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Abstract 
 
Objective: Previous studies have found both increased and decreased cortisol levels in depressed patients. These inconsistent 

findings may be explained by the fact that traditional group-based studies are not suitable to capture complex intra-individual 

dynamics between cortisol and affect, and inter-individual differences therein. The current study used a time-series approach 

to gain deeper insight into the nature of these complex dynamics and to investigate possible underlying nonlinear dynamical 

features. 

Method: Time-series data (90 measurements) were collected for cortisol and negative affect (NA) in depressed (n=15) and 

non-depressed (n=15) participants. The relationship between cortisol and NA in each individual was analyzed with SMAP, 

which estimates local linear vector autoregression (VAR) models with different degrees of nonlinearity in the prediction. The 

best-predicting model, and whether this model was linear or nonlinear, was determined by using the normalized root mean 

square error (NRMSE) between the models’ predicted values and the observed values. Univariate and multivariate models 

were compared to explore the connection between cortisol and NA. 

Results: Nonlinear cortisol predictions were best in 90% of the participants, whereas nonlinear NA predictions were best in 

39% of the participants. Multivariate analyses showed that in 48% of the participants, cortisol was better predicted when NA 

was included in models that otherwise consisted of time delayed values of cortisol alone. Vice versa, in 39% of the partici-

pants, NA was better predicted when cortisol was included in models that otherwise consisted of time delayed values of NA 

alone. The connection between cortisol and NA was stronger in the depressed group, although the results showed consider-

able inter-individual heterogeneity within the diagnostic groups. 

Conclusion: In many individuals, cortisol and NA may be interacting parts of a common dynamical system and their con-

nection may be stronger in depressed patients. 
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Introduction 

Disturbances in the hypothalamic-pituitary-adrenal 

(HPA) axis have been among the most widely studied 

etiological pathways in depression (Pariante & Lightman, 

2008). However, the precise nature of the relationship 

between the hormones secreted by the HPA axis (e.g. 

cortisol, adrenocorticotropic hormone [ACTH], and cor-

ticotropin releasing hormone [CRH]) and depression is 

still unknown (Stetler & Miller, 2011). Several studies 

observed increased levels of the stress hormone cortisol 

in depressed patients compared to healthy controls 

(Bhagwagar, Hafizi, & Cowen, 2005; Vreeburg et al., 

2009). However, other studies showed decreased cortisol 

levels in depressed patients or found no difference in 

cortisol levels at all (e.g. Stetler & Miller, 2005; Huber, 

Issa, Schik, & Wolf, 2006). These inconsistencies could 

have been caused by a number of factors, such as differ-

ing study designs/procedures and the heterogeneity of 

the depression phenotype.  

Another important reason could lie in the fact that 

previous findings have been mostly derived from 

cross-sectional studies that assessed cortisol only a sin-

gle time or a few times per day within subjects. By tak-

ing this approach, the highly dynamic nature of cortisol, 

depression and their causal relationship over time is ne-

glected (e.g.  Booij et al., 2015). It is questionable 

whether cross-sectional associations that are found at the 

inter-individual level (e.g. group differences) are gener-

alizable to the intra-individual level, that is: temporal 

relationships between factors within the person (Mo-

lenaar & Campbell, 2009). Unfortunately, studies that 

have investigated intra-individual relationships are 

scarce, leaving it unclear how changes in cortisol and 

depressive symptomatology are related within persons. 

Changes in cortisol could cause changes in sympto-

matology and/or vice versa.  

To capture the dynamic intra-individual relationship 

between cortisol and depressive symptomatology, a 

time-series approach may be more adequate than 

group-based approaches. A hallmark of intensive 

time-series designs is the use of many repeated meas-

urements within a single person. A study by Booij, Bos, 

de Jonge, and Oldehinkel (2016) analyzed the relation-

ship between cortisol and negative affect using a linear 

time-series approach. They found a considerable amount 

of heterogeneity between participants in the way that 

daily life fluctuations in cortisol are related to affective 

states. The time-series analysis methods that were used 

in this study are designed to find linear relationships 

between variables (Prado and West, 2010). When the 

objective of these linear analyses is to answer questions 

about causal relationships, time-series-based methods 

like inferences for Granger Causality (GC) can be ap-

plied (Granger, 1988).  

However, many systems in nature are complex, mak-

ing it likely that the relationships between the variables 

of interest are complex and nonlinear. Mathematically, 

linear relationships between two or more variables take 

the form y = c1x1 + c2x2 + ···. Nonlinear relationships 

take more complex forms, for instance 

y = c1x1(x1 + c2x2) + ···, where the influence of one 

variable (x1) depends on the value of another variable 

(x2). These relationships can usually not be captured by 

linear models. Consequently, causality inferences with 

GC may not be able to detect the nonlinear causal con-

nections that exist between variables (Sugihara et al., 

2012). In these cases, nonlinear analytical approaches 

that are based on dynamical systems theory may be 

preferable (Kantz & Schreiber, 2004).  

Several nonlinear approaches to time-series analysis 

are available. A particular class of nonlinear models ap-

ply local linear approximation techniques to predict val-

ues of a variable (Farmer & Sidorowich, 1987; Sugihara, 

1994; Casdagli, 1989). Typical for these techniques is 

that time-series data are transformed into an embedding. 

This is a collection of points (vectors) in a coordinate 

space, with each point corresponding to a point in the 

time-series data. The coordinates of each point are de-

termined by taking a value in the time series at a time t, 
together with past values of the series, separated by 

equidistant time intervals. Although time is not a dimen-

sion in the resulting space, the embedding still represents 

the dynamics of the system. Instead of following a time 

series along a t-axis, progression in time now follows a 

line through connected points in the embedding. A set of 

points around a target point may now be used to con-

struct a linear model which can be applied to the target 

point to predict an associated value (e.g. a future value 

of the same variable, or a value in the time series of an-

other variable). This procedure results in a unique local 

linear model for each target point, allowing for the esti-

mation of nonlinear relationships. By varying the num-

ber of used neighbor points in the prediction, or by var-

ying the weight of the neighbor points (i.e. a stronger 

weight to close neighbors than to distant neighbors), the 

extent of local operation can be controlled.  

This approach is different from traditional global lin-

ear techniques, where all values are used to estimate a 

joint model for all data points. Furthermore, by measur-

ing the extent of local operation that is needed to obtain 

the best prediction results, insight into the nonlinearity 

of the underlying system is obtained. In nonlinear sys-

tems, global predictors will show a lower prediction 

performance compared to local predictors. In linear sys-

tems, global predictors will show better performance 

than local predictors (Sugihara, 1994).  

Several methods exist to select neighborhood points 

for the local models. In one approach (as used by Farmer 

& Sidorowich, 1987), only k nearest neighbors of the 
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target are selected, with k being an adjustable constant. 

In another approach, only neighbors within a certain 

distance from the target are used (Kantz & Schreiber, 

2004). Finally, an elegant and flexible way of selecting 

neighborhood points is obtained by applying a weight 

function w(d) = exp(-θd/davg) to each point in the 

complete data set before feeding the vectors and pre-

dictees into the linear prediction model. Here d is the 

distance between the predictee and the neighbor, θ the 

nonlinearity parameter controlling the width of the func-

tion, and davg the average distance between the predictee 

and all other vectors within the embedding. This ap-

proach is called the SMAP method and was introduced 

by Sugihara (1994) (see Figure 1). The weight function 

assigns greater weight to points closer to the predictee, 

corresponding to a bigger influence on the fitted linear 

model. By varying the width of the weight function, it is 

possible to fit a range of models, varying from extremely 

local to completely global, the latter of which would be 

comparable to regular vector autoregressive (VAR) 

modeling (Brandt & Williams, 2007).  

In this study, the SMAP procedure was used in com-

bination with a VAR model. The VAR parameters were 

computed with a total least squares (TLS) procedure 

based on singular value decomposition (Van Huffel & 

Vandewalle, 1991). In TLS fitted models, uncertainty is 

assumed in the dependent variable and in the independ-

ent variables. Ordinary least squares fitted models as-

sume uncertainty in the dependent variable only (Golub 

and van Loan, 1980). In diary studies, uncertainty can 

often be assumed in both variables. Therefore a 

TLS-fitted model will better reflect the uncertainty that 

is present in the data.  

The aim of the current study was to investigate the 

usefulness of SMAP for applied psychophysiological 

research. SMAP was used to study the nature of the in-

tra-individual relationship between cortisol and negative 

affect (NA) (an important symptom domain of depres-

sion), using time-series data that were collected three 

times per day for 30 days in 15 participants with a Major 

Depressive Disorder (MDD) and in 15 pair-matched 

non-depressed participants. For each participant, the 

extent of nonlinearity in his/her time series was investi-

gated by comparing prediction of local and global mod-

els. Also, the direction of the relationship between corti-

sol and NA was investigated. Finally, the results ob-

tained in the individual participants were summarized to 

investigate the extent of variation in (non)linearity and 

directionality of the relationship across participants, and 

between the depressed and non-depressed groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Univariate SMAP illustrated. 

 
An embedding (E) is created by extracting lagged vectors from 
time-series data for x. This is illustrated for a target vector at t = 6, 
having scalar components that are obtained by taking the value of 
x at t = 6, t = 5 and at t = 4. A prediction ( ) for the future value 
of an associated variable y (which may be x itself) at t = 7, is ob-
tained as the outcome of a linear vector regression on the target 
vector’s components. The parameters (c1,c2,c3) of this regression 
are estimated from the relationship between the target’s neighbors 
(i.e. all other vectors in the embedding) and their associated val-
ues of y. A gaussian weight function w, depending on the tar-
get-neighbor distance rij, determines the influence of a neighbor 
on the values of the parameters, with closer neighbors having 
more influence than distant ones. The width (or flatness) of this 
gaussian curve is controlled by θ. Individual models are estab-
lished for each vector of the embedding. 

 



Journal for Person-Oriented Research 2016, 2(3), 142-154 

 

145 

 

Method 

Participants  

Data were obtained from the MOOVD study 

(Bouwmans et al., 2015). This dataset contains 

time-series data (three measurements per day, 30 con-

secutive days, 90 measurements in total) for several bi-

ological markers, various diary items, and movement 

variables. Data were collected in 54 individuals, of 

whom 27 had an MDD (currently or in the past 2 months) 

and 27 were non-depressed. Patients and healthy sub-

jects were matched on sex, age, body mass index and 

smoking status. For the analyses of the present study a 

subset of 30 participants (age 20 to 50 years) was used, 

i.e. those for whom cortisol measurements were availa-

ble. The selection consisted of 15 participants with a 

major depressive disorder (MDD) (ID 1 to 15) and 15 

non-depressed participants (ID 16 to 30). The study pro-

tocol was approved by the Medical Ethical Committee 

of the University Medical Center Groningen (UMCG). 

All participants provided written informed consent.  

Ambulatory sampling 

A PsyMate device (PsyMate BV, Maastricht, The 

Netherlands) (Myin-Germeys, Birchwood, & Kwapil, 

2011) was used to administer an electronic questionnaire 

to the participants. Three times a day, at 10 AM, 4 PM, 

and 10 PM (on average; the sampling scheme was ad-

justed to the participant’s sleep-wake schedule), the par-

ticipants were warned with an acoustic signal to fill out 

the questionnaire, which consisted of 60 items relating to 

mood, activity, and cognition. The duration of the total 

diary study was 32 days, of which the first two days 

were used for the participants to get used to the proce-

dure and the following days were used for data collec-

tion. This resulted in up to 90 measurements per partici-

pant. The average number of missing cortisol values per 

participant was 4.2 (s.d. = 4.2) and the average number 

of missing NA values per participant was 6.5 (s.d. = 6.0). 

Cortisol 

The participants used Salivettes®; to collect saliva 

samples while they filled out the electronic diary and 

stored these samples in their home refrigerator until they 

were collected by research staff (once per week). After 

collection, the samples were centrifuged and stored in 

the UMCG laboratory, at -80 °C. Online-solid phase 

extraction in combination with isotope dilution liquid 

chromatography-tandem mass spectrometry was applied 

to 250 µL of saliva, using deuterated cortisol as internal 

standard. All samples of one participant were processed 

in the same batch. Mean intra- and inter-assay coeffi-

cients of variation were below 10%. The quantification 

limit for cortisol was 0.1 nmol L-1.  

Negative affect 

A NA score was obtained by computing the average of 

the mood items ’tense’, ’anxious’, ’distracted’, ’rest-

less’, ’irritated’, ’depressed’, and ’guilty’ from the diary 

data. These items were adapted from Bylsma, Tay-

lor-Clift, and Rottenberg (2011) and were rated on a 

7-point Likert response scale (range: 1 = ’not’ - 7 

= ’very’).  

Data preparation 

First-differences of time series for cortisol and NA 

were taken to remove linear trends from the series with-

out compromising the possible nonlinear nature of the 

data. The first-differenced time series were scaled to 

zero mean and unit variance.  

Embedding construction and validation 

To construct the univariate embeddings, lagged vec-

tors Vt = [xt, xt-1,…, xt-(e-1)] (where e is the dimension of 

the embedding), were constructed from the time-series 

data of either cortisol or NA. Vectors containing missing 

values were omitted from inclusion. Each vector was 

associated with a predictee; that is: a future value of the 

same variable or a future or contemporaneous value of 

the other variable. Given the limited amount of observa-

tions, leave-one-out validation was used when compu-

ting the prediction performance (Arlot, Celisse, et al., 

2010). The multivariate embeddings were constructed by 

taking the best performing univariate embedding and 

adding values from the time series of the other variable 

(Cao, Mees, & Judd, 1998). In the current study, only 

one lag of the other variable was used. Using two or 

more lags resulted in too much data loss because of 

omission of the vectors with missing values. The com-

bination of vectors and predictees was used to construct 

(local) linear models and to validate predictions made by 

applying these models to target vectors (which were ex-

cluded in the model creation step).  

Cortisol predictions 

To test the prediction of cortisol by NA, two types of 

embedding were constructed: a univariate cortisol em-

bedding to test for the ability of cortisol to predict future 

values of itself and a multivariate embedding consisting 

of cortisol and NA to test for the amount of improve-

ment in predictive ability if NA was added to the cortisol 

embedding. For each type of embedding, a range of di-

mensions was produced: for the univariate case with 

dimension 1, an embedding was constructed consisting 
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of cortisol values with lag 1, to predict the cortisol value 

at time t. For dimension 2 the values of lag 1 and lag 2 

were used to predict the value at time t. For dimension 3 

the values of lags 1, 2 and 3 were used, and so on. Em-

bedding dimensions of up to 7 were used. The multivari-

ate embeddings were constructed by taking the univari-

ate embeddings and adding values from one lag of NA. 

This lag was taken from a range of lag 0 (i.e. the con-

temporaneous value of the cortisol predictee) to lag 4. 

For each embedding, the nonlinearity parameter θ was 

varied between 0.0 and 3.0 in steps of 0.2. The predic-

tive performance of an embedding was assessed at each 

value of θ by computing the normalized root mean 

square error (NRMSE) between the predicted and ob-

served values of cortisol. To obtain the NRMSE, the root 

mean square error (RMSE) between the observed and 

predicted values was divided by the standard deviation 

of the observations that were used in the embedding. 

Due to cortisol’s natural fluctuation pattern during the 

day (Stone et al., 2001), showing high levels in the 

morning and a gradual decay over the rest of the day, the 

standard deviation of the observations will typically be 

higher than the RMSE of the observed and predicted 

values, resulting in a low NRMSE. This may obscure the 

real prediction performance of the method. Therefore, 

the NRMSE was also computed separately for the values 

collected in the morning, the afternoon, and the evening.  

Negative affect predictions 

Similar to the cortisol predictions, NA was predicted 

using univariate and multivariate embeddings, consisting 

of NA predicting NA and of NA plus cortisol predicting 

NA, respectively. Embedding parameters were varied in 

the same way as was done for the cortisol predictions. 

Here again θ was varied between 0.0 to 3.0 in steps of 

0.2 and the NRMSE was calculated at several, increas-

ing values of θ.  

Bootstrapping and testing 

A bootstrapping procedure was applied to obtain es-

timates for the distribution of the computed NRMSE’s. 

In each bootstrap, a new embedding was constructed by 

sampling points from the original embedding, thus re-

sembling an overlapping blocks bootstrap procedure 

with blocks that contain the scalar components of one 

vector each (Härdle, Horowitz & Kreiss, 2003). The 

sampling procedure was constructed in such a way that 

the bootstrapped embeddings would contain the same 

number of morning, afternoon, and evening values as the 

original embedding. For each combination of lags and 

variables, 1000 bootstrap embeddings were used, result-

ing in 1000 separate estimates for the NRMSE at each 

value of θ. Subsequently, an average was computed at 

each value of θ for each embedding. These averages 

were computed for the full embedding and for the sepa-

rate time-of-day predictions. This resulted in prediction 

graphs as shown in Fig. 2. Based on these averaged pre-

dictions, the best-performing model with optimal em-

bedding parameters was identified by choosing the em-

bedding and parameter θ that resulted in the lowest av-

erage NRMSE.  

A Mann-Whitney test (Altman, 1990) was used to test 

for the significance of the difference between the 

NRMSE distribution at the optimal value of θ and the 

NRMSE distribution at θ = 0 (global/linear prediction). 

The same testing approach was used to test the differ-

ence between the NRMSE distributions obtained from 

univariate and multivariate embeddings.  

Software 

Software to construct the embeddings, generate boot-

strap sets, and compute prediction performance was 

programmed in C on linux. This software is available 

upon request. Total least square fitting routines devel-

oped by Van Huffel and Vandewalle (1991) were used to 

obtain linear model fits. Additional analyses were car-

ried out in R (R Core Team, 2015). 

Results 

Prediction of cortisol with and without nega-
tive affect  

 

The NRMSE for the univariate cortisol embeddings 

(Table 1) showed significantly lower values for the local 

linear models in comparison with the global linear mod-

els, with Δnrmselin values greater than zero in 27 out of 

30 participants (90%). Here, Δnrmselin represents the 

difference between the NRMSE in the global linear em-

bedding (θ = 0) and the NRMSE in the optimal embed-

ding. These values were based upon results from the 

complete embedding, without distinguishing between 

different times of day. Separate predictions for each time 

of day showed better local prediction performance for 

the morning values in 26 out of 30 participants (87%), 

for the afternoon values in 25 out of 30 participants 

(83%) and for the evening values in 16 out of 30 partic-

ipants (53%).
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Figure 2: Results of SMAP for participant 23. 

SMAP predictions are shown for two analyses: cortisol predictions based upon a univariate cortisol embedding (Cortisol), and cortisol 

predictions based upon a multivariate cortisol + negative affect embedding (Cortisol + NA). Results have been obtained for: all time 

series values, and for the morning, afternoon and evening values separately. Each panel shows the results for several embeddings, each 

having different embedding parameters. The multivariate results were obtained by taking the best performing univariate embedding and 

adding one lag of NA at various values for the distance of this lag. Values for the NRMSE have been obtained as an average of 1000 

bootstrap runs. Parameter θ ranges from 0 (completely global) to 3 (extremely local). 
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Table 1 

Performance of cortisol predictions. 
 

ID cortisol  cortisol negaff    

 dim n nrmse ∆nrmselin θ  dim n nrmse ∆nrmselin θ lagNA  Impr Imprlin 

1 2 55  0.437  0.020*12  1.40   3  34  0.445  0.007* 23  0.60  6   -0.008 123  0.011  

2 2 63  0.463  0.137*123  1.60   3  55  0.528  0.113*123  1.40  3   -0.065  0.043  

3 2 75  0.362  0.044*12  1.40   3  69  0.346  0.082*123  1.80  3   0.016*1 3  0.006  

4 2 61  0.708  0.000 2  0.00   3  46  0.654  0.000  0.00  7   0.054*123  0.054  

5 2 67  0.489  0.044*123  1.00   3  63  0.460  0.044*123  1.40  3   0.029*1  0.030  

6 2 66  0.679  0.027*12  0.80   3  63  0.653  0.022*123  0.80  2   0.026*1  0.034  

7 2 60  0.552  0.000 2  0.20   3  51  0.448  0.050*123  1.00  0   0.104*12  0.054  

8 2 71  0.419  0.070*123  1.40   3  48  0.399  0.017*123  1.60  1   0.020*123  0.073  

9 2 67  0.559  0.041*1  1.20   3  55  0.568  0.029*1  1.20  4   -0.009 23  0.005  

10 2 69  0.496  0.018*123  0.80   3  61  0.479  0.004 23  0.40  3   0.017*1  0.030  

11 2 71  0.483  0.124*123  1.40   3  64  0.515  0.115*123  1.60  3   -0.032  -0.014  

12 1 74  0.998  0.014*12  0.20   2  48  0.943  0.025*12  0.20  4   0.055* 23  0.045  

13 2 71  0.516  0.078*123  1.40   3  66  0.526  0.021*123  1.00  5   -0.010 1 3  0.048  

14 2 79  0.594  0.040*123  1.00   3  74  0.592  0.032*123  0.80  5   0.002  0.009  

15 2 77  0.417  0.052*123  1.20   3  77  0.417  0.058*123  1.80  1   -0.000 1  0.008  

16 2 35  0.726  0.008  0.40   3  27  0.760  0.000  0.00  6   -0.034  -0.026  

17 2 61  0.527  0.127*123  1.20   3  56  0.522  0.073*123  1.20  7   0.005*12  0.058  

18 2 71  0.383  0.010* 23  1.00   3  60  0.369  0.000  0.00  7   0.014* 3  0.025  

19 2 56  0.633  0.038*123  1.00   3  45  0.608  0.002 23  0.20  5   0.025*123  0.061  

20 3 58  0.410  0.204*123  0.80   4  54  0.406  0.132*123  0.80  3   0.004* 2  NA  

21 2 65  0.710  0.082*123  1.00   3  59  0.740  0.053*123  1.20  5   -0.030  -0.001  

22 2 68  0.278  0.020*1 3  1.20   3  57  0.273  0.005 3  1.00  2   0.005*1 3  0.022  

23 2 40  0.783  0.075*123  0.60   3  30  0.815  0.094*123  1.00  5   -0.032 23  -0.051  

24 2 63  0.397  0.030*12  1.20     NA      NA  NA  

25 2 75  0.354  0.005*12  0.80   3  72  0.366  0.001 2  0.20  5   -0.012 123  -0.008  

26 2 38  0.410  0.023*12  1.20   3  27  0.321  0.015*1 3  0.80  4   0.089*123  0.097  

27 2 72  0.368  0.012*123  1.20   3  70  0.370  0.002 3  0.40  4   -0.002  0.007  

28 2 53  0.539  0.048*12  1.20   3  47  0.586  0.031*12  0.80  1   -0.047  -0.030  

29 2 61  0.443  0.008*12  0.80   3  55  0.478  0.000  0.00  2   -0.035 1  -0.028  

30 2 77  0.353  0.008*12  1.20   3  68  0.370  0.006* 2  0.40  1   -0.017  -0.016  

 

* p < 0.05 for the indicated difference, based on the complete embedding. 1,2,3 p < 0.05 for the corresponding morning, afternoon, or 

evening differences respectively. ID 1 through 15: depressed participants; ID 16 through 30: non-depressed participants.  

Note. Performance of cortisol predictions for multivariate embeddings consisting of cortisol and negative affect (NA), and univariate 

embeddings consisting of cortisol only. The values shown are the values that were obtained from the complete embedding, without dif-

ferentiating between time of days. For each participant, the following parameters are shown: dim, the dimension; n, the number of time 

series points used; nrmse, the normalized root mean square error between the predicted values and the observed values; ∆nrmselin, the 

difference between the optimal NRMSE and the NRMSE for the global linear case (with θ = 0), with positive values indicating a better 

performance for the local linear predictions; lagNA, the negative affect lag which – when added to the optimal embedding – results in the 

lowest NRMSE; Impr, the difference between the NRMSE of the multivariate embedding and the NRMSE of the univariate embedding; 

Imprlin, The difference between the NRMSE of the multivariate embedding and the NRMSE of the univariate embedding when only 

global linear models are used. 
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Table 2.  

Performance of negative affect predictions. 
 

ID negaff  negaff cortisol    

 dim n nrmse ∆nrmselin θ  dim n nrmse ∆nrmselin θ lagCo  Impr Imprlin 

1 1  51  1.071  0.048*12  0.20   2  46  1.542  0.019 1  0.20  1   -0.471 1  -0.443  

2 1  73  1.135  0.000  0.00   2  66  1.105  0.006*1 3  0.20  1   0.030* 2  0.024  

3 2  78  0.742  0.039*1 3  0.80   3  72  0.665  0.036* 23  0.60  1   0.077*1 3  0.080  

4 1  71  1.173  0.000  0.00   2  65  1.453  0.000 1  0.00  0   -0.280 12  -0.280 

5 2  79  1.089  0.000  0.00   3  71  1.064  0.000 3  0.00  2   0.025* 3  0.025  

6 1  76  1.454  0.000  0.00   2  65  1.703  0.000  0.00  5   -0.249  -0.249 

7 2  60  1.089  0.000 2  0.20   3  53  1.947  0.000 23  0.00  0   -0.858 2  -0.859  

8 1  51  1.046  0.012*1  0.20   2  45  1.183  0.000 1  0.00  0   -0.137 1 3  -0.125  

9 1  72  1.075  0.020* 23  0.20   2  68  1.125  0.015* 23  0.20  0   -0.050 3  -0.046  

10 1  73  1.766  0.000  0.00   2  63  1.356  0.000 2  0.00  5   0.410*123  0.409  

11 2  72  0.871  0.000  0.00   3  64  0.770  0.009*1  0.40  7   0.101*123  0.091  

12 2  32  2.114  0.000  0.00   3  26  3.207  0.000  0.00  1   -1.093  -1.093 

13 1  85  1.041  0.036* 23  0.20   2  79  0.981  0.032*12  0.20  0   0.060* 3  0.065  

14 2  83  0.940  0.009 2  0.40   3  79  0.931  0.027* 23  0.60  1   0.009 1  -0.009  

15 1  88  1.063  0.026* 23  0.20   2  79  1.002  0.016* 23  0.20  6   0.061*123  0.072  

16 1  49  1.131  0.000 2  0.00   2  29  1.696  0.000  0.00  7   -0.565  -0.565  

17 2  79  1.188  0.000  0.00   3  67  1.261  0.011 3  0.20  3   -0.073 3  -0.076  

18 1  72  1.128  0.000 2  0.00   2  63  1.355  0.000 3  0.00  2   -0.227  -0.227  

19 1  65  1.031  0.017*1  0.20   2  48  0.965  0.029*12  0.20  7   0.066*12  0.055  

20 1  70  1.219  0.000  0.00   2  57  1.223  0.000  0.00  6   -0.004  -0.003  

21 1  82  0.975  0.031*123  0.20   2  70  1.048  0.000 3  0.00  2   -0.073 12  -0.042  

22 1  72  1.085  0.032*123  0.20   2  61  1.062  0.015* 23  0.20  5   0.023*123  0.040  

23 1  53  1.262  0.000  0.00   2  40  1.667  0.000  0.00  2   -0.405  -0.406  

24   NA       NA      NA  NA  

25 1  80  1.047  0.000  0.00   2  72  0.950  0.000  0.00  5   0.097*12  0.097  

26 1  48  0.962  0.024*1 3  0.20   2  42  1.059  0.078*1 3  0.40  1   -0.097 1 3  -0.151  

27 3  80  1.036  0.139*123  0.60   4  74  1.067  0.108*123  0.80  0   -0.031 2  NA  

28 1  60  1.523  0.000  0.00   2  53  1.947  0.000  0.00  0   -0.424 23  -0.424  

29 1  68  1.174  0.000  0.00   2  59  1.061  0.023* 23  0.20  2   0.113*  0.090  

30   NA       NA      NA  NA  

 

* p < 0.05 for the indicated difference, based on the complete embedding. 1,2,3 p < 0.05 for the corresponding morning, afternoon, or 

evening values respectively 

Note. Performance of negative affect predictions for multivariate embeddings consisting of negative affect and cortisol, and univariate 

embeddings consisting of negative affect only. Parameters are similar to those in table 1 except for lagCo, the optimal cortisol lag.  
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In the multivariate embeddings containing cortisol 

and NA, local linear models showed a better prediction 

performance than global linear models in 20 out of 29 

participants (69%). For participant 24 the multivariate 

analyses did not converge to meaningful outcomes, due 

to missing values or too little variation in the measure-

ments. Local predictions were better in 18 out of 29 

(62%) participants for the morning values, in 21 out of 

29 (72%) for the afternoon values, and in 20 out of 29 

(69%) for the evening values. 

Univariate embeddings in almost all participants were 

found to be optimal at two dimensions, consisting of lag 

1 and 2. Almost all optimal multivariate embeddings 

were three-dimensional, consisting of cortisol lags 1 and 

2, and a NA lag between 0 and 7, with the majority of 

the NA lags (28 out of 29) being greater than 0. 

Adding NA to the cortisol embedding resulted in a 

significant prediction-performance improvement (Impr > 

0) in 14 out of 29 participants (48%). However, in 13 out 

of 29 participants (45%) the prediction performance be-

came worse. Especially the prediction of morning corti-

sol values gained from adding NA to the embedding. In 

18 out of 29 participants (62%), the predictions im-

proved when NA was added. For the afternoon values, 

prediction improvement was seen in only 5 out of 29 

participants (17%), and for the evening values, im-

provement was seen in only 12 out of 29 participants 

(41%).  

Prediction improvements based on strictly glob-

al/linear models (θ = 0 in the univariate and multivariate 

cases), showed better multivariate performance in 20 

outof 29 participants (69%) (see column Imprlin in ta-

ble 1). Interestingly, for 6 participants (1, 2, 9, 13, 15, 27) 

the global linear analyses showed prediction improve-

ments whereas the local linear analyses did not. Invaria-

bly, these participants showed increased local linear 

performance in the univariate embeddings. 

 

Prediction of negative affect with and without 
cortisol 
 

For participants 24 and 30 the analyses did not con-

verge to meaningful outcomes, due to missing values or 

too little variation in the measurements. The results for 

NA (Table 2) showed that local predictions showed bet-

ter prediction performance than global predictions (θ = 0) 

in 11 out of 28 participants (39%). The NRMSE for sep-

arate times of the day indicated that local predictions 

performed better in only 8 out of 28 participants (29%) 

for the morning values, 11 out of 28 participants (39%) 

for the afternoon values, and 8 out of 28 participants 

(29%) for the evening values. In the multivariate em-

beddings containing both NA and cortisol, local predic-

tions performed better in 12 out of 28 (43%) participants 

in the complete set, in 9 out of 28 (32%) for the morning 

values, in 11 out of 28 (39%) for the afternoon values, 

and in 14 out of 28 (50%) for the evening values. The 

dimensions of the optimal univariate NA embeddings 

ranged from 1 to 3, with the majority of the participants 

(20 out of 28 = 71%) having an optimal univariate pre-

diction performance in a one-dimensional embedding. 

Addition of cortisol to the NA embedding resulted in a 

prediction performance improvement in 11 out of 28 

participants (39%) when the results of the complete em-

bedding were used. Examining the multivariate embed-

dings’ morning, afternoon and evening prediction im-

provements separately, showed a prediction improve-

ment of morning values of NA in 12 out of 28 partici-

pants (43%), of afternoon values in 11 out of 28 partici-

pants (39%), and of evening values in 10 out of 28 par-

ticipants (36%).  

Prediction improvements based on strictly glob-

al/linear models showed signs similar to the local-linear 

improvements in all participants. For participant 27 a 

linear improvement could not be determined. 

Depressed and non-depressed 

In the depressed group, addition of NA to the cortisol 

embedding resulted in an improvement of cortisol pre-

diction in 8 out of 15 participants (53%), with an aver-

age decrease of the NRMSE of 0.040. In the 

non-depressed group, such an improvement was ob-

served in 6 out of 14 participants (43%), with an average 

of 0.024. Adding cortisol to the NA embedding resulted 

in an improvement of NA predictions in 7 out of 15 de-

pressed participants (47%), with an average decrease of 

the NRMSE of 0.109. In the non-depressed group, pre-

diction improvement was observed in 4 out of 13 partic-

ipants (31%), with an average decrease of the NRMSE 

of 0.075. 

Discussion 

The comparison of local and global prediction of cortisol 

and NA showed notable differences between the two varia-

bles and between models. In the majority of participants, 

cortisol predictions improved when using local prediction, 

whereas NA was most often better predicted when using 

global linear prediction. This difference may be due to the 

nature of the measured quantity: the HPA axis, being a bio-

logical system, may very likely be governed by nonlinear 

dynamical interactions. In many cases, these kinds of sys-

tems may be approximated by using a set of local linear 

models, unique to each point in the embedding. In that case, 

local linear predictors for cortisol will outperform global 

linear ones. NA, on the other hand, is measured as an ag-

gregated value of several questionnaire items, with each 

item being scored on a 7-point Likert scale. The result is an 

ordinal scale rather than an interval scale. Although the 
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aggregated sum scales usually can be regarded as inter-

val-like (Carifio and Perla, 2008), it is still possible that any 

nonlinear features disappear when using these aggregated 

scales. An additional explanation may be that the resulting 

scale is too coarse to capture any local constituents.  

Both cortisol prediction and NA prediction did benefit 

from the use of multivariate embeddings: an improvement 

of prediction performance for cortisol as well as for NA 

was observed in roughly half of the participants. This is 

interesting, as such a finding is only expected when cortisol 

and NA are interacting parts of the same system (Deyle et 

al., 2013). Depending upon the strength and direction of the 

interactions the underlying relationships can have different 

forms: (1) cortisol contains information about NA, (2) NA 

contains information about cortisol, or (3) NA and cortisol 

contain information about each other. Interestingly, com-

parison of the depressed and non-depressed groups sug-

gested that the connection between cortisol and NA was 

stronger in the depressed group. Both the number of ob-

served significant improvements in prediction performance 

for one variable when the other variable was included, as 

well as the average value of the observed improvement 

were higher in the depressed group compared to the 

non-depressed group.  

Examining prediction improvements separately for each 

time of day showed that the prediction of the morning value 

of cortisol gained the most from adding NA to the embed-

ding. This may be due to the diurnal pattern of cortisol, 

showing the highest levels and the largest possibility of 

variation in the morning. Alternatively, cortisol could be 

highly predictable once its morning value has been set. 

However, it could be that morning cortisol is itself highly 

unpredictable and that the prediction of this value would 

therefore gain most from any additional information in the 

model.  

The current data may not be sufficient to permit us to 

draw definite conclusions about the direction of causality. 

However, it is interesting to explore the possibilities. When 

addition of a variable X to an embedding of Y results in an 

improved prediction of variable Y, this implies that X con-

tains information about Y. From a nonlinear dynamics point 

of view, Y may be coupled in a nonlinear way to X, result-

ing in X containing information about Y. However, in some 

cases, the direction of causality may run in the opposite 

direction. When X is a stochastic variable and X is coupled 

nonlinearly to Y, previous values of Y will contain infor-

mation about previous values of X. However, the current 

value of X cannot be predicted completely from previous 

values of X. Therefore, the current value of Y cannot be 

predicted completely from previous values of Y, since the 

current value of X is not yet in the data for Y. In this case, 

adding the current value of X to an embedding for Y would 

result in an enhanced prediction of Y’s current value (Deyle 

et al., 2013), but the direction of causality would be di-

rected from X to Y, instead of from Y to X. Furthermore, 

linear concepts of causality would also need to be included 

in the discussion about the direction of causality. From a 

Granger Causality (GC) point of view, an improved pre-

dictability of Y by inclusion of a variable X, compared to 

predictions by means of the set of all known predictors 

without X, would mean that X Granger Causes Y (Granger, 

1988). Although an embedding of Y alone can hardly be 

regarded as a set of all known predictors, improved predic-

tion after inclusion of X may still be a sign of a possible 

GC influence of X on Y. In short, improved prediction of Y 

after inclusion of X may be indicative of: Y being nonline-

arly coupled to X, X being stochastic and nonlinearly cou-

pled to Y, or X having GC influence on Y. Therefore, im-

proved prediction of cortisol after addition of NA, and vice 

versa, suggests that there are common dynamics underlying 

both cortisol and NA, but does not allow for definite con-

clusions about the direction of causality. To accomplish the 

latter, additional methods may be necessary (see for exam-

ple: Sugihara et al., 2012). For the current study, the matter 

of directionality may be less of an issue as the results 

showed that cortisol predictions can improve with inclusion 

of NA and that NA predictions can improve with inclusion 

of cortisol. Based on these results a unidirectional relation-

ship between cortisol and NA seems unlikely, and causality 

in both directions seems more plausible. As such, the re-

sults suggest that cortisol and NA are part of the same dy-

namic system in less than half of the participants: in 48% of 

time series, cortisol predictions improved after inclusion of 

NA in the cortisol embedding, and in 39%, NA predictions 

improved after inclusion of cortisol in the NA embedding.  

In the depressed and the non-depressed groups, consid-

erable heterogeneity in the connection between cortisol and 

NA was observed across participants. This was observed in: 

(1) the sign of the observed prediction improvement, (2) the 

magnitude of the prediction improvement, (3) the dimen-

sions of the optimal NA embeddings, and (4) the values of 

the NRMSE. These observations are in line with and extend 

on a previous study (Booij et al., 2016) on the same data. 

Here, considerable heterogeneity between participants in 

the relationship between cortisol and NA was also found 

when using strictly linear VAR analyses. There were in-

ter-individual differences in the sign, the direction, and the 

timing of the association. The current results add to this that 

the non-linearity of the connection between cortisol and NA 

and the dimensions of the optimal embedding also show 

heterogeneity, providing even deeper insight into the com-

plexity of the involved person-specific dynamics. Im-

portantly, although the observed heterogeneity may have 

implications for our understanding of the interaction be-

tween physiological and psychological variables within 

persons, this heterogeneity remains undetected when using 

traditional – group-based – methods, as these methods pro-

vide no information about the temporal relationships be-

tween observed variables at the level of the individual.  
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There could be several reasons for the finding that indi-

viduals with the same MDD diagnosis differ strongly with 

regards to the intra-individual dynamics of cortisol and NA. 

It could be that such differences are partly determined by 

constitutional differences between participants (i.e. genetic, 

personality). However, other factors could also play a role. 

For instance, individual differences in stress-reactivity 

could be explained by the kindling hypothesis (Post, 1992). 

According to this hypothesis, the experience of recurrent 

depressive episodes result in altered responses to psycho-

social stressors (Kendler, Thornton, and Gardner, 2000). 

Due to sensitization of the systems involved in the stress 

response, the threshold for the activation of negative pat-

terns of information processing decreases with each de-

pressive episode. As a result, the onset of such episodes 

becomes increasingly autonomous and less associated with 

the severity of negative events. When translated to the cur-

rent results, it could be that person-specific alterations in 

stress response systems due to previous depressive episodes 

could explain why different relationships between the two 

variables were observed across depressed patients. We 

tested whether the size of the prediction improvements in 

either cortisol or NA in the depressed group were related to 

the number of recurrent depressive episodes (results not 

shown), but did not find a significant relationship. This may, 

however, be explained by a lack of power due to the small 

sample size.  

In addition to the insights into the common dynamics of 

cortisol and NA, the current study also provided insight 

into the usefulness and applicability of the local linear 

SMAP approximation. One notable advantage of the SMAP 

approach is its inherent nonparametric nature. No assump-

tions are made about the underlying model. On first sight, 

this likely would increase the difficulty of finding statisti-

cally relevant connections between variables. However, a 

simulation study by Perretti, Sugihara, and Munch (2013) 

showed that SMAP predicted better in comparison with 

parametric methods, even if the fitted parametric model 

was similar to the actual model underlying the simulated 

data. The current study can be seen as a proof of principle 

for the application of local linear approximation methods in 

the analysis of psychological and/or physiological 

time-series data. Previous work using comparable analyti-

cal approaches have mainly focused on ecological research 

(e.g. Deyle et al., 2013; Hsieh, Glaser, Lucas, and Sugihara, 

2005 and Sugihara, 1994). The current work showed that 

the approach also works in psychophysiology. However, 

the used input variables differ between ecological and psy-

cho/physiological research, complicating the use of the 

latter in nonlinear models. Psychological constructs are 

usually not directly measurable by means of an observable 

physical quantity (e.g. temperature). Instead, questionnaires 

consisting of severable items are used, and an aggregated 

value, representing the value of the psychological construct, 

is computed afterwards. Even if these constructs would be 

directly related to neurological correlates, specifying non-

linear mathematical models that contain physiological var-

iables and psychological construct variables is unlikely to 

ever become as straightforward as in physical/ecological 

research.  

Another strength of SMAP, besides its nonparametric 

nature, is its ability to capture both linear and nonlinear 

relationships between variables. When θ is set to zero, the 

SMAP results are comparable to the results of a regular 

(global) VAR analysis. When θ is greater than zero, the 

values of the VAR parameters depend upon the location in 

the embedding. In other words, the linear parameters are 

state dependent. This is a property that is typical for many 

nonlinear dynamical systems. 

As for many other longitudinal methods, the current 

method depends upon the availability of time-series data of 

sufficient length. In this study, time series consisting of 90 

measurements were used for each variable. This may very 

well be near the minimum of the length that is needed to 

obtain reliable results. Furthermore, little is known about 

the sensitivity of this method to influential points (e.g. out-

liers). The used bootstrapping procedure was very effective 

to eliminate irregular patterns in the SMAP results, but 

more research on simulated data with known model param-

eters is needed to gain more insight into the influence of 

noise and influential points. In summary, strengths of 

SMAP are: (1) its nonparametric nature, and (2) its ability 

to handle nonlinear features in the data. A weakness is 

SMAP’s dependency on long time series. Furthermore, it is 

yet unknown how SMAP behaves in the presence of noise 

and influential points, which are abundant in psychological 

data.  

In the current study, the embedding dimension was lim-

ited to a maximum of seven, corresponding to using seven 

points from the time-series data and comprising a range of 

2.3 days. When higher dimensions are used, missing values 

in the time-series would result in too many vectors with 

missing coordinate values. These vectors cannot be includ-

ed in embeddings because it is impossible to compute dis-

tances between points with unknown coordinates. For the 

same reason, only one lag was used for the additional vari-

able in the multivariate embeddings. This may be a limita-

tion, since additional information may be contained in the 

time course of the other variable. Future studies would 

preferably be based on longer time series with as little 

missing values as possible. Another limitation of the cur-

rent study was the fact that the time intervals between data 

points were not equidistant. This was due to the inability to 

obtain samples when the participants were asleep. For the 

NA values the impact may be low because affect – being a 

cognitive state – is probably hardly affected during sleep. 

For cortisol this may not be the case since it is part of a 

biological dynamical system that continues functioning 

during sleep. Furthermore, this system may be heavily 

synchronized by the body’s biological clock. Therefore, it 

may be necessary to use methods that are suitable to ana-

lyze periodically-forced dynamical systems. One of these 
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methods involved the use of so-called bundle embeddings 

(Stark, 1999), where each time-of-day results in an indi-

vidual embedding. This will be part of a future study.  

In conclusion, the current results indicate that in a con-

siderable proportion of persons, cortisol and NA are part of 

a common nonlinear dynamical system. Moreover, the rela-

tionship between cortisol and NA seemed stronger in de-

pressed than in non-depressed persons. However, in line 

with previous studies, the results also showed that the na-

ture of the relationship between cortisol and NA varies 

considerably across persons. The finding of this heteroge-

neity highlights the importance of conducting not only 

group-based, but also person-centered analyses when the 

aim is to better understand the role of etiological factors in 

depression. 
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