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Abstract: In the variable-oriented domain, direction of dependence analysis of metric variables is defined in terms of 

changes that the independent (or causal) variable has on the univariate distribution of the dependent variable. In this article, 

we take a person-oriented perspective and extend this approach in two aspects, for categorical variables. First, instead of 

looking at univariate frequency distributions, direction dependence is defined in terms of special interactions. That is, di-

rection dependence is defined as a process that can be detected “inside the table” instead of in its marginals. Second, the 

present approach takes an event-based perspective. That is, direction of effect is defined for individual categories of variables 

instead of the entire range of possible scores (or categories). Log-linear models are presented that allow researchers to test the 

corresponding hypotheses. Simulation studies illustrate characteristics and performance of these models. An empirical ex-

ample investigates whether there is truth to the adage that money does not buy happiness. Extensions and limitations are 

discussed. 
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Recently proposed methods for the statistical analysis of 

direction dependence (Dodge & Rousson, 2000, 2001; 

Dodge & Yadegari, 2010; Wiedermann, Hagmann, & von 

Eye, 2014), are based on the fact that the distribution of a 

dependent variable, Y, is a convolution of a normally dis-

tributed error term and a non-normally distributed inde-

pendent variable, X. The distribution of Y is, therefore, by 

necessity, less skewed than the distribution of X. The origi-

nally proposed methods have experienced rapid develop-

ment and application. For example, von Eye and DeShon 

(2008, 2012) applied these methods in developmental re-

search and proposed methods for significance testing. 

Wiedermann and colleagues (Wiedermann, et al., 2014, 

2017; Wiedermann & von Eye, 2015a, 2015b; Wiedermann 

& Hagmann, 2016) extended the methods to be applicable 

when X is normally distributed, and they proposed new 

significance tests. von Eye and Wiedermann (2014; cf. 

Shimizu, Hyvärinen, Hoyer, & Kano, 2006; Shimizu & 

Kano, 2008) proposed methods for the analysis of direction 

dependence in latent variable contexts. Wiedermann and von 

Eye (2015a) derived methods for the establishment of di-

rection dependence in mediation analysis. Integrating vari-

ous asymmetry properties of competing linear regression 

models, Wiedermann and von Eye (2015c) proposed direc-

tion dependence analysis as a more general framework to 

empirically evaluate directional theories in the OLS regres-

sion context. 

In variable-oriented direction dependence methods, with a 

few exceptions, for example, when copulas are examined 

(Sungur, & Çelebđoğlu, 2011) or when the structure of ta-

bles is studied (von Eye, & Wiedermann, 2016b), these 

methods target the univariate distributions of metric inde-

pendent variables, dependent variables, and residuals. For a 

discussion of such direction dependence methods in the 

context of person-oriented research see Wiedermann and 

von Eye (2016a).  

In this article, by taking a person-oriented perspective, we 

discuss methods of direction dependence for categorical 

http://www.person-research.org/
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variables, and we propose extending existing methods in 

two ways. First, we propose taking an event-based perspec-

tive and looking at selected categories of variables instead of 

all categories of a variable at a time. Second, we propose 

looking at the frequency distribution inside a table, i.e., 

studying the frequencies of configurations within the table, 

instead of looking solely at marginal distributions. 

Direction Dependence in Cross-Classifications 

Consider the two categorical Variables, X and Y. Crossed, 

they span the X × Y contingency table with I rows and J 

columns. Now, suppose Category xi constitutes the origin of 

an effect, that is, an event, and Category yj, another event, 

is on the outcome side, with i = 1, …, I, and j = 1, …, J. 

This scenario is exemplified in the 3 × 3 Table 1, in which 

X is the row-variable and Y the column-variable. In this 

example, the direction of effect goes from x2 to y1. 

 

Table 1. Direction of effect goes from x2 to y1 

Categories y1 y2 y3 

x1 
   

x2 ☼   

x3 
   

  

The cell frequencies in Table 1 (not given in this illustra-

tion) would be m11, m12, …, m33.The arrow in Table 1 indi-

cates the hypothesized direction of effect. In a research 

context in which causal hypotheses are examined, the hy-

pothesis depicted in Table 1 could be that Event x2 is the 

cause of Event y1. If this hypothesis can be retained, Cell 2 

1 contains more cases than Cells 2 2 and 2 3.  

It should be noted that (1) there is more than one way to 

confirm this hypothesis, and (2) expectancies are to be tak-

en into account. Specifically, several models and measures 

can be considered, and several ways can be considered to 

define expected values for models. In the present article, 

we focus on the latter. More detail follows in the sections 

on measures and models. 

As was discussed by Wiedermann and von Eye (2015b), 

retaining a hypothesis of direction dependence is defensible 

in particular when (1) the hypothesis can be confirmed and 

(2) the opposite direction of effect can be refuted. Table 2 

displays the scenario for the opposite direction of effect, 

that is, when the effect goes from y1 to x2. 

 

 

Table 2. Direction of effect goes from y1 to x2 

Categories y1 y2 y3 

x1 
   

x2 ☼   

x3 
   

 

The arrow indicates the hypothesized direction of effect 

again. Here, when causal hypotheses are examined, it is 

posited that Event y1 is the cause of Event x2. If this hy-

pothesis can be retained, Cell 2 1 contains more cases than 

Cells 1 1 and 3 1. Most important for the discussion in this 

article, there is asymmetry in these two hypotheses in that 

the comparison cells for the first hypothesis, 2 2 and 2 3, are 

constituted by the remaining cells of the outcome variable, Y. 

For the second hypothesis, the comparison cells, 1 1 and 3 1, 

are constituted by what now is the outcome variable, X.  

Cell 2 1 – it could be called the hit cell (cf. Froman & 

Hubert, 1980; Hildebrand, Laing, & Rosenthal, 1977) – 

constitutes the intersection of the hypotheses of interest. In 

each case, the hit cell contains more cases than some func-

tion (e.g., the mean) of the comparison cells in the corre-

sponding rows and columns, or, to use the example in the 

two tables again, m21 > f (m22, m23) in Table 1, and m21 > f(m11, 

m31) in Table 2. Thus, studying these frequency distributions 

can be informative when discerning whether the directional 

effect X → Y, the reverse effect Y → X, both, or neither holds 

for the cross-classification table. When, in support of the 

hypothesis that the direction of effect goes from x2 to y1, Cell 

2 1 is large, there is also an increased probability, that this is 

also in support of the hypothesis that the direction of effect 

goes from y1 to x2. Simulations presented later in this article 

will show how likely this is to occur. We now review 

measures that can be considered when testing directional 

hypotheses. This is followed by a description of the 

log-linear models that can be used to test hypotheses com-

patible with direction of effect. 

Common Measures of Association 

In this section, we review three measures that can be 

used to quantify the magnitude of association in the cate-

gorical data domain and point at potential drawbacks when 

assessing direction of effect. The measures are the Pearson 

X
2
, the odds ratio, and Hildebrand et al.'s (1977) measure 

Del, a measure of proportionate reduction in error. 

For tables of any size, Pearson's X
2 
can be used to test the 

null hypothesis that the variables that span the cross-  

classification under study are independent. When a direc-

tional effect is reflected in the frequency distribution, there 
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will be no independence, and the test will respond.  How-

ever, there are many ways to deviate from independence, 

directional effect being just one of them. Therefore, results 

that are based on this test will rarely be conclusive when 

direction dependence hypotheses are examined from an 

event-based perspective. 

The odds ratio, very popular in epidemiological research, 

is a relative of the log-linear interaction (see Goodman, 

1991). It is estimated by 

2112

2211

mm

mm
 , 

where the m.. are the cell frequencies in a 2 × 2 table. The 

odds ratio assesses the strength of an interaction in a 2 × 2 

table. In Pearson's X
2
, the test statistic is weighted by the 

marginal totals. The statistic is, therefore, marginal- 

dependent (Goodman, 1991). The odds ratio is not 

weighted by the marginal totals and is, therefore, 

marginal-free. Proportional changes in the marginal 

probabilities will result in a different X
2
, but in an 

unchanged odds ratio. Because of this difference, Pearson's 

X
2 

and the odds ratio can suggest different statistical 

conclusions (for an illustration, see von Eye, Spiel, & 

Rovine, 1995). However, the odds ratio is symmetric as 

well. Therefore, directional hypotheses can rarely be tested 

with the odds ratio in a conclusive way in non-experimental 

studies. In tables that are larger than 2 × 2, the odds ratio 

can be employed in the context of decomposition of effects 

(see von Eye, & Mun, 2013). 

Hildebrand, et al.'s (1977) Del measure can be traced 

back to Goodman and Kruskal’s (1954) asymmetric 

measure of similarity. Del is 









ij ijij

ij ijij

m

m

ˆ
1  

where ωij indicates hit cells, with ωij = 1 for hit cells and ωij 

= 0 otherwise. mij are the observed and ijm̂ are the expected 

cell frequencies. Main effect models and null models have 

been discussed for estimation. Considering that the summa-

tion for both, S1 and S2, goes over the entire table, one ob-

tains the same result for a hit cell for a directed effect and 

the effect that goes in the reverse direction. Therefore, and 

as for Pearson's X
2
 and the odds ratio, Del is symmetric, 

and, thus, unable to distinguish between direction of effect 

in opposite directions. Still, the measure should also re-

spond in cases in which direction of effect exists that man-

ifests in interaction-type relations in a table, but decisions 

will rarely be conclusive. For an analysis of the characteris-

tics of Del, see for example von Eye and Sörensen (1991). 

Log-linear Representations 

In this section, we provide log-linear representations of 

the hypotheses discussed in the previous sections. Consider 

the general log-linear model, 

Wmlog , 

where m is the vector of the estimated expected cell 

frequencies of the cross-classification under study, W is the 

design matrix, also called indicator matrix, and λ is the 

parameter of model vectors (see Agresti, 2013; von Eye & 

Mun, 2013). In the odds ratio test discussed in the previous 

sections, raw frequencies were compared with each other, 

without consideration of the row and column marginal 

probabilities. The base model was, thus, the log-linear null 

model. In the contexts of assessing rater agreement and 

prediction analysis, this approach has been discussed by 

Brennan and Prediger (1981). Alternatively, the main 

effects of the variables that span the cross-classification 

under study can be considered. Pearson’s X
2
 is based on a 

log-linear main effect model (see von Eye & Mun, 2013), 

and so is Cohen’s (1960) measure of rater agreement, kappa. 

The alternative of considering main effects is most 

meaningful when sampling is multinomial. Because the 

proposed approach relies on testing the (in)equality of the 

number of cases of a hit cell and the corresponding 

comparison cells, adjusting for main effects (i.e., potential 

heterogeneity of marginal distributions) is important to 

avoid biased direction dependence decisions. 

Considering first the null model as the base model, we 

develop the models of interest from the model log m = 1 λ. 

where 1 is a vector of 1s. The design matrix of this model 

contains just one column, that is the constant vector. In a 2 

× 2 table, the first hypothesis, that is, the hypothesis x1 → 

y1, can be expressed by a vector that contains a 1 for the hit 

cell and a –1 for the comparison cell. The design matrix 

thus becomes, when Cell 1 1 is the hit cell, 






















0

0

1

1

1

1

1

1

W  

when effect coding is used. This model is non-standard 

(Mair & von Eye, 2007), but the design matrix is still 

orthogonal. Adding the vector for the reverse direction of 

effect hypothesis yields the matrix 
























0

1

0

1

0

0

1

1

1

1

1

1

W  

This model is non-standard as well, but the vectors are 

no longer orthogonal which can render parameter 

interpretation problematic (Mair & von Eye, 2007; 

Rindskopf, 1999; von Eye & Mun, 2013). 

There exists a number of options to deal with this issue. 
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von Eye, Schuster, and Rodgers (1998) proposed a 

transformation that results in an orthogonal design matrix 

and parameter interpretation as intended by the design 

matrix before transformation. A summary of this 

transformation, which is known as the Schuster 

transformation, is given in Appendix A. 

Alternatively, a hierarchy of log-linear models can be 

considered. In this hierarchy, the original direction 

dependence hypothesis is tested first, using the first of the 

two design matrices presented here. In a second step, the 

second contrast vector is added and the model is re- 

estimated. These two models are hierarchically related to 

each other. The ΔX
2
-test can be used to determine whether 

adding the second vector improves the model. If this is the 

case, the second direction dependence hypothesis can be 

retained. 

The model that contains both vectors will yield the same 

results, regardless of the order of the two vectors in the 

model. However, the evaluation of the individual contrasts 

in a hierarchy of models does depend on the order they are 

included in the design matrix, because they are not 

orthogonal. Therefore, a hierarchy of models is most useful 

when there clearly is an a priori direction dependence 

hypothesis, and the reverse direction hypothesis is tested 

only to rule out (or establish) the reverse direction of effect. 

This is in accordance with the procedure proposed by 

Wiedermann and von Eye (2015b). Specifically, one has 

found empirical evidence for the model X → Y when the 

model term representing the hypothesis X → Y is needed to 

explain the data (i.e., when log m = λ + λ
Y→X 

+ λ
X→Y

 

represents the data better than log m = λ + λ
 Y→X

) and, at the 

same time, the model term representing Y → X is not 

needed to explain variable associations (i.e., log m = λ + 

λ
Y→X 

+ λ
X→Y

 does not outperform log m = λ + λ
 X→Y

). 

Before moving to the simulations and the data example, 

we first discuss identifiability of models and, second, 

examine the performance of such models in a simulation. 

As the above design matrices suggest, there will always be 

at least one degree of freedom left for statistical testing 

(unless covariates or other special effects are considered). 

When the main effects of the variables that span the 

cross-classification are also considered (which is 

recommended in multinomial sampling), the base model is 

not the null model but the main effect model. In a 2 × 2 

table, this model comes with three vectors in the design 

matrix and, thus, one degree of freedom. Adding just one of 

the direction dependence hypothesis vectors renders this 

model saturated. Adding both renders the model over- 

identified. 

In larger tables, the main effect model becomes a 

candidate for modeling direction of effect hypotheses. This 

applies whenever the main effect model comes with more 

than 2 degrees of freedom. Consider the case of three binary 

variables (X, Z, Y) that span a 2 × 2 × 2 table and assume that 

Cell 2 2 2 represents the hit cell. If the co-occurrence of X 

and Z causes Y, i.e., {X, Z} → Y, then the Cell 2 2 2 should 

contain more cases than Cell 2 2 1. Reversely, if Y causes the 

co-occurrence of X and Z, i.e., Y → {X, Z}, then Cell 2 2 2 

should contain more cases than the three Cells 1 1 2, 1 2 2, 

and 2 1 2. The design matrix for these two competing models 

can be written as 

















































111111

011111

3/101111

001111

3/101111

001111

3/101111

001111

W  

where the first column refers to the model intercept, columns 

2 – 4 represent the main effects of X, Z, and Y, and the last 

two columns test the hypotheses {X, Z} → Y and Y → {X, Z}. 

Following the decision rules described above, one has found 

empirical support for a causal theory of the form {X, Z} → Y 

if (1) the model log m = λ+ λ
X
 + λ

Z 
+ λ

Y
+ λ

 XZ→Y
+ λ

Y→XZ
 

outperforms the model log m = λ + λ
X
 + λ

Z 
+ λ

Y
+ λ

Y→XZ
 in 

terms of model fit (i.e., the model term representing {X, Z} 

→ Y is needed to explain variable associations) and, at the 

same time, (2) log m = λ + λ
X
 + λ

Z 
+ λ

Y
+ λ

 XZ→Y 
+ λ

Y→XZ
 and 

log m = λ+ λ
X
 + λ

Z 
+ λ

Y
+ λ

Y→XZ
 do not differ in terms of 

model fit (i.e., the directionally reversed model term Y → {X, 

Z} does not contribute to explaining variable associations). 

Again, ΔX
2
-tests can be used to test potential improvement 

of model fit. Because the main effects are considered in all 

three models, directional dependence decisions do not 

depend on possibly heterogeneous marginal distributions. 

In the following section, we present results from two 

simulation studies. The studies were performed to explore 

the characteristics of the proposed approach and the 

performance of the proposed log-linear modeling approach 

under various conditions. 

Monte Carlo Simulations 

In this section, we present results from two simulation 

studies. In the first, we examine the number of events that 

reflect patterns of results. In the second study, we ask 

questions concerning the performance of log-linear models 

that can be specified to test event-based hypotheses that are 

compatible with direction dependence. 

 

Simulation 1: Relative Frequencies of Direction 

Dependence Patterns 

 

In the first simulation, cross-classifications of size 2 × 2 

and 4 × 4 were created. For each size, 50,000 cross- 
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classifications were created using the uniform random 

number RANDOM_NUMBER available in the FORTRAN 

compiler Microsoft Developer Studio. In both, the 2 × 2 and 

the 4 × 4 cross-classifications, the hit cell was positioned at 

Cell 2 1. 

We now examine the 100,000 tables under the following 

question: To what degree are the comparisons of the hit cell 

frequency with the row and the column frequencies 

dependent? To answer this question, we cross the two 

variables that represent the numbers of instances in which 

the first (X → Y) and the reverse-direction hypotheses (Y → 

X) are numerically confirmed versus disconfirmed.  Table 3 

displays the results, by size of cross-tabulation. In the 2 × 2 

tables, the hit cell is compared with the comparison cell, for 

both hypotheses. In the 4 × 4 tables, the hit cell is compared 

with the average frequency of the corresponding comparison 

cells. 

 

Table 3. Cross-tabulation of cases of (dis)confirmed  

Y → X and X → Y, by size of table. 

 Y → X 

disconfirmed 

Y → X 

confirmed 

2 × 2 Tables 

X→Y disconfirmed 16,772 8,318 

X→Y confirmed 8,400 16,510 

 4 × 4 Tables
a
 

X→Y disconfirmed 20,437 

32,247 

4,737 

5,263 

X→Y confirmed 4,845 

5,312 

19.981 

7,178 

a
 Frequencies in italics calculated under the criterion that the hit 

cell be greater than each of the comparison cells; frequencies in 

regular type face calculated under the criterion that the hit cell be 

greater than the average of the comparison cells 

Table 3 shows a clear picture. For cross-classifications of 

size 2 × 2, the majority of comparisons indicates that the 

direction dependence hypotheses are either not supported at 

all (Cell 1 1) or supported as pointing in both directions (Cell 

2 2). More specifically, about twice as many comparisons 

suggest that the two comparisons lead to the same result as 

comparisons that lead to different results. This result is not 

surprising. When a cell is greater than its comparison cell in 

the same row, there is an elevated probability that it is also 

greater than its comparison cell in the same column. 

Accordingly, when a cell is smaller than its comparison cell 

in the same row, there is an elevated probability that it is also 

smaller than its comparison cell in the same column. 

Comparisons in support of one of the two direction 

dependence hypotheses are half as likely, in either direction. 

In other words, under multinomial sampling, looking at 

the three cells that are involved in the test of a directional 

effect in a 2 × 2 table, these results confirm the a priori 

calculations that can easily be performed. Specifically, in 

such a scenario, the probability that the hit cell is the largest 

is exactly 1/3, the probability that it is the smallest is also 

exactly 1/3. The probability that the hit cell is the second 

largest when a given other cell is the largest is exactly 1/6. 

Table 3 shows only minor deviations from these 

probabilities. These differences are due to simulation errors. 

With larger simulation samples, these differences will 

decrease. 

For cross-classifications of size 4 × 4, an even more 

extreme pattern results. For tables of this size, comparisons 

supporting the same decision for both direction dependence 

hypotheses are about 4.25 times as likely as comparisons 

that suggest that the support for just one of the directional 

dependence hypotheses. When individual cells are 

compared, that is, when the question is asked whether the hit 

cell is the largest of all comparison cells, similar calculations 

can be performed as for 2 × 2 tables. For instance, the 

probability that the hit cell is the largest is 1/7, and the 

probability that it is the smallest is 1/7 as well. In all, the 

simulated results correspond very closely with the exact 

calculations. 

This result can be seen as in contrast with the results that 

suggest that, in Configural Frequency Analysis (CFA; 

Lienert, 1968; von Eye, 2002; von Eye & Gutiérrez-Peña, 

2004), type- and antitype decisions are more dependent 

upon each other in smaller than in larger tables. von Weber, 

Lautsch, and von Eye (2003) showed that, when the 

expected cell frequencies in a 2 × 2 table are estimated under 

the model of first order CFA, that is, a log-linear main effect 

model, only the first CFA test can be expected to keep the a 

priori specified α level. The outcomes of the second, third, 

and fourth CFA tests in the 2 × 2 table are completely 

dependent upon the outcome of the first test. Krauth (2003) 

showed that the number of different patterns of types and 

antitypes increases as the size of a table increases, but that 

the tests in a CFA never become completely independent. 

One explanation of this contrast between direction 

dependence analysis and CFA is that, in CFA, observed 

frequencies are compared with expected frequencies, both of 

which sum to the same subtables or marginal frequencies. 

Here, the comparison is between observed frequencies, and 

the probability of one frequency being greater than the 

average in the rest of a row while being smaller than the 

average in the rest of the corresponding column evidently 

decreases as the number of cells in a row/column increases. 

This applies when the null model is used as a base model, 

but it can also apply when the main effect model is used. In 

the following section, we present a simulation study on the 

performance of specific log-linear models. 

There are two main conclusions that can be drawn from 

the first simulation. First, the hypotheses that posit opposite 
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direction of effects become increasingly unlikely to be 

distinguishable as the number of categories of the variables 

increases that span a cross-classification. Table 3 shows that, 

in 2 × 2 tables, the probability that just one of the directed 

hypotheses can be retained is 0.5. The probability that just 

one of the two hypotheses can be retained in 4 × 4 tables is 

about 0.25. As tables increase in size, this probability 

decreases even more.  

Second, the various options to compare the hit cell with 

the comparison cell(s) are distinguishable only when a 

cross-classification is at least of size 3 × 3. For example, 

when the direction of effect hypothesis is retained only when 

the hit cell is greater than each of the hit cells (in Table 3, the 

hypothesis was retained when the hit cell was greater than 

the average of the average of the comparison cells), one 

obtains the results given in italics in the bottom panel of 

Table 3. Thus, when researchers entertain hypotheses that 

distinguish between these two and (possibly) other criteria, 

they need to resort to 3 × 3 or larger tables, even if the 

probability of retaining just one of the direction of effect 

hypothesis is reduced in tables larger than 2 × 2. 

 

Simulation 2: Performance of Log-Linear Model 

Selection 

To analyze the performance of the proposed model selec-

tion procedure, a second simulation experiment was per-

formed. This study was designed to mimic the situation in 

which researchers ask questions concerning direction of 

effect in multivariate data settings. The “true” data-    

generating mechanism of three binary variables X, Y, and Z 

followed a logistic regression of the form 

XZZX XZZX 











 0

1
log)(logit

where π denotes the probability of Y = 1 (1 – π being the 

probability of Y = 0), and the β parameters denote the effects 

of the “true” predictors (X and Z) on the “true” outcome Y. 

Specifically, βXZ represents the causal effect associated with 

the hit cell {X = 1, Z = 1, Y = 1} and was varied from 0 to 1 in 

increments of 0.25. The intercept β0 was fixed at zero and 

the main effects (βX and βZ) were either 0 or 0.5. Note that 

the case of βX = βZ = βXZ = 0 represents the null scenario 

which was used to assess the Type I Error behavior of the 

proposed model selection procedure.  

Cases of non-zero parameters refer to scenarios where a 

true causal effect of X and Z on Y exists, which was used to 

evaluate the statistical power of the approach. Base rates 

for X and Z were Pr(X = 1) [Pr(Z = 1)] = 0.3 [0.3], 0.3 [0.5], 

0.5 [0.5], 0.7 [0.5], and 0.7 [0.7]. Sample sizes were n = 50, 

100, 200, and 500 (the selection was guided by Cressie, 

Pardo, and del Carmen Pardo, 2003; and Stelzl, 2000). 

Simulation factors were fully crossed for both, the Type I 

Error and the power simulation. The Type I Error simula-

tion consisted of 4 (sample size) × 5 (base rates) = 20 sim-

ulation conditions, the power simulation consisted of 4 

(sample size) × 5 (base rates) × 5 (effect size) = 100 condi-

tions. For each condition, 1,000 samples were generated. 

For each sample, the three models 

 

log m = λ+ λ
X
 + λ

Z 
+ λ

Y
+ λ

Y→XZ
   (Model I), 

log m = λ+ λ
X
 + λ

Z 
+ λ

Y
+ λ

XZ→Y
   (Model II), and 

log m = λ+ λ
X
 + λ

Z 
+ λ

Y
+ λ

XZ→Y 
+ λ

Y→XZ
  (Model III) 

 

were estimated, and ΔX
2
-tests were used to compare model 

fits of I vs. III and II vs. III (the arrows in the model 

equations indicate the parameters that were estimated for 

the directional hypotheses). For each condition, we retained 

the number of significant results using a nominal 

significance level of 5%. 

Type I Error Behavior: The first two columns of Table 4 

show the probabilities of rejecting the null hypothesis of 

model fit equality for Models I vs. III and II vs. III. Each 

cell gives the portion of significant ΔX
2
-tests based on 

1,000 generated samples. For example, when n = 100 and 

Pr(X = 1) = 0.3, Pr(Z = 1) = 0.3, 62 ΔX
2
-tests indicated a 

significant model fit improvement when comparing Model 

I and III. In general, Type I Error rates of both ΔX
2
-tests 

reside within Bradley's (1978) robustness interval of 2.5 – 

7.5%. The tests are, thus, able to protect the nominal 

significance level and only reject the null hypotheses by 

chance. Columns 3 – 6 show the probabilities of combined 

statistical decisions of the two ΔX
2
-tests, i.e., both model 

comparisons show significant model differences, neither 

comparison shows a significant model difference, and 

either {X, Z} → Y is selected over Y → {Z, X} or vice 

versa. 

When neither/both ΔX
2
-tests are significant, no 

directional decision is possible based on the proposed 

decision rule. The results suggest that, in general, observed 

probabilities do not depend on base rates and sample size. 

The portion of non-significant results for both model 

comparisons is always larger than 90% and the 

probabilities of selecting {X, Z} → Y or Y → {Z, X} are 

close to α/2 = 2.5%, as expected. In other words, either 

selecting {X, Z} → Y or Y → {Z, X} is observed by chance 

and is in line with the overall nominal significance level of 

5%. Overall, we conclude that, as expected, in the null case, 

no distinct decisions can be made based on the proposed 

model selection procedure.
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Table 4. Empirical Type I Error rates of ΔX
2
-tests (Model I: log m = λ+ λ

X
 + λ

Z 
+ λ

Y
+ λ

Y→XZ
; Model II: log m = λ+ λ

X
 + λ

Z 

+ λ
Y
+ λ

XZ→Y
; Model III: log m = λ+ λ

X
 + λ

Z 
+ λ

Y
+ λ

XZ→Y
+ λ

Y→XZ
). Columns 1-2 give the relative frequencies of significant 

ΔX
2
-tests when comparing Models II vs. III and Models I vs. III. Columns 3-6 give the portions of combined statistical 

decisions of the two ΔX
2
-tests. 

 II vs. III I vs. III both sig. neither sig. correct model false model 

 Pr(X = 1) = 0.3, Pr(Z = 1) = 0.3 

50 0.074 0.062 0.036 0.900 0.038 0.026 

100 0.056 0.053 0.027 0.918 0.029 0.026 

200 0.048 0.049 0.018 0.921 0.030 0.031 

500 0.047 0.050 0.022 0.925 0.025 0.028 

 Pr(X = 1) = 0.3, Pr(Z = 1) = 0.5 

50 0.070 0.069 0.036 0.897 0.034 0.033 

100 0.050 0.041 0.023 0.932 0.027 0.018 

200 0.048 0.060 0.020 0.912 0.028 0.040 

500 0.042 0.049 0.021 0.930 0.021 0.028 

 Pr(X = 1) = 0.5, Pr(Z = 1) = 0.5 

50 0.054 0.057 0.034 0.923 0.020 0.023 

100 0.062 0.048 0.030 0.920 0.032 0.018 

200 0.055 0.061 0.030 0.914 0.025 0.031 

500 0.047 0.057 0.022 0.918 0.025 0.035 

 Pr(X = 1) = 0.7, Pr(Z = 1) = 0.5 

50 0.048 0.054 0.029 0.927 0.019 0.025 

100 0.045 0.047 0.031 0.939 0.014 0.016 

200 0.049 0.050 0.032 0.933 0.017 0.018 

500 0.053 0.048 0.031 0.930 0.022 0.017 

 Pr(X = 1) = 0.7, Pr(Z = 1) = 0.7 

50 0.056 0.063 0.040 0.921 0.016 0.023 

100 0.064 0.065 0.050 0.921 0.014 0.015 

200 0.046 0.054 0.031 0.931 0.015 0.023 

500 0.067 0.062 0.038 0.909 0.029 0.024 

 

Statistical Power: Next, we focus on the statistical power 

of the procedure. Figure 1 shows the power of the two 

ΔX
2
-tests when comparing Models II vs. III (i.e., when 

adding the effect assuming {X, Z} → Y) and Models I vs. 

III (i.e., adding the effect reflecting Y → {X, Z}). As 

expected, the test that evaluates II vs. III is more powerful 

than the competing procedure (I vs. III). In general, power 

increases with the magnitude of the causal effects and the 

sample size. Base rates of X and Z have almost no effect on 

the statistical power. 

Figure 2 shows the empirical power curves for the 

combined statistical decisions. The power to select the 

correct model systematically increases with the magnitude 

of the causal effect. Here, for large sample sizes (i.e., n = 

500) an inverse U-shaped pattern is observed which can be 

explained by the fact that the power of model comparison I 

vs. III increases with large sample sizes and large causal 

effects. For these cases, the rates where both model 

comparisons are significant systematically increase. From a 

model prediction perspective, this implies that the 

additional effect Y → {X, Z} significantly contributes to 

reduce prediction error. However, from the perspective of 

causal explanation, any model that includes effects which 

treat the true outcome as an explanatory variable is 

directionally mis-specified by definition (for a discussion 

on predictive and explanatory modeling see Shmueli, 2010).
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Figure 1. Observed power of the ΔX
2
-tests associated with the two competing log-linear model comparisons as a function 

of predictor base rates, sample size, and effect size. {XZ} → Y reflects the comparison Models II vs. III, Y → {XZ} reflects 

the comparison Models I vs. III. The x-axis gives the magnitude of the causal effect βXZ and the y-axis gives portion of 

significant ΔX
2
-tests based in the 1,000 generated samples. 
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Figure 2. Combined statistical decisions of ΔX
2
-tests associated with the two competing log-linear model comparisons. The 

x-axis gives the magnitude of the causal effect and the y-axis gives the portion of combined decisions of separate ΔX
2
-tests 

based on the 1,000 generated samples. 
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Recall that the data-generating mechanism described above 

implies that both predictors, X and Z, are generated outside 

the model. Most important, the portion of erroneously 

selecting the mis-specified model is close to zero across all 

considered scenarios. Again, base rates only have a small 

effect on the power curves. Overall, we can conclude that, 

in particular for larger sample sizes (such as n ≥ 200), the 

algorithm is well-suited to identifying the direction of 

effect. Further, simulation results suggest that the proposed 

algorithm is capable of identifying the correct model (i.e., 

the fact that the true causal effect is transmitted from X and 

Z on Y) even when the “true” log-linear model is not among 

the candidate models (the log-linear model that corresponds 

to the true data-generating mechanism would be log m = λ+ 

λ
X
 + λ

Z 
+ λ

Y
+ λ

XZ
 + λ

XY
 + λ

YZ
 + λ

XYZ
, see Agresti, 2013; 

von Eye & Mun, 2013). 

Data example 

For the following data example, we use data from the 

European Social Survey (ESS, 2014). The main goals of the 

ESS include the measurement of attitudes, beliefs and 

behavior patterns in more than thirty European nations. The 

ESS aims at charting stability and change in social structure 

and attitudes in Europe, and depicting how Europe’s nations 

differ in their social, political and moral structures, and 

change over time. The survey includes a number of demo- 

graphic measures as well as a question about happiness of 

respondents. Here, we use just two of the several hundred 

variables (cf. von Eye & Wiedermann, 2016a): happiness 

and household income. Happiness was originally measured 

on a scale from 0 (extremely unhappy) through 11 (extreme- 

ly happy). Household income was originally measured in 

units of Euros. All sources of income were considered. In the 

public ESS data files, total income is given on a 10-point 

scale, where each scale point represents a decile of the 

population distribution. Refusals, don't know answers, and 

no answer cases were excluded from the following analyses. 

We selected the responses from the participants in Austria. A 

total of 1,795 respondents were thus available. Table 5 

presents descriptive statistics of these two variables. 

 

Table 5. Descriptive statistics of happiness and income 

(ESS data; original scale scores). 

 
How happy  

are you 

Household's total net 

income, all sources 

N of Cases 1,795 1,795 

Minimum  0.000  1.000 

Maximum 10.000 10.000 

Arithmetic Mean  7.102  5.439 

Standard Deviation  2.120  1.921 

Skewness (G1) –0.755 –0.050 

Kurtosis (G2)  0.169 –0.735 

For the following analyses, we categorize both variables. 

Happiness was re-scaled as follows: Categories 1 through 4 

= 1; Category 5 = 2; Category 6 = 3; Categories 9 and 10 = 

4. Income was categorized as follows: Categories 1 through 

3 = 1; Categories 4 and 5 = 2; Categories 6 and 7 = 3; 

Categories 8 through 10 = 4. Combining categories is, in 

the present example, needed for two reasons. First, re- 

ducing the number of categories from 10 to 4 results in a 

smaller cross-classification. Accordingly, the number of 

possible hypotheses is reduced and the reader has an easier 

time to re-calculate the example. Second, the table that 

resulted from crossing the original categories was sparse, in 

particular in those sectors in which high levels of happiness 

were combined with low income, and vice versa. The 

goodness-of-fit tests that are used in log-linear modeling 

require expected cell frequencies that are larger than 0.8 

(see Larntz, 1978) to approximate the theoretical χ2 

distribution, and there was a relatively large number of 

cells with expected frequencies smaller than 0.8. Table 6 

displays the cross-classification of the thus re-scaled 

variables Happiness (H) and total household Income (I). 

 

Table 6. Cross-classification of the categorized scales of 

Happiness (rows) and Income (columns). 

  Income 

Happi-

ness 

 1 2 3 4 Total 

1 143 95 54 140 432 

2 126 80 60 131 397 

3 121 97 74 181 473 

4 106 92 110 185 493 

Total 496 364 298 637 1,795 

 

We analyze the data in Table 6 and ask whether money 

makes one happy or, alternatively, whether happier 

respondents garner higher incomes. We propose the 

following models. For the first hypothesis (“money makes 

you happy”), there are two hit cells. The first is Cell 3 4 (n 

= 181), the second is Cell 4 4 (n = 185). Evidently, these 

are the largest cells. The cells disconfirming the first 

hypothesis are Cells 1 4 (n = 140) and 2 4 (n = 131). 

To analyze the cross-classification in Table 6, we first 

calculate a Pearson's X
2
 = 34.11 (df = 9; p < 0.01). This 

result suggests a significant association between happiness 

and income. One could be tempted to interpret this result as 

in support of the hypothesis that money makes one happy. 

However, considering that Pearson's X
2
 is symmetric, the 

reverse-direction hypothesis cannot be discarded, that is, 

that happier individuals garner higher incomes. To arrive at 

a conclusion concerning the status of the original 

hypothesis and its reverse, we compare the hit cells, 3 4 and 
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4 4, with cells 1 4 and 2 4 (for the original hypothesis) and 

4 1 and 4 2 (for the reverse-direction hypothesis)
1
. In the 

following paragraphs, we specify the log-linear models 

with which we test these two hypotheses. In all, we 

estimate four models. These are two models each that 

contain the directed effect hypotheses without and with the 

Schuster transformation. 

The design matrix for the model that includes the main 

effects and both direction dependence hypotheses is, in 

effect coding, 


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The first column in this matrix represents the constant 

vector. The following six columns represent the main 

effects of the two 4-category variables that span the 

cross-classification given in Table 6. The eighth column 

represents the first hypothesis, according to which people 

who earn more money are happier. The reverse-direction 

hypothesis is represented in the last column. According to 

his hypothesis, happier people earn higher salaries. 

Asking whether money makes one happy or vice versa, 

we first estimate the model with the design matrix that in-

                                                             
 
1 Please notice that, in order to specify a symmetric direction and 

reverse-direction hypothesis, Cell 4 3 should be considered a 

comparison cell as well. When Cell 4 3 is considered a 

comparison cell, the two directed effect vectors are {0 0 0 0 0 0 0 

0 –1 –1 1 1 –1 –1 1 1}’ and {0 0 –1 –1 0 0 –1 –1 0 0 1 1 0 0 1 1}’. 

The goodness-of-fit LR-X2 for this model is 14.08 (df = 7; p = 

0.05). Parameter interpretation for this model, however, can be 

complicated because estimation of the second directed effect 

parameter suffers from local singularities that are due to the 

correlation between the two directed effect vectors (r = 0.50). 

cludes the first eight vectors of this design matrix (i.e., con-

sidering all main effects and the vector representing money 

→ happiness). We assume multinomial sampling and obtain 

the overall goodness-of-fit LR-X
2
 = 28.51, a value that 

makes us reject the model (df = 8; p < 0.001). Considering, 

however, that, although we are not in the process of model 

fitting, we tentatively ask whether the parameter of interest 

is significant. This is clearly the case (λ = 0.11; se = 0.040; z 

= 2.293; p = 0.022). Next, we compare this model to the one 

that uses all nine vectors of the design matrix, that is, we ask 

whether the vector happiness → money contributes to ex-

plaining the data. We obtain ΔX
2
 = 11.69 which suggests that 

the model significantly improved (df = 1, p < 0.001). Thus, 

we cautiously conclude that there is support for the hy-

pothesis that happier people garner higher income. However, 

to complete the analysis, we have to empirically confirm that 

the vector money → happiness vector does not improve the 

model that consists of the main effects and the reverse cau-

sation vector happiness → money. We, therefore, use the last 

vector in the design matrix instead of the second-to-last and 

re-estimate the model. We obtain the overall goodness-of-fit 

LR-X
2
 = 19.71, a value that makes us reject the model again 

(df  = 8; p < 0.001). The parameter for the reverse hypoth-

esis is also significant (λ = 0.230; se = 0.061; z = 3.737 ; p < 

0.001). Comparing this model with the one using all nine 

vectors of the design matrix leads to a non-significant 

change in model fit (ΔX
2
 (1) = 2.88, p = 0.090). This result 

suggests that there is support for the hypothesis that happier 

people garner more money. 

Discussion 

In this article, we propose a new way of examining 

direction dependence hypotheses. Instead of looking at 

marginal distributions, we inspect frequency distributions 

inside cross-classifications. It is shown that a direction 

dependence hypothesis and its reverse, that is, the 

hypothesis that proposes dependence in the opposite 

direction, can both be examined in the same table. The 

intersection of these two hypotheses is the hit cell, that is, the 

cell in which those events are found that support one 

direction dependence hypothesis, its reverse, or both. The 

tests of a direction dependence hypothesis and its reverse are, 

to a certain degree, dependent upon each other. The degree 

of dependence varies with the size of the cross-classification. 

In smaller tables, there is less dependence than in larger 

tables. The degree of dependence also varies with the 

criterion used for the comparison of the hit cells with the 

comparison cells, and with the symmetry of the directed 

hypotheses. 

However, and this is one of the most important 

characteristics of the method proposed here, a direction 

dependence hypothesis and its reverse are not considered as 

necessarily competing. Instead, four outcomes of testing 

hypotheses that are compatible with direction dependence 



 von Eye & Wiedermann: Direction of effects in categorical variables 

 

22 

 

are considered. The first outcome is that the first direction 

dependence hypothesis prevails (note, that the order in 

which the direction dependence hypotheses are tested is of 

no importance; results will stay unchanged when the order is 

reversed). The second is that the reverse of the first 

hypothesis prevails instead. The third outcome is that both 

hypotheses prevail, and the fourth possible outcome is that 

neither prevails. Depending on context, each of these 

outcomes can have a meaningful interpretation. This pattern 

of results is in accordance with the recent literature on 

direction dependence analysis with metric variables (cf. 

Wiedermann, Hagmann, & von Eye, 2014; Wiedermann, & 

von Eye, 2015). However, the hypotheses that are tested 

with the methods proposed here and the currently discussed 

methods for metric variables differ fundamentally. In the 

literature for metric variables, univariate distributions of 

variables or residuals are examined. Here, special 

interactions are examined. 

It is interesting to ask how the methods presented here 

compare to methods created in the context of the 

development of methods for the analysis of direction 

dependence hypotheses in metric variables. In addition, one 

might ask how the results in the empirical data example 

compare to results one could create using existing methods 

for the analysis of direction dependence in metric variables. 

The answers to these questions are important as they allow 

one to position the methods proposed in this article in the 

canon of methods for direction dependence analysis. 

An answer to these questions can be given as follows. 

Existing methods for direction dependence analysis in 

metric variables focus on univariate outcomes. Specifically, 

these methods decompose the distribution of the outcome 

variable into the systematic part, that is, the Xβ part of the 

linear regression model, and the random part, that is, the ε, 

the error part of the model. When the regression model is 

properly applied, the distribution of the outcome variable, Y, 

is less skewed than the distribution of X, when X is skewed 

(see Dodge, & Rousson, 2000, 2001; Wiedermann, et al., 

2014, 2015b). First developments of methods of direction 

dependence analysis for categorical variables assimilated 

these ideas (see von Eye, & Wiedermann, 2016). The focus 

of these methods is the univariate distribution of outcome 

variables that are crossed with predictors. That is, the focus 

is on marginal distributions or, for both, metric and 

categorical variables, main effects. 

In contrast, the present article focuses on characteristics of 

frequency distributions that cannot be found in marginal 

distributions but inside the table. To test hypotheses about 

these characteristics, special interactions are specified and 

made part of the model. Marginal distributions are part of the 

model, for two reasons. First, the model must not fail 

because marginal distributions that are not critical to the 

hypotheses were not included. If this is the case, conclusions 

about the hypotheses are not possible. Second, a model that 

focuses on special interactions does not make any 

assumptions on marginal distributions. Therefore, any 

distributional characteristic of marginals is admissible. Now, 

a re-analysis of the data example using current methods for 

direction dependence analysis for metric data certainly can 

be done. However, a comparison of results would not be 

conclusive with respect to the performance of existing 

methods for metric variables in comparison to the methods 

for categorical variables proposed in this article. This 

comparison would contrast main effect models for metric 

variables with interaction models for categorical variables. 

In other words, focus of analysis would be confounded with 

scale characteristic of variables. Still, analyses that focus on 

main effects and analyses that focus on interactions can be 

performed in a complementary way. 

Extensions: In a fashion parallel to Hildbrand et al.'s 

(1977; cf. von Eye & Brandtstädter, 1988) prediction 

analysis or confirmatory prediction CFA (see von Eye, & 

Rovine, 1994), the present approaches can straightforwardly 

be extended to the multiple - multivariate case. An example 

of a prediction of events could, when three predictors and 

two outcome variables are used, be expressed by. 

x1  x2 x3 → y1  y2 In this example, each of the three 

events on the predictor side must occur for the prediction to 

take place. In addition, each of the two events on the 

outcome side must occur for the prediction to come true. In 

the cross-classification of the five variables involved in this 

prediction, Cell 1 2 3 1 2 is the hit cell and the cells that do 

not represent events y1 y2 when x1 x2 x3 was observed 

are the comparison cells. For the reverse hypothesis, the hit 

cell is the same, and the cells that do not represent 

x1 x2 x3 when y1 y2 was observed are the comparison 

cells. Details of multivariate extensions of the present 

approach will be explicated in a different context. In the 

second of the above simulation studies, two predictors and 

one outcome were examined already. 

The vectors in the design matrix that represent the 

direction dependence are not orthogonal. Therefore, it can 

be hard to interpret the estimated parameters when these 

vectors are in the model simultaneously. Therefore, we 

discussed a hierarchical log-linear modeling procedure. In 

this procedure, the more important direction dependence 

hypothesis is included in the model first. In this case, its 

parameter can be interpreted. The contribution of the second 

direction dependence hypothesis can be estimated by the X
2
 

difference between the first and the second model, the latter 

containing both directed effect vectors. When the direction 

dependence vectors and the main effect vectors are 

non-orthogonal, we recommend using the Schuster 

transformation. 

There is an additional caveat that should be taken into 

account when the log-linear approach to hypothesis testing 

is tested. Because of the non-orthogonality of the vectors of 

some of the nonstandard models that are specified in 

direction dependence analysis, problems with parameter 

estimation can prevent the data analyst from deriving 

conclusions about the hypotheses that are studied. To 

illustrate, consider a 3 × 3 cross-classification. Let the model 
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that is estimated contain the main effects of both variables. 

Let Cell 1 3 be the hit cell, and let both directional 

hypotheses be estimated in the same model. The design 

matrix for this model is 
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In this design matrix, vectors are correlated. Specifically, 

the two vectors in each main effect are correlated to 0.5, and 

the two directional effect vectors (the last two in the matrix) 

are correlated to 0.667. Most software packages evince 

problems with the estimation of this model. This result 

applies even when other estimation methods are used than 

the standard maximum likelihood. In contrast, when design 

matrices are orthogonal, no estimation problems arise. 

Hypotheses of direction dependence are often specified in 

contexts of causality. The event based on which another 

event is predicted is often called the cause, and the outcome 

event is often called the effect. Without going into detail, we 

emphasize that causal hypotheses must be compatible with 

substantive theory as well as causality theory. Looking at 

causality theory, consider, for example, the very well-known 

theory that goes back to Hume (1777). Among the central 

elements of this theory is the principle of temporal priority. 

According to this principle, the cause must precede the 

effect in time. Other theories of causality, for example 

mechanistic theory (see, e.g., Williamson, 2011) or 

epistemic theory (Hall, 2016), do allow researchers to 

consider contemporaneous causal effects, even causes that 

lie in the future. 

Now, when researchers test both direction dependence 

hypotheses, the original one and its reverse, temporal 

priority must be discussed very carefully, and the concept 

tested must be compatible with substantive and causal 

theory alike. More specifically, if it is considered possible 

that, when both direction dependence hypotheses are tested, 

the events under study can be assumed to be active 

simultaneously, the substantive model cannot be based on 

Hume's theory of causality. Another possibility is that 

temporal order is assumed. In this case, the first event may 

be observed occurring before the second, and this part of the 

model may be compatible with Hume's theory. The second 

event, however, that is, the effect of the first cause, is, when 

both direction dependence hypotheses are tested, also the 

cause of the first event. That is, when there is temporal order 

and both direction dependence hypotheses are tested, one of 

the causes must meaningfully be placeable into the future of 

the first. This would be in contradiction with Hume's 

principle, and researchers can do much worse than 

considering another theory of causality. 

Conceptual and theoretical elements of causality theory 

can also heavily impact the design of a study. When 

researchers specify a substantive causal process based on 

Hume’s (1777) causality theory and its proposition of 

temporal ordering of cause and effect, data from cross- 

sectional studies will not enable the data analyst to test 

hypotheses that are compatible with the underlying causality 

theory. Longitudinal data will be needed. In contrast, when 

epistemic or mechanistic causality theories (see, e.g., 

Williamson, 2011; Hall, 2016) are the building blocks for a 

substantive causality theory, cross-sectional data can be used 

to test hypotheses that conform to such theories. 

In either case, the methods proposed here can be of use. 

The cross-sectional case was illustrated in the data example 

in the last section. The longitudinal case leads to a more 

complex situation because there is, at the least, a third 

variable to be considered in a model, that is, time. The 

resulting design will be parallel to the one suggested in the 

paragraph on multivariate extensions, above, with the 

exception that, in most circumstances, the variable time is 

neither considered an explanatory nor an outcome variable. 

The current discussion led us to a very interesting juncture. 

We find ourselves at a point where social science substantive 

theory, statistical modeling, and philosophical theory must 

be compatible. More interdisciplinary work is needed to 

flesh out the ramifications of this situation (see Wiedermann 

& von Eye, 2016b). 
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Appendix A 

Parameter interpretation in log-linear models 

 

For the discussion of log-linear models in general as well as in the current situation, consider the log-linear model μ = W λ, 

where μ = log m, m is the vector of model cell frequencies, W is the design matrix, and λ is the parameter vector. The 

relation between W and the parameters is 

 

  ')'( 1WWW . 

 

Using a result by von Eye et al. (1988), we now explain the conditions under which the interpretations proposed in this 

chapter hold. Consider the matrix H which is defined such that H' has the same dimensions as W, and Hμ specifies the 

contrasts of interest. Now, let, for the column space of W, C(W) the following relation hold: 

 

)()( HCWC  , 

 

and let 

 
1)'('*  HHHW . 

 

Replacing W by W* for the estimation of λ results in 

 

  HWWW *)'(*]*)'[( 1
. 

 

This equation shows that, when W* is used instead of the original design matrix, W, the parameters correspond to the 

contrasts specified in W. When the columns in W are orthogonal, the transformation of W into W* is redundant. The 

equation also shows that parameters can, based on W*, be interpreted as intended even if the original design matrix, W, is 

not orthogonal, as long as the inverse of HH' exists. This applies, naturally, to hierarchical log-linear models, but also to 

non-hierarchical models and nonstandard models. 

To illustrate that parameter interpretation can be problematic when the vectors on the design matrix are correlated, we 

illustrate, in the next section the effects of the Schuster transformation. 

Parameter interpretation. In the present situation, we explain parameter interpretation for the models discussed in this 

article by using the simplest-possible table, the 2 × 2 table. Specifically, consider again the design matrix for a 2 × 2 table 

discussed above, with Cell 1 1 as the hit cell, 






















0

0

1

1

1

1

1

1

W . 

Inserting into mWWW log')'( 1 (see von Eye & Mun, 2013), we obtain, for the parameter that is represented by the 

second column in W, the interpretation 

 12111 loglog
2

1
mmh  , 

where h1 indicates the first hypothesis (later, h2 will indicate the reverse-direction hypothesis). This corresponds with the 

intended interpretation. Including, however, the vectors for both direction dependence hypotheses in the design matrix, that 

is, also including the column vector {1 0 –1 0}’, results in the interpretations for the directed effects parameters 

 

 2212111 loglog2log
3

1
mmmh   

and 

 2212112 log2log2log
3

1
mmmh  . 
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Neither of these corresponds with the intended interpretation. Still, the first parameter can be interpreted in the first model 

that is estimated. The contribution of the second parameter is the 'value-added' by the second model. 

We now present the results that can be obtained based on the Schuster transformation. We use the complete design 

matrix for the 2 × 2 table, that is, the one with both vectors for the direction dependence hypotheses. Using just one of the 

vectors would be redundant. For the transformation, we create matrix H as the transpose of W, that is, W'. We then calculate 

W
*
, which results in 



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
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
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3/1

3/1

3/2

0

3/1

3/2

3/1

0

4/1

4/1

4/1

4/1

*W  

Inserting W
*
 into 

 

mWWW log*)'(*]*)'[( 1  

 

yields the parameters 

 

 222112111 loglogloglog
4

1
mmmmC  , 

 22212 loglog
2

1
mmC  , 

and 

 22123 loglog
2

1
mmC  . 

 

In these equations, superscript C indicates that these are the parameter interpretations after Schuster transformation, and the 

subscripts number the columns in the design matrix. These are exactly the intended contrasts.

 


