active pelvic, gluteal or thigh 

wounds nor a pressure ulcer in these regions within the past 

30 days; and no more than 5 days of hospitalization in the 

previous month. The resultant sample (N=16) was 43.8% 

female; had a mean age of 51.5 years (SD=12.4 years); was 

25% African-American and 75% Caucasian; weighed a 

mean 196 lbs (SD=43 lbs); was a mean 5’7” tall (SD=3”); 

62.5% and 56.3% used a computer or smart phone, respec-

tively; and had been using a wheelchair for a mean 22 years 

(SD=15 years).    

Instrumentation. PS usage (adjustment frequency, large 

changes in PS angles) was recorded by the PS computer. At 

the end of each study day, discomfort levels were measured 

using the Tool for Assessing Wheelchair disComfort 

(TAWC) (Crane, Holm, Hobson, Cooper, Reed, & 

Stadelmeier, 2004; 2005). The TAWC queries General 

Discomfort using 13 broad summary statements regarding 

how a client feels while sitting in his/her wheelchair (e.g., I 

feel poorly positioned, I feel uncomfortable, I feel good) on 

a 7-point Likert scale. It also queries Discomfort Intensity 

at that moment using a 10-point Likert scale for 7 specific 

body parts and additional body parts that could be added by 

the respondent. The TAWC has adequate test-retest relia- 

bility, internal consistency, and concurrent validity (Crane 

et al., 2005).        

Study design. A multiple baseline design was used (14- 

or 18-day baseline phases). At the start of baseline phases, 

an introduction and demonstration of PS use was provided 

to participants. At onset of intervention, participants were 

randomized to receive either Instruction (n=10) or Instruc-

tion plus Virtual Coach (n=6). Intervention phases lasted 50 

days. Autoregressive lag(1) was the best fitting error   

covariance structure for all participants.   

Three competing models were tested (Figure 2). The 

Autocorrelation Only Model implied that discomfort and 

PS usage could shift in mean level among study phases and 

that no variable affected any of the others from day-to-day.  

The Generic Model, based on Zheng et al. (2013), implied 

that in addition to autocorrelation, the level of each variable 

was associated with changes to every other variable on the 

next day. The Cooper & Liu Next-day Model, based on 

hypothesized effects of the Instruction and Virtual Coach 

interventions, implied that levels of PS usage changed 

day-to-day in response to discomfort levels. After identify-

ing the best fitting model, its parameter values were tested 

for moderation by study phase (Baseline vs. Instruction vs. 

Virtual Coach).     

As mentioned earlier in Unified Structural Equations 

Modeling, these competing models had to be compared 

while accounting for clustering of data within study phases 

and individuals. The subset of data from each individual’s 

two phases were analyzed as if they were collected from a 

separate sample. In other words, two USEM models were 

estimated per individual (one for his/her baseline data and a 

second for the intervention phase data) and the full sample 

was analyzed as if model estimates were aggregated from 

32 subsamples. To compare fit among the Autocorrelation, 

Zheng, and Cooper & Liu competing models, correspond-

ing parameters from the 32 subsamples of data were fixed 

to be equal. Then, once the best fitting of these three mo- 

dels was determined, moderation of that model by study 

phase was tested by freeing the corresponding parameters 

to be specific to each study phase (Baseline parameters 

versus Instruction parameters versus Virtual Coach    

parameters).   

Results 

Study data consist of 1,067 observations. During Base-

line, only 2.8% of observations were missing; 7.0% were 

missing during intervention phases. Visual inspection of 

compliance rates for the study duration (Figure 3) suggests 

equivalent rates of compliance during Baseline phases of 

the Instruction and Virtual Coach subgroups whereas   

Instruction phase compliance rates appear to be less than 

the Virtual Coach phase. However, the large within-person 

variability obscures visually pinpointing mean levels, 

trends, size of differences among phases, whether such  

differences are statistically significant, and any effect that 

autocorrelation has on data.   

The best fitting MMTA model for predicting compliance 

was 24.54 + 0.001(per study day)
2
 + 1.65(hours of wheel-

chair occupancy) + 36.18 (if got Virtual Coach) – 0.77 (if 

got Instruction) – 0.02 (per Instruction phase day). Thus, 

compliance rates differed considerably between Instruction 

and Virtual Coach. Also tested, but failed to reach p>.05, 

were (a) change in compliance over time during Virtual 

Coach and (b) whether subgroups differed during Baseline. 

The model’s predicted compliance rates correlated with    

observed compliance rates r = 0.598 (p<.001). These re- 

sults suggest that after controlling for time (e.g., due to 

practice) and how long an individual sat in a wheelchair per 

day, Virtual Coach more than doubled compliance rates 

(60.72% vs 24.54%) on average compared to baseline 

whereas compliance lessened slightly per day of Instruc-

tion. 
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Table 2 

Discomfort Outcomes and Mechanisms of PS Intervention: Differences Among Study Phases from MMTA   

STUDY PHASE 

Variable 
Mean Standard Deviation 

Cohen’s d Com-

pared to Baseline 

BASELINE (244 observations)    

     General Discomfort  41.9 12.39 n/a 

     Frequency of Use  2.1 2.36 n/a 

     Duration of Large Angle Use  50.8 44.78 n/a 

     Discomfort Intensity  19.2 9.52 n/a 

INSTRUCTION (561 observations)   

     General Discomfort  42.6 13.01 - - 

     Frequency of Use  1.5
B
 2.09 -.28 

     Duration of Large Angle Use 37.6
B
 46.02 -.29 

     Discomfort Intensity  19.9 9.36 - - 

VIRTUAL COACH (262 observations)   

     General Discomfort  42.3 10.81 - - 

     Frequency of Use  3.3
B,I

 3.02 .44 

     Duration of Large Angle Use 67.4
B,I

 45.73 .37 

     Discomfort Intensity  10.7
B,I

 5.52 -1.10 

Note: BSignificantly different from Baseline (p<.001).    

ISignificantly different from Instruction (p<.001).   

For Cohen’s d, the benchmark for small effect=0.2, medium effect=0.5, and large effect=0.8 (Cohen, 1988); negative Cohen’s 

d indicates a lower level than Baseline.   

Table 3 

USEM Tests of Intervention Mechanisms in Power Seat Relief from Discomfort 

Fit Statistics 
Autocorrelation 

Only 

Zheng et al  

Generic 

Cooper & Liu Best Fitting Model, Freed to 

Vary
B
 Next-day

A
 

Power Seat Usage Frequency 


2
 20,517.6 20,454.1 20,394.0 19,586.4 

df 579 574 575 537 

AIC 20,547.6 20,494.1 20,432.0 19,700.4 

BCC 20,563.4 20,515.2 20,452.1 19,760.5 

Power Seat Large Angle Duration 


2
 719,813.5 404,585.3 386,618.0 389,717.0 

df 579 574 575 537 

AIC 719,843.5 404,625.3 386,656.0 389,831.0 

BCC 719,859.3 404,646.4 386,676.0 389,891.2 

Note: Lesser values indicate better fit to data for all fit statistics. Underlined cell entries indicate best fit to the data com-

pared to competing models.     
ACooper & Liu’s Next-day model was the best fitting model for both measures of Power Seat Use.   
BModeration of the Cooper & Liu results among phases improved fit to the data only for Power Seat Usage Frequency.   
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Table 4.  

Standardized Coefficients of Best Fitting Unified Structural Equations Models for Day-to-Day Relief from Discomfort 

 
Frequency of PS Use  Duration of High Angle PS Use 

Path Baseline Instruction Virtual Coach  All Phases Aggregated 

GD1 with DI1 .67 .40 .66   .22  

GD1 with PS1 .48 .57 .41   .28  

PS1 with DI1 .09 .11 .51   .05  

A
u

to
co

rr
el

at
io

n
 

GD1 to GD2 1.00 1.00 1.00   1.00  

PS1 to PS2 .71 .46 .51   .70  

DI1 to DI2 .99 .99 .98   .99  

GD1 to PS2 .74 .58 -.36   1.10  

GD2 to PS2 -.39 -.09 .38   -.54  

DI1 to PS2 -.60 -.24 .90   -.88  

DI2 to PS2 .28 .12 -.38   .67  

Note: PS=Power Seat. GD=General Discomfort. DI=Discomfort Intensity. 1= first day. 2=subsequent day.    

BSignificantly different from corresponding Baseline path using a critical ratio test (p<.01).    

ISignificantly different from corresponding Instruction path using a critical ratio test (p<.01).   
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Table 2 presents MMTA efficacy estimates. Compared to 

Baseline, Virtual Coach was associated with increased  

frequency of PS use (2.1 vs 3.3) and greater large-angle PS 

use. In contrast, during the Instruction only phase, PS usage 

was less than Baseline. In terms of efficacy, general   

discomfort was statistically equivalent among phases 

whereas discomfort intensity was statistically less during 

Virtual Coach – by more than an entire SD (Cohen’s d = 

-1.10). Estimates were consistent with MMTA compliance 

results.   

Table 3 presents fit statistics comparing the competing 

USEM models. Results consistently suggested the Next- 

day model best fits the data for both PS adjustment    

frequency and large-angle PS usage. Freeing parameters to 

differ among phases further improved fit to the data only 

for PS frequency. 

Table 4 presents the path coefficients per study phase.  

Day 1 covariance between frequency of PS use with   

discomfort intensity was null during Baseline (.09), about 

the same during Instruction (.11), but greater during Virtual 

Coach (.51). Other associations between discomfort and PS 

use frequency were also moderated among study phases 

after controlling for the first day associations. Similar to the 

Virtual Coach’s greater coupling between PS use frequency 

and discomfort intensity for Day 1, this coupling was even 

greater from Day 1 to Day 2 during Virtual Coach (.90) 

compared to the other study phases (-.60 and -.24). Also 

consistent with Cooper and Liu’s hypotheses, the strong 

association between general discomfort on Day 1 with PS 

usage the next day (.74) was weakened and reversed during 

Virtual Coach (-.36), but not during Instruction (.58).   

Conclusions 

Compared to Baseline, Virtual Coach was associated 

with (a) improved compliance, (b) large reduction in   

discomfort intensity, and (c) greater coupling of PS use 

with discomfort intensity. During Instruction, PS use was 

more correlated with general discomfort, but not changes in 

PS usage (PS usage was less than Baseline) or discomfort  

intensity.   

Thus, PS appears to relieve wheelchair discomfort    

intensity using Virtual Coach at least in part because of 

improved adherence. This study did not include a Virtual 

Coach intervention without Instruction. Based on the poor 

results associated with Instruction, it is reasonable to credit 

Virtual Coach with the outcomes. Yet, without Instruction, 

Virtual Coach efficacy may not have been as large (e.g., 

Instruction may prevent confusion or reinforce Virtual 

Coach). 

Many barriers preclude using RCTs to research treatment 

for wheelchair users. The population is small and hetero-

geneous. Also, transportation complications and health 

conditions impede their research participation. Funding for 

RCTs is lacking. Moreover, clinicians in rehabilitation and 

assistive technology are trained to care and value individu-

al’s needs and outcomes (as opposed to population    

averages). Compared to RCTs, ICTs are more compatible 

with clinical milieu, interfere less with patient “flow,” and 

offer evidence with more direct clinical interpretation and 

application (Graham, Karmarkar, & Ottenbacher, 2012). 

Results from MMTA and USEM provide more        

sophisticated information about interactions among study 

variables, their sequencing, and greater rigor than traditio- 

nal data analysis methods for ICTs (Gabler et al., 2011; 

Smith, 2012). Sensor and mobile computing technologies 

have become more reliable, user-friendly, and widely  

applied for repeated measurements of real world phenome-

na. Coupling ICTs with sensor and mobile computing 

technology to collect data and MMTA and/or USEM repre-

sent a qualitative advance in researching rehabilitation and 

assistive technology (Furberg et al., 2017). 

Discussion 

Like numerous healthcare specializations, psychology 

benefits from a rich tradition of clinically-informative  

research, consistent with the Boulder Scientist-Practitioner 

Model (Baker, Benjamin, & Ludy, 2000). Also resembling 

healthcare, small sample and within-person studies were 

critical in seminal research by preeminent scientists    

including Gustav Fechner, Jean Piaget, Alexander Luria, 

and of course behaviorists such as B.F. Skinner (Sidman, 

1960; Smith, 2012). However, the fall in prominence of 

behaviorism and the corresponding rise in perception of 

RCTs as the lone gold standard for testing clinical interven-

tion have in turn diminished both the use of ICTs and  

production of the types of clinical discoveries that RCTs 

cannot generate (Franklin, Allison, & Gorman, 1997;  

Gabler et al., 2011; Kratochwill et al., 2010; Molenaar, 

2004; Smith, 2012). 

Results herein demonstrated that nontraditional combi-

nations of within-person experimental designs with rigor-

ous statistical analyses for small samples can fill critical 

gaps in evidence-based clinical research especially for pilot 

studies (Ferron et al., 2010; Kratochwill, et al., 2010;  

Ridenour et al., 2013; Smith, 2010; Shadish et al., 2008).  

Specifically demonstrated was that USEM and MMTA 

coupled with subject-as-own-control designs and time  

series data provide powerful techniques for testing inter-

vention mechanisms. Being able to employ combinations of 

features from ICTs and RCTs is especially valuable in light 

of emerging emphases by research funders to understand 

mechanisms of treatment and prevention, precision medi-

cine, and value-based healthcare (Fishbein et al., 2013).     

Juxtaposing Study 1 vs 2 illustrates benefits of the  

availability of multiple analytic techniques for ICT data. In 

Study 2, MMTA ruled out a time-related trend in compli-

ance for Virtual Coach whereas a slight time-related reduc-

tion in compliance was observed during Instruction. In 

contrast, USEM models quantified day-to-day changes and 

statistically tested competing, mechanistic models. Efficacy 
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estimates can be obtained with MMTA, which is especially 

important for treatment research that is limited to small 

samples (e.g., rare or emerging diseases, pilot studies, or 

limited resources) versus when treatment mechanisms are 

the focus of a clinical trial. Effects of treatment mecha-

nisms on outcome trends over time can be tested using 

MMTA (Study 1) whereas day-to-day treatment mecha-

nisms can be tested using USEM (Study 2).  

Statistical Analysis of ICT Data 

Historically, one contrast between RCT versus ICT is  

reliance on statistical analysis vs. visual inspection, respec-

tively (Kazdin, 2011; Shadish, 2014; Smith, 2012; Skinner, 

1938). In fact, one reason for the decline of behaviorism 

was a nearly exclusive reliance on visual inspection of ICT 

data, which continues today (Brossart, et al., 2006; Smith, 

2012). Laudably, one behaviorist maxim is that the impact 

of an intervention should pass the “eye test,” or be see-able.  

Indeed, ICTs are more apropos for investigating large  

effects than small effects. However, this maxim has been 

confused with visual inspection being incompatible with or 

superseding statistical analysis (Ottenbacher, 1986; Shadish 

et al., 2008). Arguably, the greatest limitation of traditional 

ICTs is the lack of standardized effect sizes to quantify and 

meta-analyze intervention outcomes (Brossart et al., 2006; 

Kirk, 1996; Kratchowill, Hitchcock et al., 2010; Shadish, 

2014).   

Several studies have documented biases, multiple 

sources of unreliability, oversimplifications leading to Type 

I errors, and omissions of valuable information that  

commonly occur when relying solely on visual analysis of 

time series data (Franklin, Gorman, Beasley, & Allison, 

1997; Smith, 2012). Sources of biased interpretations that 

are inherent with sole reliance on visual inspection are    

accounted for by MMTA and USEM. Momentum toward 

adapting MMTA for ICTs has grown over the last decade, 

but it is still rarely used even in ICTs that include statistical 

analyses (Brossart et al., 2006; Gabler et al., 2011; 

Kratochwill, Hitchcock et al., 2010; Schmidt & Duan, 2014; 

Shaddish, 2014; Smith, 2012). So, recent progress in 

adapting MMTA and USEM for ICTs such as power analy-

sis (Ferron et al., 2009; Ferron, Farmer & Owens, 2010; 

Zheng et al., 2013) and comparing their relative strengths 

and limits (Ridenour et al., 2013) represent qualitative ad-

vances for ICT methodology.     

Visual inspection of ICT outcomes can nevertheless  

provide insights over and above statistical analysis. In 

Study 1, visual inspection revealed that (a) even though 

distinct statistical models best fit the three communication 

partners, growth in communication was similar; and (b) 

outcomes associated with mother and grandmother inter-

vention appeared to not improve until after SP intervention 

began.  In Study 2, visual inspection shed light on the  

degree of variability associated with compliance rates.   

Few, if any, resources are available regarding analytic 

validity-check techniques for ICTs. Given the primary use 

of MMTA on within-individual trajectory modeling, its 

model diagnostics concentrate on evaluating the level 1 

time series data within each level 2 unit (i.e., for individual 

participants) and meeting model assumptions. One    

approach is to inspect a plot of standardized residuals vs. 

normal scores for degree of departure from a diagonal line.  

Second, overall residuals can be evaluated using histograms 

and box-and-whisker plots per study participant. Finally, 

normality of observations within individuals can be tested 

using the Shapiro-Wilk test. The MIXED_DX macro, de-

signed for use with SAS’s PROC MIXED procedure, pro-

vides each of these model diagnostic results (Bell, 

Schoeneberger, Morgan, Kromrey, & Ferron, 2010). 

Top-down and Bottom-up 

One implication of these investigations that may not be 

obvious is that using MMTA and USEM in ICT and hybrid 

designs can inform RCT research and vice versa. To illu- 

strate, pilot studies with small samples may be conducted 

using ICTs and the resultant effect sizes can inform power 

analyses toward RCTs. A common goal of RCT and ICT 

studies of a particular illness is to identify clinical sub-

groups for which alternative treatments may be needed.  

RCTs pursue this goal by investigating subgroups within 

populations whereas ICTs do so by replicating studies,  

often among distinct clinical samples. Hybrid designs could 

directly test subgroup differences in treatment mechanisms 

or mediators of treatment outcomes while monitoring the 

associated within-person processes. Recent USEM    

developments provide techniques for statistical identifica-

tion of subgroups based on the sequential relations among 

study variables (Beltz et al., 2016; Zheng et al., 2013). 

Collectively, RCTs, ICTs, and hybrid designs could specify 

which treatment strategies do (not) need to be individual-

ized (e.g., Gates et al., 2012; Wang et al., 2014).   

Next Steps 

A number of methodological undertakings could bolster 

use of USEM in ICTs. Just as the Kenward-Roger     

adjustment is needed for statistical tests with small sample 

MMTA, similar adjustments may be needed for USEM 

statistical tests of fit or confidence interval estimates.  

Determining how closely a sample ought to resemble a 

population in terms of heterogeneity is needed for ICT 

power analysis and to gauge how well results can     

generalize. Finally, it will be important to delineate when 

specific combinations of the seven design features best 

illuminate population characteristics, within-person    

dynamic processes, and combinations of each.   

 In sum, the evidence presented herein documented 

four advances. First, a case for and examples that    

documented the potential contributions of utilizing study 

designs across the mosaic of clinical trials designs were 

provided. Second, rigorous and elegant analytic techniques 



Journal for Person-Oriented Research, 3(1), 28-48 

 

45 

 

were demonstrated for ICTs, including a true N-of-1 study. 

Third, strengths and limitations of using MMTA and USEM 

for ICTs were presented. Finally, the highly informative 

evidence that can be obtained with ICTs as well as hybrid 

designs was illustrated featuring their utility for under-

standing treatment mechanisms and providing data specifi-

cally for person-centered clinical  decisions.  
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