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Abstract 
 
It is proposed to enrich the arsenal of methods for the evaluation of local independence within latent classes by methods from 

Configural Frequency Analysis (CFA). CFA provides researchers with two additional options. The first involves identifying 

those patterns of categories of manifest variables that contradict the assumption of local independence within a given class. If 

such patterns exist, local independence is viewed as violated not (only) at the level of relations among variables, but at the 

level of individual patterns that occur at rates significantly different than expected under the assumption of variable inde-

pendence. The second option involves comparing classes at the level of individual patterns. The results of such a comparison 

of classes can be that outlying patterns are identified as class-specific. Second, it is possible that classes differ in the occur-

rence rates of individual patterns (i.e., specific response patterns may be more likely to occur in certain classes). This can 

occur even when these patterns do not contradict the assumption of local independence. An empirical example is given using 

data on alcohol consumption behavior among college students. Extensions and applications of the proposed methods are 

discussed. 
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The modern person-oriented approach (cf. Bergman & 

Magnusson 1997; Bergman, von Eye & Magnusson, 2006; 

von Eye, Bergman, & Hsieh, 2015) considers the individual 

as a functioning totality and identifies individual patterns of 

information as the conceptual and analytic units (known as 

“pattern summary”). Prototypical patterns are assumed to 

occur frequently in practice and, thus, a small number of 

patterns may be sufficient to explain variation in empirical 

data (so-called “pattern parsimony”). In cross-sectional 

data settings, various statistical methods, such as cluster 

analysis, latent class analysis, latent profile analysis, and 

configural frequency analysis, have been called ideal-

ly-suited to test person-oriented hypotheses. Latent class 

analysis (LCA) has become the standard tool for mod-

el-based classifications of observed categorical data. 

The appropriateness of latent class models is usually 

evaluated using overall goodness-of-fit measures such as 

information indices, e.g., the Akaike information criterion 

(AIC), the Bayesian Information Criterion (BIC), and their 

derivatives, dissimilarity indices, or goodness-of-fit statis-

tics such as the likelihood ratio statistic (see Morgan, 2015). 

In this article, we add to the arsenal of evaluation tech-

niques Configural Frequency Analysis (CFA). CFA consti-

tutes one of the main methods of person-oriented research 

(cf. Bergman, Magnusson & El-Khouri, 2003). The method 

allows one to identify the location of deviations from local 
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independence, that is, class-specific individual cells that 

contain numbers of cases that deviate from expectation. In 

addition, this method allows one to test specific hypotheses 

about the presence or absence of local independence in 

particular sectors of the class-specific data space. CFA can 

be applied when evaluating individual classes and when 

comparing classes. Both options are discussed in this article 

which is structured as follows. First, we review LCA and 

CFA. We then discuss methods of evaluation of LCA mod-

els, and embed CFA into the canon of these methods. Third, 

we present two examples of latent class model evaluation 

using CFA in analyzing alcohol consumption patterns 

among young adults. 

Latent Class Analysis 

LCA, originally proposed by Lazarsfeld and Henry 

(1968; cf. Clogg, 1995; Goodman, 1974; Rindskopf, 1990; 

Vermunt, 1997), is a member of the general class of latent 

structure models. This class also includes factor analysis 

models, covariance structure models, latent profile models, 

latent trait models, and models used in Item Response The-

ory (IRT). LCA uses categorical manifest variables to cre-

ate categorical latent variables (see Bartholomew & Knott, 

1999, Table 1.1). Individual cases, all with class member-

ship unknown prior to analysis, can be assigned to the 

classes of the latent variables. 

The LCA Model 

Using the formulation by Lazarsfeld and Henry (1968), 

the unrestricted latent class model for one latent variable 

can be described as 


j

gYgYYYG j |,...,,, 321
, 

where G denotes the latent variable, the Ys denote the man-

ifest variables, πg is the latent probability of Class g, and 

the conditional probabilities πYj|g (j = 1, …, k; with k denot-

ing the number of manifest variables) are called conditional 

response probabilities. Parameters are estimated by means 

of the expectation-maximization (EM) algorithm (Dempster, 

Laird & Rubin, 1977). The model equation implies that, 

within each latent class, the manifest variables are assumed 

to be independent from each other, thus reflecting the as-

sumption of local independence (cf. the Axiom of local 

independence; see Clogg, 1995). If this assumption is met, 

the manifest variables should be independent of each other 

in each of the latent classes or, in more technical terms, the 

model of variable independence should prevail in each of 

the latent classes. Later, in this article, we will discuss CFA 

as a method that can be used to test this assumption.  

Haberman (1979) showed that the unrestricted LCA 

model can equivalently be expressed as a log-linear model. 

For the model specified above, one obtains 
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This is a model for the G×Y1×Y2 ×Y3… cross-classification. 

The latent variable, G, is unknown a priori. Therefore, this 

cross-classification is incomplete. Zero-sum restrictions are 

imposed on all parameters for identification purposes. 

Measuring Fit 

The expected frequencies are obtained as 

,...,,,...,,
ˆ

jigjig nm  . 

These values can be compared with the observed frequen-

cies, mg,i,j,…. Usually, researchers employ, for this compar-

ison, members of the Cressie-Read power divergence fam-

ily, e.g., the Pearson goodness-of-fit statistic 
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where l goes over all cells of the cross-classification, or the 

likelihood ratio statistic 
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for ml > 0. Remember that programmers keep the conven-

tion that log(0) = 0; this has the effect that cells with m = 0 

will not prevent LR χ2 from being calculated, and that χ2 

and LR χ2 are, occasionally, far from one another. Because 

asymptotic conditions for these χ2 statistics may not be met 

for sparse cross-tables, large deviations of LR χ2 and Pear-

son’s χ2 statistic are indicative for biased p-values. In these 

cases, several authors suggested to use parametric boot-

strapping techniques (e.g., Agresti, 1992; Collins at al., 

1993; von Davier, 1997).     

A number of fit statistics is not directly linked to the χ2 

distribution. Examples include the index of dissimilarity 

and information criteria. Methods to assess local fit of a 

latent class model (see Garrett & Zeger, 2000; Hagenaars, 

1988; Vermunt & Magidson, 2000) are typically based on 

the comparison of pairwise observed and model-predicted 

cross-classification frequencies. Higher association of 

pairwise items in the observed 2 × 2 table than in the ex-

pected 2 × 2 table is indicative for violations of the condi-

tional independence assumption. Qu, Tan, and Kutner 

(1996) considered continuous latent variables in an attempt 

to assess residual correlations (for a generalization, see 

Uebersax, 1999; for a discussion of this generalization in 

relation of multiple latent classes and the need to consider 

multiple residual correlations, see Aspahourov & Muthén, 

2015). 

Practically, all of these statistics are overall measures. 

That is, they represent the entire cross-table. The added 

correlations between manifest variables and the residual 
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correlations, both discussed by Aspahourov and Muthén 

(2015), are estimated based on the entire range of possible 

scores of the indicator variables. In the present article, we 

propose also looking at individual cells of the 

cross-classification of the manifest and the latent variables 

(see also Maydeu-Olivares & Liu, 2015). Specifically, we 

present CFA as a method that allows one to inspect indi-

vidual cells or groups of cells, and we focus on statistics 

that are linked to some sampling distribution. 

Configural Frequency Analysis 

CFA (Lienert, 1968; von Eye, 2002; von Eye & Gutiér-

rez-Peña, 2004; von Eye, Mair, & Mun, 2010) allows re-

searchers to determine whether an individual cell in a 

cross-classification comes with an observed frequency that 

is discrepant from the frequency that was expected for this 

cell. Specifically, consider Cell l for which a researcher 

asks whether the difference between ml and  is signifi-

cant. The null hypothesis under which this question is an-

swered is  where, as in the last section, l 

goes over all cells of the cross-classification, E[ml] is the 

expectancy for Cell l, and  is the expected frequency for 

Cell l under a base model (see von Eye & Gutiérrez-Peña, 

2004; von Eye & Mun, 2016). A first reason for this null 

hypothesis to be rejected is that Cell l constitutes a CFA 

Type. In this case, it is rejected because the binomial proba-

bility of an observed cell frequency, given the sample size n, 

is 

 1)1(, ln mB
l

, 

where πl is the probability of Cell l and α is the nominal 

significance level (e.g., 5%). In words, Cell l constitutes a 

CFA Type if it contains more cases than expected. In the 

second case, the null hypothesis is rejected because Cell l 

constitutes a CFA Antitype. In this case, it is rejected be-

cause 

 )(, ln mB
l

. 

In words, Cell l constitutes a CFA Antitype because it con-

tains fewer cases than expected. In the third case, the null 

hypothesis prevails because the number of observations in 

Cell l is consistent with the base model. 

CFA Tests for Individual Configurations  

A large number of tests has been proposed for CFA. Here, 

we focus on two tests (for more detail and more tests, see 

Lehmacher, 1981; von Eye & Mair, 2008; von Eye, 2002). 

The first test to be described here is the binomial test. It can 

be employed under any sampling scheme (multinomial, 

product-multinomial sampling). Given ml, the exact tail 

probability of ml and more extreme frequencies is 
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Where q = 1 – p, a = 0 if  and a = ml if 

, e = ml if a = 0, and e = n if a = ml. Unless it is 

known a priori, the value of p is estimated from the sample. 

The binomial test is exact. Given the base model (to be 

explained below), the probability of each frequency is cal-

culated and added to the total. The binomial test is recom-

mended in particular when a sample is so small that the 

approximation properties of approximate tests are doubtful. 

The second test to be reviewed here is the z-test. Com-

parisons with other CFA tests suggest that the z-test has 

desirable properties (in terms of statistical power and Type I 

Error robustness) even under adverse conditions (see von 

Weber, von Eye, & Lautsch, 2005). It is 

npq

npm
z l  , 

with z approximating the standard normal distribution. The 

z-test can also be applied under any sampling scheme. 

The CFA Base Model 

CFA base models are probability models in which re-

searchers specify variable relations and other effects. 

Emergence and interpretation of CFA Types and Antitypes 

vary with these specifications (Mellenberg, 1996). Most 

base models can be expressed as log-linear models, but 

there are exceptions such as the model of axial symmetry or 

the model of point symmetry (von Eye, 2002). In this arti-

cle, we focus on models that can be expressed as log-linear 

models. 

CFA base models have three main characteristics (von 

Eye, 1988, 2004): 

 

1. they represent theoretical assumptions concerning 

the nature of the variables as either of equal status 

or members of groups such as predictors, media-

tors, or criteria; 

2. they consider the sampling scheme under which 

the data were collected; and 

3. they include in the model specification all effects 

the researchers are not interested in. 

 

In the present context, the third of these characteristics is 

most important. We illustrate this characteristic using two 

base models. Specifically, these are the model of first-order 

CFA and the model for two-group CFA. To illustrate the 

first-order base model – this is the one that was originally 

proposed for use in CFA (Lienert, 1968) –, we use the four 

variables Y1, Y2, Y3, and Y4. The base model is that of varia-

ble independence. All it contains is the variables’ main ef-

fects. It can be written as 
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where the superscripts indicate that the effects of individual 

variables are included, that is, the main effects. When this 

model is rejected, variable interactions must exist, and re-

searchers have two options. One option is to identify the 

interactions that exist in the space of the variables included 

in the model. Pursuing this option is routine in log-linear 

modeling. The other option is to identify those cells that 

reflect particularly strong or significant deviations from the 

base model, in the form of Types or Antitypes. These cells 

show where, in the cross-classification, “the action is.” The 

second option is pursued when CFA is applied (von Eye & 

Gutiérrez-Peña, 2004). The base model of first-order CFA 

can be extended by also considering all two-way interactions 

(2nd order CFA), all three-way interactions (3rd order CFA) 

etc., or by including covariates or special effects. The search 

for important variable interactions is routinely performed in 

variable-oriented research. The search for outstanding cells 

is usually performed in person-oriented research (see 

Bergman & Magnusson, 1997; von Eye & Bergman, 2003; 

von Eye, Bergman, & Hsieh, 2015). Naturally, these two 

lines of research can be pursued in tandem. 

To illustrate the base model for two-group CFA, consider 

the variables G, Y1, Y2, and Y3, where G is the grouping 

variable and the Y variables are used to discriminate between 

the two groups. The base model for this analysis is 

,

log

321323121

321

YYYYYYYYY

YYYGm




 

where the double-superscripted terms indicate two-way 

interactions, and the triple superscripted term indicates the 

three-way interaction among all three discrimination varia-

bles (Y1, Y2, and Y3). This model can be rejected only if 

interactions between the grouping variable, G, and combi-

nations of the discrimination variables exist, that is, when 

the groups differ in the sub-tables spanned by the discrimi-

nation variables. This model is saturated in the discrimina-

tion variables. The interactions among the discrimination 

variables must not be the reasons why the model fails, and 

thus reflect the third of the above characteristics of CFA base 

models. 

The two-group CFA base model can also be extended, for 

example, by increasing the number of groups or the number 

of grouping variables, or by also including covariates or 

special effects. The relations of this model to the log-linear 

model for logit analysis have been discussed by von Eye, 

Mair, and Bogat (2005). 

Protection of the Nominal Significance Level α 

In practically all applications of CFA, exploratory and 

confirmatory, the observed frequencies in multiple cells are 

subjected to a CFA test. It has been shown that, depending 

on the size of the table, these tests are, to a certain degree, 

dependent upon each other. One extreme is that the tests are 

completely dependent. When a 2 × 2 table is examined under 

the base model of first-order CFA, only the result of the first 

test is open. The following three tests are completely de-

termined (von Weber, Lautsch, & von Eye, 2003). As the 

size of a table increases, the degree of dependence decreases, 

but CFA tests are never fully independent (Krauth, 2003; 

von Eye et al, 2010). 

Methods of protection of the nominal significance level α 

take this dependence into consideration, to various degrees. 

The best known method, Bonferroni protection, only con-

siders the total number of tests. Positing that the α level be 

the same for each test, the protected α threshold is α* = α/h, 

where h indicates the total number of tests, usually the size 

of the table. Relaxing the requirement that the α level be the 

same for each tests, Holm (1979) proposes taking into con-

sideration both the total number of tests and the number of 

tests already performed before the current, the ith test. The 

resulting protected threshold then is 

1

*






ih
, 

where i is the rank of the size of the residual under test, in 

descending order. Holm's α protection suggests less con-

servative statistical decisions than the Bonferroni procedure. 

Even less conservative decisions are suggested by Holland 

and Copenhaver's procedure (1987). The authors propose, 

for the ith test, 

1

1

* )1(1  ih . 

This procedure is clearly less restrictive than the Bonferroni 

protection. It is also (slightly) less restrictive than Holm's 

(1979) procedure (for comparisons of procedures for the 

protection of α, see Olejnik, Li, Supattathum, and Huberty, 

1997; von Eye, 2002). 

Specifically developed for use in CFA are the α protection 

procedures by Hommel, Lehmacher, and Perli (1985; cf. 

Hommel, 1988, 1989). Proposing modifications of Holm's 

procedure that can be used when two- and three-dimensional 

tables are explored, these authors use the result that, under 

certain conditions, the hypotheses tested in single cells can 

be viewed as intersections of a number of other hypotheses. 

Therefore, in a sequence of CFA tests, a certain number of 

tests can be performed at the same protected α level. By 

implication, this level is less restrictive than the one result-

ing from the original Holm procedure. The Hommel et al. 

(1985) procedure that results, for instance, for a table of size 

3 × 3 or larger leads to the following values of protected αs: 
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As for the procedures by Holm (1979) and Holland and 

Copenhaver (1987), the test statistics must be ranked in 

descending order before the tests are performed. In all pro-

cedures that require ranking of test statistics, the procedure 

concludes as soon as the first null hypothesis prevails. 

Using CFA to Test Local Associations in 

LCA 

We now discuss the application of CFA in the examination 

of local independence in latent classes. As was mentioned 

above, three groups of tests are generally used to evaluate 

local independence. These groups differ in the amount of 

information they use in each particular test. The first group 

uses global tests. It includes overall goodness-of-fit tests 

such as the Pearson χ2-test or the LR χ2-test. The well-known 

information criteria (such as AIC, cAIC, BIC, or adjusted 

BIC) are also members of the group of overall model eval-

uation, and so is the measure of dissimilarity. In the second 

group, we find tests that allow one to compare pairs of items 

or questions. Members of this group include χ2-tests and the 

odds ratio. Methods for discovering residual associations 

between the manifest variables in LCA have been proposed 

by Aspahourov and Muthén (2015). In the third group, in-

dividual residuals are used. Examples of measures in this 

group include the Pearson χ2-component and the standard-

ized residual. Any other residual measure could be used as 

well. 

Here, we propose using the arsenal of CFA methods to test 

hypotheses that are compatible with local independence. To 

define local independence, we use concepts and definitions 

that are discussed in test theory and LCA. In classical test 

theory (Lord & Novick, 1968), local uncorrelatedness (see 

also Su & Ullah, 2009) is among the key characteristics of a 

psychometric test. When this characteristic obtains, a tes-

tee’s responses to test items are uncorrelated. Violations 

have the effect that the equations become invalid that are 

generally used to establish psychometric properties of a test. 

In probabilistic test theory or IRT, items must be locally 

independent. This implies that not only linear relations, as 

they are assessed using measures of correlation, but also any 

other form of dependence must not exist. This definition is 

also used in LCA. 

More specifically, items show local stochastic independ-

ence, if 

 
j

jk gYPgYYP )|1(]|)1(...)1[( 1 , 

where P(Yj = 1) indicates the probability that Item j (j = 1, …, 

k) in Class g is responded to in the affirmative. This applies 

accordingly when items have more than two response cat-

egories. In LCA, stochastic independence is the goal of 

analysis in every class. This implies, in the present context, 

that the latent class solution accounts for item associations in 

every class, and items are unrelated to each other. We now 

propose two CFA models that can be of use when local 

independence is tested. The first model is applied to each 

latent class. The second model serves to compare two or 

more latent classes. 

Local Independence in a Latent Class 

From a log-linear perspective, the above definition of 

local independence implies that the items are independent. 

When local independence exists, the log-linear main effect 

model will prevail, that is, the model 

kYYY

jm  ...log 21 , 

where j indexes the variables again and k is the number of 

items. This is also the model of first-order CFA that was 

introduced above. Here, we propose employing first-order 

CFA to evaluate local independence in each class. 

Using first-order CFA to evaluate local independence 

comes with all the benefits that come with CFA. These 

benefits include 

 

1. There is an overall Pearson χ2- or likelihood ratio 

χ2-test that is equivalent to the tests reported for LCA; 

2. cell-specific deviations can be significant even when 

the overall test suggests variable independence; 

3. there exists a large number of tests for individual cells 

that allow researchers to either explore the entire 

cross-classification of items for one latent class, or test 

specific hypotheses for a latent class; either approach 

can result in CFA Types and Antitypes that indicate 

which item category combinations – the CFA configu-

rations – represent deviations from local independ-

ence; 

4. hypotheses can be tested that concern groups of item 

combinations; examples of such hypotheses can target 

sequences of responses or response patterns; 

5. covariates can be taken into account that may help ex-

plain the existence of CFA Types or Antitypes, that is, 

local deviations from independence; 
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6. well-developed procedures for the protection of α exist 

within the CFA framework that adjust the significance 

threshold based on the number of tests performed; ap-

plication of these procedures can help answer ques-

tions of how to take into account the possible depend-

ence of tests, questions that were asked repeatedly in 

user forums (and met, in some instances, with answers 

that did not consider this form of dependence; see, e.g., 

http://www.statmodel.com/discussion/messages/13/38

95.html) 

7. the postulate of local independence can be relaxed by 

including local associations in the CFA base model; 

local associations can be more parsimonious than 

standard associations because they involve selections 

of variable categories instead of all variable categories. 

Comparing Latent Classes With Respect to 
Local Independence 

The null hypothesis of equivalence of local independ-

ence posits that classes do not differ in local independence. 

Alternatively, items can behave differently across classes 

even when, for each class, the model of independence pre-

vails. To identify such items, we propose a new base model 

for multiple-group CFA. The base model for standard mul-

tiple group CFA contains at least one variable that indexes 

the groups (the latent classes), and at least one variable that 

is used to discriminate between the groups (von Eye, 2002). 

The base model for standard multiple group CFA is set up 

as a hierarchical log-linear model with the following char-

acteristics: 

 

1. it contains all possible effects of the discrimination 

variables; it is, thus, saturated in the discrimination 

variables; the reason for this specification is that rela-

tions among the discrimination variables must not be 

causes for Types and Antitypes to emerge; 

2. it contains the main effect of the variables that indexes 

the groups; if there is more than one grouping variable, 

the model must be saturated in these variables as well, 

for the same reason it is saturated in the discrimination 

variables; 

3. it posits independence of grouping from discrimination 

variables. 

 

If this model fails, researchers know that the hypothesis of 

equivalence of local independence is violated, in general. In 

addition, Types and Antitypes can be expected to emerge. 

They indicate where local associations are between the 

classification variable(s) and the discrimination variables. 

In the context of testing equivalence of local independ-

ence, these Types and Antitypes indicate where, in the 

cross-classification, grouping and discrimination variables 

are locally associated in the sense that latent classes differ 

from each other. Phrased differently, and following the 

definition of a CFA base model that was given above, we 

first specify the effects in the cross-classification of the 

grouping with the discrimination variables that we are not 

interested in: 

 

1. all main effects; 

2. all interactions among the discrimination variables; 

these effects – if they exist – must not be causes for 

Types and Antitypes to emerge, because they do not 

speak to the null hypothesis tested in the present con-

text; when conditional independence exists within each 

of the comparison groups, the parsimony principle 

(Wu & Hamada, 2009) can be utilized, and these in-

teractions can be omitted from the model; 

3. all three- and higher-way interactions among the 

grouping and the discrimination variables; if these in-

teractions exist, they suggest that the grouping variable 

qualifies the two- or higher-way interactions among 

the discrimination variables; as before, when condi-

tional independence exists, these interactions can be 

omitted from the model. 

 

What remains are the two-way interactions between the 

discrimination variables and the grouping variable. When 

these effects exist, the main effects that are the sole effects 

that may exist when local independence prevails, differ 

across the comparison groups, that is, the latent classes. In 

the present context of testing hypotheses that are compati-

ble with local independence, these are the effects we are 

interested in. In a CFA base model, these are, therefore, the 

only effects to be left out. When Types or Antitypes 

emerge, they indicate where in the table latent classes differ 

in local independence characteristics. 

To illustrate, consider the grouping variable, G, and the 

three discrimination variables Y1, Y2, and Y3. For these four 

variables, we present three possible CFA base models. 

First-order CFA of the cross-classification of these four 

variables, that is, 

321log
YYYGm  , 

shows where in the table deviations from independence exist. 

If they exist, they could be indicative of differences in local 

independence. However, they could also simply be indica-

tive of associations among the discrimination variables. 

Therefore, this model is, under most conditions, not in-

formative for decisions concerning the hypothesis of dif-

ferences in local independence. 

The model 

3213231

21321log

YYYYYYY

YYYYYGm




 

is the base model of standard multiple-group CFA. When 

this model fails, the comparison groups differ in the dis-

crimination variables (see von Eye & Mun, 2013). 

 

http://www.statmodel.com/discussion/messages/13/3895.html
http://www.statmodel.com/discussion/messages/13/3895.html
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The model 
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is the new multiple group base model that we propose for 

testing hypotheses concerning or exploring local inde-

pendence in the comparison of two or more groups. The only 

terms not included in this model are the two-way interac-

tions between the grouping and the discrimination variables. 

Data Example: Alcohol Consumption 

Patterns Among Students 

The following data example describes results from a 

survey concerning alcohol consumption behavior among 

Austrian university students. Overall, 1839 students (56.8% 

female; average age: 26.3, SD = 10.0) provided data on the 

Alcohol Use Disorder Identification Test (AUDIT; Saunders 

& Aasland, 1987) which is a widely used questionnaire to 

measure hazardous drinking patterns. The AUDIT com-

prises 10 items addressing alcohol consumption and alco-

hol-related negative consequences. For the present purpose, 

we dichotomized the scores of each item following Smith 

and Shevlin (2003): The baseline category reflects answers 

scoring zero on the scale (e.g., reflecting the response option 

“never” for questions like “How often do you have six or 

more drinks on one occasion”). The second category re-

flected all remaining response options on the scale. We 

analyzed the following 6 items: A2 (“Typical amount of 

alcohol on a drinking day”), A3 (“How often 6+ drinks on 

one occasion”), A4 (“Unable to stop once started drinking”), 

A5 (“Failed to do what was expected due to drinking”), A7 

(“Guilt after drinking”), and A8 (“Memory loss”).  

The question we ask is whether latent classes can be 

identified that capture the unmeasured heterogeneity in the 

participants’ responses to questions on drinking behavior. 

This effort is meaningful in particular when variables are 

related to each other and when respondents are assumed to 

reflect heterogeneous drinking behavior patterns. Before 

performing an LCA, we, therefore first performed a CFA 

using the data from the complete sample. Specifically, we 

performed a first-order CFA under the base model 

875432log AAAAAAm   

where the superscripts indicate the questionnaire items used 

in the present analyses. For the CFA, we used the z-test 

described above. Table 1 summarizes the results of this CFA 

in terms of Types and Antitypes. 

The overall goodness-of-fit of the main effect model is 

deplorable. We obtain the Pearson χ2 = 4,571.868, LR χ2 = 

2,022.773, Raftery’s BIC = 1,599.800, and a dissimilarity 

index of 37.015. For df = 57, both χ2 measures suggest re-

jecting the model (p < 0.01). From a CFA perspective, we 

note that a large number of configurations deviates from 

expectancy, most notably the first (all answers negative), 

and the last (all answers affirmative). For both of these 

configurations, significantly more cases were observed than 

expected under the assumption of item independence. We 

conclude that strong variable associations exist. 

Latent Class Models 

To answer the question whether there are groups of indi-

viduals with specific response patterns, we performed a 

series of latent class models using Mplus (Muthén & 

Muthén, 2015). The AIC (Akaike, 1987), the BIC (Schwarz, 

1978) and the sample size adjusted BIC (Scolve, 1987) were 

used to decide upon the number of latent classes (lower 

values indicate a better fit of the model). Nylund, As-

parouhov, and Muthén (2007) showed that the AIC tends to 

overestimate the correct number of latent classes. Thus, we 

rather focused on BIC- and adjusted BIC-values for model 

selection. In addition, the unadjusted and adjusted 

Lo-Mendell-Rubin test (Lo, Mendell, & Rubin, 2001) was 

applied to assess whether the g class solution is superior to 

the g – 1 class solution. A non-significant test result suggests 

no superiority of the g class solution over the g – 1 class 

model. Entropy and the average profile probabilities were 

inspected to assess classification uncertainty of each latent 

class solution. As suggested by Marsh, Lüdtke, Trautwein, 

and Morin (2009) interpretability of model coefficients was 

inspected for each solution. Models were estimated using 

1000 random starts. Table 2 summarizes the model fit indi-

ces for g = 2, …, 6 latent classes. Overall, the BIC, the ad-

justed BIC, the LMR-test, as well as the adjusted LMR-test 

favored the 4-class solution. The AIC favored the 5-class 

solution. Entropy measures were rather low ranging from 

0.643 to 0.733. Pearson and LR χ2-tests rejected the null 

hypothesis of model fit for each LC model. Based on the 

model goodness-of-fit measures (taking into account the 

interpretability of estimated parameters) the decision was to 

retain the 4-class solution. 

Figure 1 shows the four latent classes representing typical 

alcohol consumption patterns of the 1831 respondents. The 

most prevalent group is Latent Class 1 (38.4%) and is 

characterized by high probabilities of having more than 1 or 

2 alcoholic drinks on a typical drinking day, engaging into 

binge drinking at least monthly, and experiencing rather 

mild negative consequences. The second largest class (La-

tent Class 3; 31.7%) shows rather low probabilities on all 

items reflecting very mild alcohol consumption with no 

negative consequences. Latent Class 4 (24.1%) shows the 

most severe consumption pattern with rather high probabil-

ities on all items reflecting heavy alcohol use and experi-

encing multiple negative consequences. Finally, Latent 

Class 2 (5.8%) constitutes the smallest class with moder-

ately high probabilities on all items, representing moderate 

alcohol consumption with moderately negative conse-

quences.
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Table 1. Types and Antitypes from first-order CFA (complete study sample). 

Configurations       

A2  A3  A4  A5  A7  A8  n expected z p-value  

CFA  

Decision  

0    0    0    0    0    0 288 35.30 42.53 <.001 Type 

0    0    0    0    0    1 6 22.50 –3.48 <.001 Antitype 

0    1    0    0    0    1 17 51.60 –4.82 <.001 Antitype 

0    1    0    0    1    0 12 37.75 –4.19 <.001 Antitype 

0    1    0    0    1    1 4 24.06 –4.09 <.001 Antitype 

0    1    0    1    0    0 22 47.45 –3.69 <.001 Antitype 

0    1    0    1    0    1 9 30.24 –3.86 <.001 Antitype 

0    1    1    0    0    1 4 17.17 –3.18 0.001 Antitype 

0    1    1    1    0    0 1 15.79 –3.72 <.001 Antitype 

1    0    0    0    0    0 92 64.62  3.41 <.001 Type 

1    0    0    0    0    1 10 41.18 –4.86 <.001 Antitype 

1    0    0    0    1    1 0 19.20 –4.38 <.001 Antitype 

1    0    0    1    0    0 9 37.86 –4.69 <.001 Antitype 

1    0    0    1    0    1 3 24.13 –4.30 <.001 Antitype 

1    0    0    1    1    0 2 17.65 –3.73 <.001 Antitype 

1    0    1    0    0    0 3 21.51 –3.99 <.001 Antitype 

1    0    1    0    0    1 1 13.70 –3.43 <.001 Antitype 

1    0    1    0    1    0 0 10.03 –3.17 0.001 Antitype 

1    1    0    0    0    0 190 148.23  3.43 <.001 Type 

1    1    0    0    1    0 38 69.10 –3.74 <.001 Antitype 

1    1    0    1    0    0 54 86.85 –3.53 <.001 Antitype 

1    1    0    1    0    1 92 55.35  4.93 <.001 Type 

1    1    0    1    1    1 65 25.80  7.72 <.001 Type 

1    1    1    0    0    0 18 49.33 –4.46 <.001 Antitype 

1    1    1    0    1    1 33 14.66  4.79 <.001 Type 

1    1    1    1    0    1 52 18.42  7.82 <.001 Type 

1    1    1    1    1    1 144 8.59 46.21 <.001 Type 

 

 

Table 2. Goodness-of-fit of various LC models (AIC = Akaike Information Criterion, BIC = Bayes Information Criterion, 

adj. BIC = adjusted BIC, LMR = Lo-Mendell-Rubin test; minimum values for the information criteria are marked italic). 

        Pearson       

No. of 

classes AIC BIC adj. BIC  χ2 (df) p-value Entropy 

p-value 

LMR 

p-value 

adj. LMR 

2 11684.8 11756.4 11715.1 384.5 (50) <.001 0.733 < .001 < .001 

3 11488.0 11598.2 11534.7 159.5 (43) <.001 0.650 < .001 < .001 

4 11446.3 11595.1 11509.3 65.1 (36) <.001 0.643 0.001 0.001 

5 11443.3 11630.7 11522.7 49.4 (29) 0.011 0.685 0.405 0.411 

6 11445.2 11671.2 11540.9 34.7 (22) 0.042 0.645 0.453 0.457 
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Figure 1. Latent class profiles based on the 4-class solution [□ = LC1 (38.4%), ■ = LC2 (5.8%), ● = LC3 (31.7%), ○ = LC4 

(24.1%)] 

 

 

 

Evaluating bivariate χ2 goodness of fit statistics showed a 

largest z-value of 2.902 for items A5 (“Failed to do what was 

expected due to drinking”) and A8 (“Memory loss”) sug-

gesting non-independence of the two indicators (all re-

maining z-values ranged from 0.000 to 1.579). Further, to 

informally assess the classification uncertainty of latent 

classes, Figure 2 gives the boxplot of estimated conditional 

probabilities for the latent classes. Latent Class 2 (“moderate 

alcohol consumption with moderate negative consequences”) 

showed the lowest conditional probabilities (see upper right 

panel of Figure 2). Further, respondents who were assigned 

to Latent Class 1, showed also relatively high conditional 

probabilities for Latent Class 2 (upper left panel of Figure 2). 

Similarly, respondents assigned to Latent Class 4 showed 

comparatively large conditional probabilities for Latent 

Class 1. Overall, latent classes were most distinct in case of 

membership of Latent Class 3. 

 

 

Local Independence in Individual Classes 
 

In a first series of analyses, we pursue the question whether, 

in each of the four classes, local independence exists. To 

answer this question, we first estimated, for each class, the 

log-linear main effect model specified above, and then per-

formed the CFA tests. The second analysis was conducted to 

identify class-specific locations of violations of local inde-

pendence. CFA tests were performed only when, overall, the 

null hypothesis of local independence was rejected.  

Based on the overall goodness-of-fit χ2-tests, the null 

hypothesis of local independence was violated in three of the 

four latent classes, Class 3 being the only exception. For 

Class 1, for example, we obtained the Pearson χ2 = 191.719, 

LR χ2 = 223.404, Raftery’s BIC = –144.542, and a dissimi-

larity index of 19.583. For df = 57, the two χ2 measures 

suggest rejecting the model (p < 0.01), and we have reason 

to expect that CFA Types and Antitypes emerge. We, there-

fore, performed a CFA under the same specifications as for 

Table 1. 
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Figure 2. Boxplots of estimated conditional probabilities of latent class membership. 

 

 

 

 

Figure 3 gives the z-approximated CFA test statistic of 

response patterns for the Latent Classes 1, 2, and 4. Hori-

zontal solid lines refer to the Bonferroni-corrected z-value 

reflecting the nominal significance level of 5% (based on 65 

tests we arrive at α* = .05/65 = .00008 which corresponds to 

the zadj = 3.36). Thus, z-statistics larger than 3.36 correspond 

to CFA Types, and z-statistics smaller than –3.36 indicate 

CFA Antitypes. In this data set, Antitypes are more prevalent 

than Types and are particularly common for patterns indi-

cating less harmful alcohol use/consequences in Latent 

Classes 1 and 4 reflecting heavy alcohol consumption pat-

terns. In Latent Class 1 (“heavy consumption with mild 

negative consequences”), CFA Types are constituted by 

Configurations 1 1 1 0 0 0 (n = 18, i.e., 2.5% of class 

members and 0 1 0 1 0 0 (n = 22, 3.1%). Both configurations 

reflect characteristic patterns for this class indicating 1) 

heavy alcohol consumption including binge drinking events 

while feeling unable to stop drinking and 2) binge drinking 

occasions together with a higher risk of failing to do what 

was expected due to drinking. Thus, based on the charac-

teristics of both CFA Types, we can conclude that binge 

drinking behavior without experiencing multiple negative 

consequences (the common components of both Types) 

constitute core features of the Latent Class 1. Configuration 

0 0 1 1 1 1 (unable to stop drinking with multiple negative 

consequences) constitutes the largest Antitype and contra-

dicts the Latent Class profile. 
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Figure 3. CFA profiles to evaluate the local independence assumption in three of four latent classes. 
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Table 3. Most extreme cells in the local independence comparison of four latent classes. 

LOG 

(MLE) 

LR 

Chi-Square 
p-value Freq   A2 A3 A4 A5 A7 A8 

Latent 

Class 

–2092.83 277.265 <.001 0 
 

0 0 0 0 0 0 1 

–1946.50 292.659 <.001 0 
 

0 0 0 0 0 0 4 

–1849.20 194.609 <.001 0 
 

1 1 1 1 1 1 1 

–1771.85 154.696 <.001 0 
 

1 1 1 1 1 1 3 

–1694.91 153.876 <.001 0 
 

0 1 0 0 0 0 1 

–1613.86 162.108 <.001 0 
 

1 0 0 0 0 0 1 

–1538.89 149.927 <.001 0 
 

1 1 0 1 1 1 1 

–1482.34 113.114 <.001 0 
 

0 1 0 0 0 0 4 

–1417.49 129.694 <.001 0 
 

1 0 0 0 0 0 4 

–1352.45 130.071 <.001 0 
 

1 1 0 0 0 0 4 

–1304.79 95.323 <.001 0 
 

1 1 0 0 0 0 3 

–1258.26 93.067 <.001 0 
 

0 0 0 0 0 0 2 

–1225.91 64.695 <.001 0 
 

1 1 0 0 0 1 4 

–1190.42 70.981 <.001 0 
 

1 1 0 1 0 1 4 

–1160.29 60.262 <.001 0 
 

1 1 1 1 0 1 1 

–1136.52 47.537 <.001 0 
 

0 0 0 0 1 0 1 

–1111.37 50.298 <.001 0 
 

0 0 0 0 1 0 4 

–1087.54 47.666 <.001 0 
 

1 1 0 1 0 0 4 

–1067.97 39.131 <.001 0 
 

1 1 0 1 0 1 3 

–1046.36 43.219 <.001 0 
 

1 1 0 0 0 1 3 

–1025.11 42.51 <.001 0 
 

1 1 0 1 1 1 3 

–1008.69 32.843 <.001 0 
 

1 1 0 0 0 0 2 

–989.812 37.75 <.001 0 
 

1 1 1 1 1 1 2 

–968.111 43.403 <.001 0 
 

1 0 0 0 0 0 2 

–941.543 53.136 <.001 0   0 1 1 1 1 1 2 

In Latent Class 2 (“moderate consumption with moder-

ately negative consequences”), a CFA Type is constituted by 

configuration 0 0 0 1 0 1 (n = 4, 3.8%; no harmful drinking 

pattern and failing to do what was expected due to drinking 

together with memory loss) which is in line with the result of 

the bivariate χ2 goodness of fit test to identify potential vi-

olations of local independence. In Latent Class 4 (“heavy 

consumption with multiple negative consequences”), Types 

are constituted by the configurations 0 1 0 1 1 1 (n = 12, 

2.7%; binge drinking with severe negative consequences), 1 

0 0 1 1 1 (n = 5, 1.1%; i.e., high amount of alcohol con-

sumption without binge drinking events with multiple neg-

ative consequences), and 1 1 0 1 1 1 (i.e., both, high typical 

amount and binge drinking behavior, together with multiple 

negative consequences; n = 65, 14.7%). Thus, compared to 

Latent Class 1, Latent Class 4 differs in two important as-

pects: 1) Subjects in Latent Class 4 experience several neg-

ative consequences due to alcohol consumption, and 2) 

alcohol consumption behavior is characterized by a typically 

high amount but does not necessarily include binge drinking 

(pointing at a rather chronic alcohol use). Further, the largest 

deviation was observed for the Antitype 0 0 0 0 0 0 which, 

again, contradicts the class-specific profile. 

Comparing Classes in Local Independence 
 

When classes are compared in local independence, two 

goals can be pursued. First, class-specific violations can be 

targeted that distinguish classes. Second, differences be-

tween classes can be targeted even for those configurations 

for which none of the comparison classes exhibits violations. 

Depending on the results obtained for individual classes, a 

variety of CFA base models can be specified. When the 

comparison classes possess the property of local independ-
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ence, the effects that can reflect differences between classes, 

that is, the effects that can be causes for Types and Antitypes, 

are the two-way interactions between items and the grouping 

variable. The base model must then contain all other effects. 

The resulting log-linear model will then always be 

non-hierarchical (cf. Mair & von Eye, 2007), and will be 

highly complex. 

In the present data example, we use six items and one 

grouping variable. This variable indexes all four latent 

classes. The base model that can be used under the assump-

tion that local independence prevails in all classes, will then 

include 58 effects (this includes the constant of the model). 

To simplify this model, we proceeded as follows (cf. 

Schuster & von Eye, 2000). We first estimated the saturated 

model for all variables. We then eliminated all effects that 

were non-significant from the base model, as well as the six 

bivariate interactions of the items with the grouping varia-

ble. Non-significant effects will rarely cause the resulting 

Type and Antitype to change. The resulting model was the 

base model for this analysis. 

The results of the first step suggested that none of the 

higher-order interactions was significant. Therefore, none of 

them was included in the base model. Only the two-way 

interactions among the items are part of the model, because 

Types and Antitypes must not emerge because item re-

sponses are correlated. The model is 

.

log
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Goodness-of-fit for this model is poor. Specifically, we 

obtain the Pearson χ2 = 5567.8, LR χ2 = 4217.1, Raftery’s 

BIC = 2503.0, and a dissimilarity index of 69.3. For df = 231, 

both χ2 measures suggest rejecting the model (p < 0.01), and 

we have reason to expect that Types and Antitypes emerge 

from a CFA. It should be noted again that, although the base 

model that was used looks like a main effect model with a 

selection of two-way interactions, extreme cells, that is, 

Types and Antitypes will be caused specifically by the 

two-way interactions between the six questionnaire items 

and the grouping variable. The reason for this is that all 

higher-order interactions are non-significant and their con-

tributions to the emergence of Types and Antitypes are, 

therefore, minimal. 

Table 3 displays statistics for the 25 most extreme cells. 

To illustrate the CFA decomposition methods proposed by 

von Eye and Mair (2008), the rank order of Types and An-

titypes is by the Freeman-Tukey deviate (standard CFA 

resulted, in this example, in largely the same results). Here, 

the configurations (cells) with the largest, rank-ordered 

deviates are removed, one after the other, without replace-

ment. This procedure can be very helpful when researchers 

consider eliminating items during test construction, or when 

they are interested in configurations that discriminate the 

most between classes of respondents. These options will be 

elaborated in future studies. 

The first result of this analysis is that the first 25 most 

extreme cells are all Antitypes. In addition, none of the An-

titype-constituting cells contains any case. In contrast, the 

CFA base model that was used did call for a number of re-

sponses in each of these cells. In fact, among the first 50 

most extreme cells, we find only Antitypes (some of the 

extreme cells with ranks higher than 25 constituted Types).  

Now, for group comparisons with CFA one compares 

groups of cells instead of inspecting individual cells. In the 

present example, comparison cells have, over the groups, the 

same indices. They only differ in the group index. The first 

pattern with this characteristic is 0 0 0 0 0 0 1 and 0 0 0 0 0 0 

4 (in the first two lines of Table 3). The expected cell fre-

quencies suggest that Latent Class 1 and Latent Class 4 do 

not only contain fewer cases than the remaining latent 

classes, given the base model, they also differ from each 

other in the relative frequency with which Response Pattern 

0 0 0 0 0 0 was (not) observed. This pattern is less likely in 

Latent Class 4 than in Latent Class 1. Similar to the first 

discrimination type, patterns 1 1 1 1 1 1 1 and 1 1 1 1 1 1 3 

also contain fewer cases than the remaining latent classes 

(rows 3 and 4 of Table 3), specifically Latent Class 2 (third 

row from bottom in Table 3), and this pattern contradicts 

expectation more extremely in Latent Class 1 than in Latent 

Class 3. 

Discussion 

In this article, we combine the strengths of two statistical 

methods that are well-suited to evaluate person-oriented 

hypotheses, CFA and LCA. Specifically, we propose two 

new options to consider when investigating local inde-

pendence in LCA. The first element is a configural analysis 

of individual cells (or a selection of cells) in each latent class, 

which offers an in-depth analysis to identify response pat-

terns that are observed significantly more or less often than 

compatible with the CFA base model. The base model to be 

selected for the analysis of individual classes posits that 

items are unrelated to each other. That is, it posits that, 

within the given class, independence prevails. When CFA 

Types or Antitypes emerge, this proposition is violated spe-

cifically for the pattern that constitutes a Type or Antitype. 

In a perfect LCA solution, no Types or Antitypes can 

emerge. 

Further, this option opens the door to the arsenal of 

methods of CFA. The benefits from this methodology in-

clude that there are well developed methods of α protection, 

covariates can be included, and special effects or interac-

tions can be considered that possibly help researchers ex-

plain violations of local independence. When covariates or 

any other add-ons to the design matrix of the CFA base 

model are used, one attempts to explain why Types and 
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Antitypes emerge (von Eye & Mair, 2008). Specifically, 

whenever Types or Antitypes disappear after the design 

matrix was extended, the hypothesis can be entertained that 

the added-on effects are explanatory for the disappeared 

Types or Antitypes. In the present context, this implies that 

the added-on effects may be explanatory for local violations 

of local independence.  

The second element is new in the sense that classes are 

compared with respect to local independence. Results from 

this comparison can come in two forms. First, classes can 

differ from each other in the presence/absence of local vio-

lations of independence. Researchers can, then, attempt to 

explain such differences by way of using covariates or spe-

cial effects. Second, classes can differ from each other even 

when there are no violations from local independence. In 

this case, Discrimination Types emerge for configurations 

that, when inspected individually, do not suggest violations 

of local independence. In this case, the structure of the 

cross-classifications of the comparison groups differs even 

when, within each group, local independence prevails. This 

type of result can be explained as follows. When violations 

of local independence exist within a given latent class, in-

teractions among items can be used to explain these viola-

tions. When, however, latent classes differ in response pat-

terns, interactions must be used for explanation that include 

class membership in addition to item interactions. That is, 

higher order interactions are needed to explain this type of 

result. 

In those cases, in which CFA detects Types, Antitypes, or 

Discrimination Types, the LCA solution is less than perfect. 

As a result of this imperfection, cases are distributed over 

the patterns such that, in sectors of the cross-classification of 

items, more or fewer cases are found than compatible with 

the CFA base model, that is, with local independence. Many 

reasons for less than perfect LCA solutions can exist. One of 

these reasons is classification uncertainty. When the proba-

bility of an individual to belong to a particular class is 0.51, 

and 0.49 is the probability to belong to another class, mis-

classifications can be expected to occur more often than 

when the corresponding probabilities are 0.99 and 0.01. CFA 

is capable of detecting patterns that are most affected by this 

kind of misclassifications. 

In addition to these two new ways of analyzing the char-

acteristics of latent classes, the results of CFA can be useful 

in the process of selecting items in the process of instrument 

development. Specifically, when only particular answer 

categories of an item are involved in the constitution of 

Types or Antitypes, removing this item can result in classes 

that do exhibit local independence. 

Extensions of the methods proposed in this article can go 

in a number of directions. First, variables not used when the 

latent classes were created can be used to discriminate be-

tween the latent classes. This way, one can attempt to answer 

the question whether the members of the latent classes also 

differ in other behavioral domains (see von Eye et al., 2010). 

Another extension involves adopting a developmental per-

spective. Classes can be observed over time, and it can be 

asked whether variable relations are time-stable or 

time-varying. The methods of multi-group CFA discussed in 

this article can be of use in this kind of developmental re-

search. A third direction in which method and concept de-

velopment may go would involve relaxing the definition of 

local independence. CFA allows one to identify the sectors 

in the data space in which violations occur. A relaxed defi-

nition of local independence would exclude these sectors. It 

needs to be discussed how many of such violating sectors 

may exist for the concept of conditional independence to 

still be meaningful. Fourth, application of CFA in the context 

of model evaluation is certainly not restricted to LCA mod-

els. Cluster analytic models and latent profile models can be 

considered as well. In fact, first attempts have been taken by 

von Eye and Gardiner (2004) and von Eye, von Eye, and 

Bogat (2006). In these approaches, sectors in multivariate 

spaces are defined either by way of categorization or cluster 

analysis, and it is asked whether these sectors contain the 

number of cases that is expected based on distributional 

assumptions (for early attempts, see also von Eye & Wirsing, 

1980). 
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