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Abstract: The present study takes a closer look at the principles of estimating person parameters in the Rasch-Model
and how they can be utilized for assessing model fit. After working out how the item parameters correspond to the
person parameters and their standard errors, an order criterion is proposed, allowing for a further model check taking the
person-oriented point of view into consideration. A simulation study established a means for an inferential check extending
the assessment of model fit to the person side of the model. This method sets out to add to the existing methods of model
checking and to allow for a deepened understanding of how our data correspond with the assumptions of the Rasch-Model.
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Introduction

The Rasch-Model is a widely used tool for (but not limited
to) psychological and educational measurement. It allows
for statements regarding a latent trait based on dichoto-
mous responses. One of its major advantages is that we can
reject its admissibility for a data set for empirical reasons
and thus formulate a statement regarding the instrument
(a psychological test, for example) used therein. Hence,
the assessment of fit plays a major role and much effort
has been put into the development of sophisticated meth-
ods for that purpose. The focus of these methods is on the
item parameters, as will be detailled below.

In contrast, the person parameters are less frequently
taken into consideration, even though the application of
a psychological test aims in many cases at describing an
individual. One domain, in which the person side of the
model is taken into account, is the assessment of person
fit, i.e., quantizing in a standardized manner the plausibil-
ity of a specific response vector given the estimated model
parameters. A general embedding of the Rasch-Model
into person-oriented research give von Eye, Bergmann, and

Hsieh (2015, esp. pp. 825–827).
The present article approaches the question of model fit

paying particular attention to the person parameter esti-
mates. It starts with an introduction to the basics of the
Rasch-Model with a special focus on how the item param-
eters affect the person parameter estimates and their stan-
dard errors. A few ad-hoc simulations and illustrations en-
hance this section and underline some important but rarely
discussed details, resulting in recommendations for prac-
titioners and test constructers. Next, the assessment of
model fit is taken into consideration, focussing on the con-
ditional Likelihood Ratio Test. Finally, a new criterion is
proposed, which takes the person-oriented point of view
into account. It will be shown that such an approach may
improve the assessment of fit of the Rasch-Model.

The Model

The dichotomous logistic model according to Rasch (1960),
henceforth denoted Rasch-Model (RM), is a discrete prob-
ability model for a binary response X vi ∈ {0, 1} of an in-
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dividual v (v = 1 . . . n) to an item i (i = 1 . . . k). Let the
realization xvi = 1 denote the individual solving the task
or endorsing a statement, and 0 the opposite.

The RM provides two real-valued parameters, θv describ-
ing the individual (in the context of an assessment fre-
quently termed “person ability parameter”) and βi signi-
fying the item (frequently termed “item difficulty parame-
ter”). Using the logistic function the response probability is

P
�

X vi = 1 | θv ,βi

�

=
eθv−βi

1+ eθv−βi
=: pvi . (1)

Accordingly, the probability of a negative response is 1 −
pvi = (1 + exp(θv − βi))−1. The inverse function of (1) is
the logit function

logit
�

pvi

�

= log
�

pvi

1− pvi

�

= θv − βi . (2)

The RM is a member of the exponential family, hence suffi-
cient statistics exist and maximum likelihood theory is ap-
plicable.

The statistics Rv =
∑k

i=1 X vi and Si =
∑n

v=1 X vi are suffi-
cient for θv and βi , respectively. Hence, all individuals with
the same score rv are assigned the same person parameter
estimate θ̂v = θ̂rv

(or, shorter, θ̂r), and all items with the
same sum si will be assigned the same item parameter es-
timate β̂i . We can therefore express equation (1) also as
pvi =: pri (with r = rv).

This feature allows for establishing a connection to the
person-oriented perspective: The so-called “fifth tenet of
person-oriented research” states that although there is the-
oretically an infinite number of possible patterns (here in
a more general meaning than with the dichotomous re-
sponses considered in the Rasch-Model), “the number of
meaningful patterns is finite” (von Eye et al., 2015, p. 799).
In that sense, the Rasch-Model could be considered as a
very radical translation of Tenet V. We will take up this point
later.

Parameter Estimation

To obtain parameter estimates, we set the partial deriva-
tives of the likelihood function

L(θ ,β ;X) =
∏

v

∏

i

exvi(θv−βi)

1+ eθv−βi
(3)

equal to zero and solve for the unknown parameters.
Taking the sufficient statistics into consideration, we can
rewrite (3) without the individual responses xvi ,

L(θ ,β ; r, s) =
e
∑

v rvθv−
∑

i siβi

∏

v

∏

i(1+ eθv−βi )
. (4)

This formulation shows that all response matrices X yield-
ing the same marginals are equally probable under the RM.
However, rather than using Equation (4), we gain further
from taking the natural logarithm, L (·) = log L(θ ,β ; r, s),

yielding the following support function (cf. Edwards,
1972/1992)

L (θ ,β ; r, s) =
n
∑

v=1

rvθv −
k
∑

i=1

siβi

−
n
∑

v=1

k
∑

i=1

log
�

1+ eθv−βi
�

. (5)

To identify the location of maximum support, we use the
(Fisher) scoring function, i.e., the first partial derivatives of
(5) with respect to the model parameters. Thus, we obtain
the expressions

∂L
∂ θv

= rv −
∑

i

1
1+ eθv−βi

· eθv−βi

= rv −
∑

i

pvi (6a)

for the person parameters and

∂L
∂ βi

= −si −
∑

v

1
1+ eθv−βi

· eθv−βi · (−1)

= −si +
∑

v

pvi . (6b)

for the item parameters. The score is zero at the location
of maximum support, hence we set Equations (6) equal to
zero. By rearranging terms we obtain the equation systems

rv =
∑

i

pvi (7a)

si =
∑

v

pvi , (7b)

i.e., to obtain parameter estimates, we set the sufficient
statistics equal to their expected values—a feature, which
is distinctive for the exponential family of models.

These two equation systems can be solved iteratively, and
one obtains new estimates at step t by alternately applying

θ̂ (t)v = log(rv)− log
∑

i

e−βi

1+ eθ
(t−1)
v −βi

(8a)

β̂
(t)
i = − log(si) + log

∑

v

eθv

1+ eθv−β
(t−1)
i

. (8b)

The likelihood function of the RM is convex over the entire
parameter space, hence we can take zero as starting value
for all parameters. From model Equation (1) follows that
each additive transformation of one parameter can be com-
pensated for by the respective transformation of the other
one, hence the parameter estimates are unique but for an
additive constant. In order to fix the scale, one item must
be assigned a reference value or the mean of the item pa-
rameters is set to zero.

The item parameters are regarded as structural param-
eters, because, usually—or, hopefully?—much effort has
been invested into constructing the items under investiga-
tion. Hence, the item set cannot be arbitrarily increased.
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In contrast, the person parameters are considered inciden-
tal, as we draw respondents at random. The simultaneous
estimation of structural and incidental parameters gives
rise to the incidental parameter problem as formulated by
Neyman and Scott (1948). While corrective procedures are
available (cf. Molenaar, 1995; Wright & Douglas, 1977),
issues were raised regarding their effect (cf. Baker & Kim,
2004, ch. 5.6.2). Two methods of resolution have gained
popularity, marginalization and conditioning. (cf. Pawitan,
2001).

In the Marginal Maximum Likelihood estimation ap-
proach (MML; cf. Baker & Kim, 2004; Molenaar, 1995),
we replace the incidental parameters θv by an appropri-
ately chosen marginal distribution G(θ ), which can be in-
tegrated out. Rather than estimating the θv themselves, we
now only have to estimate the (meta-)parameters τ of G(·),
which are no longer incidental. For example, in the case of
the (frequently chosen) normal distribution, we estimate
the mean µθ (= τ1) and the variance σ2

θ
(= τ2) of G(θ ).

We thus arrive at the marginal likelihood function

Lm(τ,β ;X) =
n
∏

v=1

∫ ∞

−∞

k
∏

i=1

exvi(θv−βi)

1+ eθv−βi
dG(θ ). (9)

This method implies choosing a proper distribution G(·),
the effects of failing to do so have been analyzed by
Zwinderman and van den Wollenberg (1990).

Alternatively, we can apply the Conditional Maximum
Likelihood estimation method (CML; cf. Baker & Kim,
2004; Molenaar, 1995), which has been adapted to the RM
by Andersen (1970). This approach resorts to the existence
of sufficient statistics and delivers item parameter estimates
by conditioning on the observed values of the Rv to esti-
mate the item parameters. This is achieved by maximizing
the conditional likelihood function

Lc(ε; s|r) =

∏

i ε
si
i

∏k−1
r=1 γ

nr
r

, (10)

using the substitution εi = e−βi for ease of notation. The γr
denotes the elementary symmetric function of order r and
nr is the number of observations realizing a score Rv = r
(cf. Alexandrowicz, 2012; Gustafsson, 1980; MacDonald,
1995; Verhelst, Glas, & van der Sluis, 1984; Formann,
1986). To obtain item parameter estimates, we set the first
partial derivatives of the log of the conditional likelihood
function (10)

∂Lc

∂ εi
=

si

εi
−
∑

v

γ
[i]
rv−1

γrv

(11)

equal to zero (γ[i]r−1 denotes the first derivative with respect
to item i of the elementary symmetric function of order r−
1). After rearranging we obtain the equation system

si =
∑

v

εiγ
[i]
rv−1

γrv

, (12)

which can be solved for the item parameters by means of
the Newton-Raphson algorithm. Thereafter, we use the

item parameter estimates in place of the true values and
obtain person parameter estimates by applying (6a). In the
remainder of this text, we rely on the conditional approach.

Standard Errors of Parameters

The second derivative of a function denotes its curvature.
A stronger curvature around the maximum of the sup-
port function makes identification of this maximum easier.
Hence we may take the inverse of the curvature as a mea-
sure of preciseness of the estimates, establishing the ground
for the estimates’ standard errors. Due to a function’s right
curvature at a maximum, its second derivative is negative
at that location. Hence we take the negative of the second
derivatives of the support function with respect to each pa-
rameter, which is the (Fisher) information function. In our
case, these are the second derivatives of (5), i.e.

I(θv) = −
∂ 2L
∂ θ 2

v

= −
∑

i

eθv−βi

(1+ eθv−βi )2
, (13a)

for the person parameters and

I(βi) = −
∂ 2L
∂ β2

i

= −
∑

v

eθv−βi

(1+ eθv−βi )2
, (13b)

for the item parameters. Evaluating Equations (13) at the
location of maximum support (i.e. using the maximum like-
lihood estimates) yields the observed information I(θ̂ ) and
I(β̂). The variance is the inverse of the information, hence
the standard errors of the estimates are

S.E.(θ̂r) =
1

I(θ̂r)
(14a)

and

S.E.(β̂i) =
1

I(β̂)
. (14b)

At this point, we observe an asymmetry. In contrast to
the Si , the Rv can only realize a very limited number of dif-
ferent values, namely 1 . . . k− 1 (the limits 0 and k are not
of interest in the Rasch context, as they provide no informa-
tion regarding the comparison of individuals; cf. Hoijtink &
Boomsma, 1995; Warm, 1989). As we see from Equations
(13), the observed information regarding an item parame-
ter is a sum involving n terms, while that of an item param-
eter only totals k terms. Therefore, the standard errors of
the person parameters are considerably larger than those of
the item parameters. From a person-oriented point of view
it is interesting, how the S.E.(θ̂r) are related to the length
of an instrument. Let us therefore consider an instrument,
in which all items are equally difficult, i.e. ∀i : βi = 0,
after centering. The number of items k varies from 5 to
300 in steps of 5 and then in steps of 25 up to 600 items.
Figure 1 shows the resulting standard errors. The hori-
zontal axis depicts the relative score r/k. Each line rep-
resents one k, with the red lines emphasizing test lengths
of k = 10,25, 50,80, 100,150, 200, and 300 (from top to
bottom).
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Figure 1. Standard errors of the estimated person parameters θ̂r (vertical axis) for all possible scores r = 1 . . . k− 1 (horizontal axis) for
varying numbers of items (lines).

We see bath tub-shaped lines representing the standard
errors for all levels of k. The top-most line represents a
short instrument (test) of 5 items, in which the standard
errors are comparably similar for all scores. An increase in
the number of items results in a considerable drop in the
standard errors of medium scores, while those for values of
r close to 1 and k− 1 remain high.

The red lines show that the largest gain in terms of re-
duction of standard error for medium scores is achieved by
extending the number of items from 5 to 10 or maybe 25.
But beyond 50 items, no appreciable reduction of standard
errors can be achieved any more. This might serve test con-
structors as an orientation towards the required number of
items for achieving a desired precision when assessing a
testee’s trait.

Note that virtually the same plots appear if we choose the
βi equidistantly from a given interval (e.g. −5 . . . + 5) or
draw them even at random from such an interval1. Hence,
conclusions drawn so far are not restricted to an admittedly
artificial case, in which all items exhibit the identical diffi-
culty, but generalize, in principle, to any realistic set of item
parameters (one possible exception is described in the next
section).

From a practical point of view, we may conclude that ex-
tremely long scales result in little gain as regards standard
error of the person parameter estimates, but short scales
will profit from any extension. About 15 to 25 items seem
to be a reasonable choice.

1Interested readers can obtain the respective plots from the author
upon request.

Linking Item and Person Parameters

This section illustrates how the item parameters affect the
resulting person parameter estimates. For that purpose, we
consider some prototypical cases, starting with an instru-
ment comprising k = 10 items. Let us assume, first, that
all item parameters are zero (because the β̂i are used as if
they were the true parameters in the CML context, we will
omit the hat in the following; in applications, we use the
CML-estimates). Solving Equation (6a) for the θr , we ob-
tain a curve as shown in Figure 2 (left diagram). It displays
the typical inversely S-shaped strictly monotone increasing
curve, bending slightly outwards in the regions of low and
high scores and running almost linear in the middle (i.e.,
in the region close to k/2). Furthermore, Figure 2 depicts
increasing standard errors (reflected by larger confidence
limits in the plot) for low and high scores, as less informa-
tion is available for these scores (cf. Equations (13a) and
(14a)). A shape similar to the one considered so far can fre-
quently be observed in applications, because in many cases
the majority of the items is of medium difficulty.

Extreme Item Parameters

Let us now change one βi to a very extreme value, say, 7.
A difference of 7 units between the easiest and the most
difficult item will rarely occur, hence we may consider this
a borderline case. Estimating the θ̂r yields the middle plot
of Figure 2. There is a clear buckling in the sequence of the
θ̂r when changing from r = k − 2 to r = k − 1 (i.e., from
the second last to the last r). This buckling is easy to ex-
plain: Although the score r is a (minimal) sufficient statistic
for θ̂r and, therefore, results in exactly the same estimate,
the actual response vector x′v = (xv1, xv2, . . . , xvi , . . . xvk) is
not entirely irrelevant. Rather, different response vectors
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Figure 2. Estimated person parameters θ̂r (vertical axis) for all possible scores 1 . . . r (horizontal axis). Left diagram: all βi = 0; middle:
β1 = 7, all others 0; right: half of the βi = 7, all others 0. The grey lines indicate the 95% confidence limits. Note: Item parameters were
centered prior to estimating the person parameters.

(yielding the same r) vary with respect to their likelihood.
From all possible patterns resulting in a score r, the one
with exactly the r easiest items solved has the highest like-
lihood. Hence we may say that the Rasch-Model “assumes”
that a respondent who attains a score r has solved the r eas-
iest items (which is also intuitively plausible). A numerical
illustration is given in Appendix A.1.

From the person-oriented perspective, this feature is
especially interesting for it corresponds to the so-called
“fourth tenet of person-oriented research”, termed princi-
ple of pattern summary, or, as proposed by von Eye et al.
(2015), principle of pattern as units of analysis (p. 799).

Therefore, only an individual reaching the maximum
score has—from the “model’s point of view”—a chance of
solving this extra difficult item. Thus, such individuals are
considered extraordinarily capable and are therefore “re-
warded” with an extra large parameter estimate.

To further illustrate the point, the rightmost plot in Fig-
ure 2 depicts a case, in which half of the items (i.e. 5) show
a βi of zero and the other half a value of 7. In this case, the
model assumes that only respondents achieving a score of
at least 6 solved the difficult ones and hence recompenses
them with higher estimates. Therefore, we find the buck-
ling in the middle of the sequence.

Such bucklings—especially when they appear at the
margins—pose a possible problem for algorithms aiming at
the estimation of θ̂r=0 and θ̂r=k: For example, the R pack-
age eRm (Mair, Hatzinger, & Maier, 2012) applies a spline-
extrapolation from the estimated parameters for scores r =
1 . . . k − 1 to the two extreme scores 0 and k. Such an ex-
trapolation could fail for some of the extreme cases con-
sidered here, especially when one item differs considerably
from the majority of items. A spline would not anticipate
the buckling. However, this would only be the case in rare
situations.

The rightmost plot in Figure 2 uncovers another impor-
tant detail: The standard error in the vicinity of the buck-
ling is larger compared to the other areas, which is a logi-
cal consequence of the item configuration: We have many

items in the lowest region of the latent continuum and
many in the highest region. Hence there are few (in fact:
no) items at the buckling’s location, which conforms to lit-
tle information in the sense of equation (13), and therefore,
the standard error is larger here. The same applies to the
previous case, in which one item differs exceedingly from
the remaining ones. Again, there is only “little” information
for respondents solving all but one items, because only one
item measures in this vicinity, and hence the standard error
of person parameters located here must be larger.

Item Parameter Variation

The leftmost diagram in Figure 3 extends this last scenario
by adding one extremely easy and one extremely difficult
item while leaving the remaining items at a value of zero.
Such a situation may arise in cases, in which test construc-
tors realize that their items do not vary to a sufficient extent
and therefore deliberately add extremely easy or difficult
items.

As a consequence, we obtain an extremely inverse-S-
shaped sequence of θ̂r , resulting in a notably “flat” sec-
tion in the middle, which differenciates little across most of
the range, but assigns heavily deviating values for θ̂r=1 and
θ̂r=k−1. At first sight, the situation might not be considered
overly harmful, but taking the standard errors (and the cor-
responding confidence limits as depicted in the plots) into
consideration shows that, for example, the 95%-confidence
interval for θ̂7 covers also the estimates θ̂8, θ̂9, θ̂10, and θ̂11.
Hence, we may discriminate poorly between individuals re-
alizing medium scores, which is slightly disadvantageous
as exactly these scores occur most often. Moreover, the iso-
lated items do not provide much information on the latent
continuum, hence these extreme estimates are associated
with an enormous standard error and thus also of limited
value.

As a practical recommendation we can therefore con-
clude that extreme variation of item parameters, especially
if caused by outliers (in the sense of single item difficulty
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parameters far away from the majority of the items) should
be considered with care. It generally impedes the inter-
pretability of person parameter estimates.

Special Case: Implicitly Assuming Linearity

Another case seems interesting to explore: One might dis-
regard the RM and use the scores directly for further eval-
uation. In this case, one not only assumes the model to
hold (unexaminedly), but further assumes that the person
parameters exhibit a perfect 1 : 1 relation with the score,
i.e., ∀r : θ̂r+1 = θ̂r + c. Such a relation holds, when the
item parameters themselves are equidistantly spaced, i.e.,
∀i : βi+1 = βi + d. However, Figure 3 (middle and right
plot) shows that even this assumption would not yet suf-
fice to obtain a perfectly linear relationship.

The plot in the middle shows the person parameter es-
timates when the (in this case k = 20) items have equal
distances ranging from −5 to +5. The sequence of the θ̂r is
almost linear, as we see from the comparison with the su-
perimposed regression line in red. Only the outmost values
θ1 and θk−1 indicate a slight outward deviation. If we ex-
tend the values of the βi to the interval of −20 . . .+20, the
linearity is even more pronounced (right diagram; mind
the different scaling of the vertical axis). A perfectly lin-
ear relationship would be realized if the item parameters
ranged from −∞ to +∞, which is impossible to realize.
However, from a practical point of view, sufficient linearity
might be achieved, but this would require a rather particu-
lar arrangement of the item parameters.

Practical Considerations

Let us now consider some more realistic cases and draw
repeatedly item parameters randomly from a uniform dis-
tribution with limits −b to b and oppose these with the re-
sulting person parameter estimates. The number of items
varies from k =10 to k = 50 (in steps of 1) and the betas
are drawn in turn from U(−1, 1), U(−2,2), U(−3, 3), and
U(−4, 4). For each k one sample of betas was drawn.

Figure 4 superimposes the sorted βi (red lines) and the
resulting θ̂r (blue lines) for each draw of β . To make the
sequences of the θ̂r comparable, the horizontal axis again
shows the relative score r/k. The grey lines indicate the
limits of the uniform distributions the betas were drawn
from.

Interestingly, the sequences of the θ̂r differ hardly ever if
the betas are similar in value (i.e. drawn from a U(−1,+1);
top left plot of Figure 4). With an increasing range of item
parameters, the sequences become somewhat more varied,
but only to a limited extent. By and large, no substan-
tial change of person parameters appears even if the items
cover the typical range of −4 to +4 (bottom right plot of
Figure 4).

We may therefore conclude that in cases, in which no
blatant particularity of the item parameters (like those de-
scribed in the previous sections) appears, the person pa-
rameters are more or less predictable from the score, no
matter the item parameters. For example, an individual
solving (or responding positively to) about 80% of the items

will obtain a parameter of approximately 1.5 if the item
parameters lie in the interval [−1,+1], a value of approx-
imately 1.8 for the interval [−2,+2], a value of approx-
imately 2.2 for the interval [−3,+3], and a value of ap-
proximately 2.6 for the interval [−4,+4], irrespective of
the number of items. Moreover, taking also k into account,
we can even derive a rough estimate of the standard error
from Figure 1.

Specific Objectivity

Let

pvi =: P(X vi = 1|θv ,βi) =
eθv−βi

1+ eθv−βi

pv j =: P(X v j = 1|θv ,β j) =
eθv−β j

1+ eθv−β j

pwi =: P(Xwi = 1|θw,βi) =
eθw−βi

1+ eθw−βi

with i 6= j and v 6= w. The logits of the respective prob-
abilities are logit(pvi) = θv − βi , logit(pv j) = θv − β j , and
logit(pwi) = θw − βi . Taking the ratio of the logits of ei-
ther two items and one person or two persons and one item
shows that in the former case, the person parameter cancels
out and in the latter case the item parameter. A graphical
representation is given in Figure 5. In the left diagram we
see that the distance of the two item curves equals the dif-
ference of the two logits, ∆i j , irrespective of the location
of the individual θv; the right diagram shows that the logit
difference with respect to the two individuals remains con-
stant at ∆vw, irrespective of the item used for comparison.

Therefore, if the model holds, we can compare items (i.e.
estimate item parameters unbiasedly) using (almost) any
selection of individuals (properly: irrespective of the dis-
tribution of the person parameters); likewise, we can com-
pare individuals using any proper set of items (cf. Rasch,
1966a; Rasch, 1966b). This is the algebraic foundation
for several advantageous features of the RM, which in-
clude supporting adaptive testing, testlet building, or yield-
ing unbiased item parameter estimates even from non-
representative samples. Rasch has termed this feature “spe-
cific objectivity”.

Model Tests

Numerous methods for assessing the fit of the RM have
been proposed. Glas and Verhelst (1995), for example,
give an overview of many. The present article focusses on
a method, which is intrinsic to the RM. The specific objec-
tivity property of the model allows for a rigid assessment
of the model adequacy. Rasch (1960) pointed out that “If a
relationship between two or more statistical variables is to be
considered really important, (. . . ) the relationship should be
found in several sets of data which differ materially in some
relevant respects” (p. 9). In terms of the RM this means
that item parameter estimates will not differ across sub-
samples but for random variation. In the person-oriented
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Figure 3. Estimated person parameters θ̂r (vertical axis) for all possible scores 1 . . . r (horizontal axis). Left diagram: β1 = −20, βk = +20,
all remaining βi = 0 ; middle: βi = −5 . . .+5, equidistantly spaced; right: βi = −20 . . .+20, equidistantly spaced. Note: Item parameters
were centered prior to estimating the person parameters

research tradition, this concept is known as dimensional
identity (“seventh tenet”; cf. von Eye, 2010, p. 279; von
Eye et al., 2015, p. 799).

Andersen (1973) developed from Rasch’s conclusion a
conditional Likelihood Ratio Test (cLRT) using the test
statistic

Λ= −2 log
Lc

�

bβ
�

� r
�

∏

s Lc

�

bβ (s)
�

� r(s)
� (15)

with β̂ the vector of the item parameter estimates derived
from the entire sample, r the vector of the sufficient statis-
tics of the entire sample, and β̂ (s) and r(s) the respective
estimates and statistics from subsamples s = 1 . . . S. If the
model holds, the test statistic is approximately distributed s
χ2 with (k−1)(S−1) degrees of freedom. The subsamples
may be obtained by splitting the sample by score (e.g. us-
ing the score median) or a substantial criterion like gender,
treatment, or any other relevant criterion. While we may
not prove the null-hypothesis of model fit, repeated failure
to reject it (i.e., using several split criteria) increases its de-
gree of corroboration (cf. Popper, 1959/2010, p. 67).

The Role of the Sample Size

It is typical for any inferential assessment that large samples
may yield significant test results for trivial effects, whereas,
with a small sample substantial effects may go undetected.
In order to prevent both kinds of misleading decisions, we
have to determine the optimal sample size allowing for the
detection of an effect, which is considered meaningful from
a substantial point of view with a given risk α for an error
of the first kind and a given risk β for an error of the sec-
ond kind. While such calculations are readily available for
most tests (e.g. Cohen, 1988), no solution has been devel-
oped for the cLRT until recently. Draxler and Alexandrow-
icz (2015) have identified the non-central χ2-distribution
required for the power analysis of the cLRT, which allows
for determining the probability of an error of the second

kind for a given (or substantively interesting) model viola-
tion.

To determine the appropriate non-central distribution of
the test statistic, we have to find a proper effect size mea-
sure, which allows one to identify the non-centrality pa-
rameter of the respective distribution. If the model holds,
the probabilities of a correct response do not differ across
subsamples, hence the null-hypothesis can be written as

H0 : p(1)ri = p(2)ri = . . .= p(s)ri = p(0)ri (16)

with p(s)ri denoting the probability of a correct response of

subsample s using β̂ (s)i and p(0)ri denoting the probability of
a correct response based on the item parameter estimates
of the entire sample. We may then define a model violation
as

δ
(s)
ri = p(s)ri − p(0)ri . (17)

This formulation is equivalent to the assumption of equal
item parameter estimates across subsamples by extending
Equations (7) to r(s) =

∑

i p(s)ri . Fixing the deviation δ(s)ri a
priori to a value of substantive interest allows one to deter-
mine the optimal sample size n∗ required for detecting this
violation with predefined risks of errors of the first and the
second kind. This solution of Draxler and Alexandrowicz
(2015) is a helpful contribution, dealing with the funda-
mental problem of over- or underpowered model tests in
the CML context.

If only a small sample is available (e.g., because power
analysis indicated it or only a limited number of respon-
dents was available), we also have to consider the speed
of approximation of the test statistic (15) to its limiting
distribution. This aspect has been covered extensively in
Alexandrowicz and Draxler (2016).

Effect and Impact

It is a constitutive feature of the CML approach to focus on
the items. But no consideration of the person parameters
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Figure 4. Item parameter sets (red; sorted by size) and the resulting person parameter sequences (blue) for k = 10, . . . , 50. Horizontal
axis: relative score 100 · r/k (regarding the blue lines) and item number i = 1 . . . k (regarding the red lines), respectively; vertical axis:
βi and the resulting θ̂r (superimposed). Top left: βi ∈ U(−1,+1); top right: βi ∈ U(−2,+2); bottom left: βi ∈ U(−3,+3); bottom right:
βi ∈ U(−4,+4);

(or, more precisely, their estimates) takes places when as-
sessing model fit. We will, therefore, extend the inferential
assessment of model fit by taking the person-oriented view
into consideration. When assessing model fit by means of
ascertaining item parameters’ equivalence across subsam-
ples obtained by splitting along criteria of substantive in-
terest, we have to consider the equivalence of the person
parameters’ estimates as well.

Let us, therefore, term item parameter differences across
subsamples as the effect that is to be detected with a desired
power 1− β , and impact as the resulting difference of the
resulting person parameters’ estimates. As has been shown
before, the item configuration will affect the sequence of
the person parameters’ estimates with regard to the score
r. We will extend our considerations to the comparison
of the θ̂ (s)r after splitting the sample into S subsamples. We
consider the two group split (S = 2), first, because it allows
for a clearly arranged presentation, and second, because it
constitutes the most frequently applied split in applications.

Figures 2 and 3 above illustrated, how the item param-
eters’ configuration affects the sequence of the θ̂r . When
we turn to the assessment of model fit, we have to ascer-
tain, whether and how these sequences change across sub-
groups. Figure 4 indicates that the item parameter esti-
mates seem to be only marginally affected by the actual

item parameters, hence little is to be expected from an in-
spection of the θ̂ (s)r . But this is in fact not necessarily the
case, as will be shown in the following section.

Effect versus Impact

One might come up with the idea of directly comparing
an ad-hoc measure of effect and impact as defined before.
This could—in the two-group-split—be accomplished by
the root-mean-square deviation (RMSD)

∆β =

√

√

√

√

1
k

k
∑

i=1

�

β
(1)
i − β

(2)
i

�2
(18a)

∆θ̂ =

√

√

√

√

1
k− 1

k−1
∑

r=1

�

θ̂
(1)
r − θ̂

(2)
r

�2
. (18b)

A little simulation reveals that such an approach is only
of limited value: Draw k = 10, 30, and 50 item parameters
randomly from a U(−3,3) representing the β (1) and add
an error to each item, ei ∼ U(−2, 2) yielding the β (2). Esti-
mate the respective θ̂ (1) and θ̂ (2) and determine the RMSD
according to Equations (18a) and (18b). Repeat this pro-
cedure 10,000 times.
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indicators (the blue line in the left diagram and the red line in the right diagram) are drawn as dashed lines.

Figure 6 (left diagram) opposes the ∆β and the ∆θ̂ with
colors indicating the scale length k. Clearly, there is no
linear relationship between the two measures, but rather a
triangle-shaped one. Large differences on the item side can
be associated with both large and small differences on the
person side. The corresponding correlation coefficients are
r = 0.301 (k = 10), r = 0.315 (k = 30), and r = 0.297
(k = 50). All dots appear beneath the identity line, hence
subsample differences of the person parameter estimates
are generally smaller in value than those of the item pa-
rameters.

This effect can easily be explained by the characteristics
described above: The person parameter estimate relies on
the configuration of the item parameters, but not on the re-
sponse vector itself. It is therefore irrelevant, which items
a person has responded positively to, only the score mat-
ters. If, for example, one item has subgroup parameters
β
(1)
i = −1 and β (2)i = +1 (i.e. differs considerably), and

another item has parameters β (1)i′ = +1 and β (2)i′ = −1 (i.e.
differs considerably as well), their combined appearance
causes the person parameter estimates to remain entirely
unaffected. The two items have compensated their role in
the two subsets. If such compensation phenomena occur
frequently between the subsets, ∆βi

and ∆θ̂ correspond to
entirely different items and thus lack comparability. This
caused the low correlation observed in Figure 6 and ham-
pers conclusions from effect upon impact. We therefore
will, if such compensations occur, not be able to evaluate
the consequences of item parameter differences between
the subsamples with respect to differences in the resulting
person parameter estimates θ̂ (s)r .

We must rather consider the ordered sequence of the item
parameters, which shall be denoted β[i], i.e., β[1] is the item
with the smallest parameter (easiest item), β[2] the one
with the second smallest parameter, and so on, up to β[k]
the item with the largest parameter (most difficult item).
We can therefore extend Equations (18) and add the re-

spective RMSD for the ordered item parameters

∆β∗ =

√

√

√

√

1
k

k
∑

i=1

�

β
(1)
[i] − β

(2)
[i]

�2
. (18c)

Using ∆β∗ rather than ∆β in the simulation, we obtain
the plot shown in Figure 6 (right diagram). Clearly, the
strength of the relationship of the two measures is greater
than before, with r = 0.714 (k = 10), r = 0.722 (k = 30),
and r = 0.727 (k = 50).

An Order Criterion

Obviously, ∆β∗ captures more of what constitutes a devi-
ation from a person oriented point of view. Remember
that the model “assumes” the r easiest items have been
solved, hence the item ordering gains importance. If an
item changes its position across subgroups, the person pa-
rameter estimates refer to a different set of items. If the
model holds, we can consider the entire set of items uni-
dimensional, hence it makes no difference. But—and this
is, what the cLRT is after—if the items change their lo-
cation, the assumption becomes increasingly questionable.
The item-based approach takes the numerical differences
of the β̂ (s)i across the subsamples into consideration, which
constitutes a purely quantitative measure. In contrast, the
person-oriented perspective has to consider the item order-
ing as well, i.e., we introduce a qualitative aspect: The oc-
currence of (relevant) changes in the location of items con-
tradicts the assumption of model fit.

Figure 7 proposes a simple graphical means to recognize
such exchanges by juxtaposing the subgroup estimates on
two separate lines in a stripchart-like style. Solid lines con-
nect the individual items, while the dotted red lines connect
the items according to their ranks. Hence, the latter may
in case of rank exchanges connect different items (in our
example: items 3 and 7 and, to a lesser extent, items 5 and
8). An R script for the plot shown in Figure 7 along with
an example call is given in Listing 1.1 in Appendix A.2.
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each k are superimposed in the respective colors.

In Figure 7, we can differentiate three prototypical cases:
(i) an item retains its position (in our example, these are
items 6, 1, 2, and 4); (ii) items change position, but the
difference is small (items 8 and 5); and (iii) items change
their position with a large shift (items 3 and 7). While case
(i) represents the ideal situation, case (ii) may as well occur,
but could be considered more or less harmless. In contrast,
case (iii) is what we are looking for—or even a more seri-
ous case (iv), in which items switch several positions (not
appearing in our example).

When items are of similar difficulty, switching may ap-
pear more frequently than when they cover a broad range
of values. When there are many items, switching is even
more likely to happen, because the range of parameter es-
timates will not grow considerably and, therefore, items lie
necessarily closer to each other. Hence, it is unlikely that
no switching appears at all, even if a data set conforms very
well to the model. We have to find out, what can be ex-
pected under a valid null-hypothesis and what should raise
our concerns.

Approaching the H0-distribution

A simple means for summarizing the mis-ordering of items
across subsamples is to count the number of inversions ap-
pearing between subsamples in cases, in which the model
holds. For that purpose, a simulation study was under-
taken. It determines the distibution of rank exchanges for
sample sizes of n/2= 100, 250, and 500 and for test length
of k = 5, 10, 20, and 30 items. Item parameters were
drawn randomly from a U(−2,2). Two subsamples of size
n/2 were generated in line with the RM using one item
parameter set, and then merged. The person parameter es-
timates were determined for each subsample and the rank
differences were calculated. This procedure was repeated
10,000 times per sample. Figure 8 shows a histogram of
the distributions of the rank differences. Further, a normal
curve (orange) and a Poisson curve (blue) were superim-
posed, using the observed mean and (for the normal) the

standard deviation of the observed values were used.

First of all, Figure 8 shows that, with an increasing num-
ber of items, a certain number of rank differences are likely
to appear. Only the short instrument with 5 items shows
a considerable number of zero rank differences. All distri-
butions are skewed to the right but to a lesser extent, the
more items we have. Regarding the shape of the distribu-
tions, the Poisson seems a sensible candidate, especially for
small k. With increasing length of the instrument, the Pois-
son and the normal curve become more similar, which is in
line with theory.

One could use this distribution for testing the null-
hypothesis that the observed number of rank differences is
compatible with the number of rank differences occurring
when the model holds. Hence, if the observed number of
item rank differences is a member of the 100 × α percent
most extreme values of the bootstrap generated distribu-
tion, it could be considered significant. We might therefore
expand our decision on model fit to examining the invari-
ance of the item parameters (via the well-established cLRT)
on the one hand and the existence of compensation effects
on the other hand. The proposed test could therefore be
termed Compensation Test.

Let us expedite the supposition that this distribution re-
sembles a Poisson distribution by comparing quantiles of
the bootstrap distributions with the limiting ones. A fre-
quently used decision criterion is the 95%-quantile, which
is used in Table 1. We see that in 4 of the considered
distributions (5/100, 20/100, 20/500, and 30/500), the
quantiles differ by 1, while the remaining ones are equal.
Hence, the Poisson seems to allow for a useful approxima-
tion. However, further examination is required to evaluate
this conjecture.

Alternatively, we could also compare the rank differ-
ences in the two-sample-case with the Wilcoxon-Mann-
Whitney-test (or U-Test; Mann & Whitney, 1947; Wilcoxon,
1945; for a more recent treatment see Wiedermann &
Alexandrowicz, 2007). However, considering the fact that
usually a rather limited number of items is analyzed, we
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Figure 7. An example Item Rank Plot for 8 items.

Table 1. Comparison of the observed 95%-quantiles of the boot-
strap distributions and of a Poisson distribution with λ= x̄bootstrap

k n obs. theor. diff.

5 100 2 3 −1
5 250 2 2 0
5 500 2 2 0

10 100 7 7 0
10 250 5 5 0
10 500 4 4 0

20 100 20 21 −1
20 250 15 15 0
20 500 11 12 −1

30 100 41 41 0
30 250 29 29 0
30 500 22 23 −1

should not expect too much from this test, as its power will
be considerably small.

Worked Example

To exemplify the proposed procedure, let us consider a data
set, which has been used in Alexandrowicz, Fritzsche, and
Keller (2014). In brief, the study analyzed compared a clin-
ical and a non-clinical population with respect to the appli-
cability of the Beck Depression Inventory Version II (BDI-II;
Beck, Steer, & Brown, 1996; german version Hautzinger,
Keller, & Kühner, 2009). From that study, only the students’
data shall be analyzed (n = 468) and responses were di-
chotomized (0 vs. 1+) to fit the present frame of reference.
One respondent anwsered only questions 1 to 10 and was
therefore omitted from analysis; the remaining 27 missing
values (0.28% of all responses) were scatterd across the
data set and replaced by zero.

The LRT using the score median split resulted in a χ2

of 38.5 (d f = 20, p = 0.008) indicating that some dis-
crepancies exist between the two split groups. A logi-
cal next step would involve identifying possibly deviating
items, however this is not the focus of the present study.

Rather, we will continue with the person-oriented analysis
and consider the effect and the impact as defined above.
The raw RMSD according to equation (18a) was ∆β =
0.441 and the corrected one following equation (18c) was
∆β∗ = 0.306. The impact according to equation (18b) was
∆θ = 0.081. Considering the descriptive results as shown
in Figure 6, the values could be considered small—however,
such evaluations are only tentative at the moment.

A total of 20 rank exchanges occured and Figure 9 (in
Appendix A.3) shows the Item Rank Plot for this split. Let
us pick out items number 2 and number 16 to illustrate the
message: Item 16 shows a comparably large shift of its dif-
ficulty estimate, but remains the easiest in both samples. In
contrast, item 2 shows a similar difference but, moreover,
it changes its position by 3 ranks (from 4th most difficult to
7th most difficult). Both example items indicate subsample
differences not in line with the parameter invariance as-
sumption. But item 2 will also affect the person parameter
estimate in the sense that the model assumes (for example)
that an individual realizing a score of 15 is likely to have
solved this item in subgroup 2 but not in subgroup 1.

The Wilcoxon-Mann-Whitney-U-Test resulted in a test
statistic of 216 (p = 0.92). Hence, this test would not in-
dicate any appreciable shift of item parameters across sub-
samples. But as has been argued before, this test could be
underpowered. For that reason, also the proposed compen-
sation test has been applied using a parametric bootstrap.
Scores 0 and k were handled according to a method dis-
cussed in Alexandrowicz and Draxler (2016), namely using
the WLE estimates θ̂0 and θ̂k for the two extreme scores and
the ML estimates for the remaining scores 1 to k− 1 when
simulating the bootstrap data sets. This analysis yielded a
p-value of 0.13. Again, the result is not statistically signifi-
cant, but the remarkably lower p-value can be taken as an
indicator that this procedure is more powerful. We there-
fore retain the null hypothesis that the items’ rank positions
are in line with the assumptions of the Rasch-Model. Re-
considering that the model assigns the largest likelihood
to solving the r easiest items when determining the per-
son parameter estimates, we have no indication to reject
the assumption that the θ̂r rely on fairly the same items in
both sample subsets and thus no compensation as described
above has occured.
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Figure 8. Distributions of the rank differences for various combinations of number of items and sample size. Orange dashed lines signify
normal distributions with the same mean and standard deviation and the blue lines indicate Poisson distributions with the same mean as
the simulated distributions.
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Discussion

The present article takes a closer look at the genesis of the
Rasch person parameters in the CML-context. First, we see
that in many cases the θ̂r would not vary considerably even
if the item parameters do so. Some exceptional cases have
been introduced, pointing us towards possible bucklings
the sequence of the θ̂r might show when item outliers exist.
This is of interest when one considers to extend an existing
set of items, which has been recognized to cover too small
a range of the latent dimension, with a few items deliber-
ately crafted as easy or difficult. Especially the standard
errors of the person parameters will grow considerably in
the vicinity of such bucklings. But in the general case (i.e.
when the βi are scattered more or less evenly across the
latent dimension), we might even predict the θ̂r from the
score r and the test length k without knowing the βi .

Further considerations regarding the standard errors of
the person parameter estimates have revealed that these
also cover a limited range of values depending on the score
r and the number of items k. Hence, the person side of the
RM is to a certain extent predictable—if the model holds.
But model violations may invalidate any conclusion regard-
ing (groups of) individuals. We dispose of a number of tools
to check model adequacy, among the strongest of which,
the cLRT, has been considered here. However, this method
focuses exclusively on the items. The present study extends
this view by analyzing consequences of model violations
upon the person parameter estimates. By taking into ac-
count that when estimating the θ̂r we implicitly assume that
a score r has most likely arisen from positive responses to
the r easiest items, a leverage has been identified, which al-
lows for further examining the consequences of item misfit.
Basically, the method checks, whether scores of split groups
rely on the same items or not. For that purpose, an order
criterion has been established, which allows for identifying
cases, in which entirely different items are assumed to be
responsible for an individual’s score.

A simple graphical means, the Itemk Rank Plot, has been
proposed, allowing for a rough assessment of the incidence
of item position exchanges across subgroups of respon-
dents. While the item parameter estimates’ differences en-
ter the rationale of the cLRT, their ordering is relevant for
the person parameters’ estimates. Hence, item position per-
mutations also indicate model misfit as regards the person
parameters. The proposed Compensation Test allows for
an inferential assessment, whether item ranks differ signif-
icantly between subsamples.

The Item Rank Plot shown in Figure 7 can straightfor-
wardly be extended to both a multi-group split and to the
polytomous case (and a combination of both). For a multi-
group split, one just needs to insert the respective lines.
Attention should be paid then to an optimal sequence of
groups in the plot, e.g. following a natural ordering of
subgroups or considering an intelligible sequence of item
exchanges from top to bottom. The polytomous case is
equally easy to achieve by using the threshold parameters
in the same way as we have done with the item parameters
here—in fact, item difficulty parameters (in the sense of the

RM) and threshold parameters (in the sense of a PCM) do
not differ substantially in what they represent. Hence, the
distribution of the rank differences of the threshold param-
eters of a PCM under the H0 is likely to follow the same
principles as those identified for the RM—however, this re-
mains to be shown.

The methods presented here are based on the CML ap-
proach. One might consider this a disadvantage or, at least,
a limitation. But remember that the specific objectivity
(which lays the foundation of the CML approach) consti-
tutes a distinguishing feature of the RM. It allows for the
unbiased estimation of item parameters without having to
determine a (possibly fallible) latent distribution of the per-
son parameters (like in the MML approach) or venturing
biased estimates (like in the JML approach).

After all, a psychological test is used for assessing indi-
viduals’ characteristics regarding certain traits or abilities.
While much research focuses on the items’ characteristics,
we should not lose sight of the person parameter estimates
and their standard errors. The present contribution re-
emphasizes the person-oriented perspective by illustrating
some rarely discussed features regarding the person param-
eters on the one hand and by proposing a new fit measure
and a model test on the other hand. Interestingly, already
Rasch (1960) anticipated the idea of person-oriented re-
search by citing the following statement of Joseph Zubin
(1955) in the preface of his infamous and pioneering book:
“Recourse must be had to individual statistics, treating each
patient as a separate universe. Unfortunately, present day
statistical methods are entirely group-centered so that there
is a real need for developing individual-centered statistics” (p.
VII). The present article shall contribute to this idea.
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A Appendix

A.1 Likelihood of a response vector

Let us consider five items with difficulty parameters βi = (−2,−1, 0,1, 2) and a person with θv = 0. Consider exemplarily
the response vectors x (1)v = (1,1, 0,0, 0), x (2)v = (0,1, 1,0, 0), x (3)v = (0,0, 1,1, 0), and x (4)v = (0,0, 0,1, 1). The likelihood of
each response vector is given by

L(θv ,βi; xv) =
5
∏

i=1

exvi(θv−βi)

1+ eθv−βi
(19)

Evaluating equation (19) for the four vectors yields L(θv ,βi; x (1)v ) = 0.2073, L(θv ,βi; x (2)v ) = 0.0281, L(θv ,βi; x (3)v ) =
0.0038, and L(θv ,βi; x (4)v ) = 0.0005. The vector with positive responses to the two easiest items, x (1)v , attains the largest
likelihood. This would also apply if we considered the remaining 16 possible vectors resulting in a score of 2.

A.2 Drawing the Item Rank Plot with R

Listing 1.1: R script for the Item Rank Plot� �
1

2 # --- function definition:
3

4 itemrankplot = function(b1 ,b2) {
5 b = c(b1,b2)
6 k = length(b1)
7 mi = floor(min(b))
8 ma = ceiling(max(b))
9 par(mar=c(2 ,0 ,0 ,0)+0.1)

10 plot (0:1,0:1 , type="n",xlim=c(mi ,ma),ylim=c(2.2 ,0.8) , axes=F,xlab="",ylab ="")
11 abline(h=c(1,2),col=grey (.6),lty =5)
12 axis (1)
13 points(cbind(b1 ,1),pch=16,cex =2)
14 points(cbind(b2 ,2),pch=16,cex =2)
15 text(b1 ,1,adj=c(0.5,-1),cex =0.8)
16 text(b2 ,2,adj=c(0.5, 2),cex =0.8)
17 text(mi ,1, expression(beta ^(1)),adj=c(0.5 , -0.5))
18 text(mi ,2, expression(beta ^(2)),adj=c(0.5 , -0.5))
19 abline(h=c(1,2),col=grey (.5),lty =5)
20 segments(b1 ,1,b2 ,2)
21 segments(sort(b1),1,sort(b2),2,col="red",lty=3)
22 }
23

24 # --- example call:
25

26 set.seed (123) # reproduce values of Figure 7
27 k = 8
28 beta1 = runif(k,-3,3)
29 beta2 = beta1 + runif(k,-1,1)
30 itemrankplot(beta1 ,beta2)� �

A.3 Item Rank Plot for the Worked Example Data

−3 −2 −1 0 1 2 3

● ●●●● ● ●● ●●● ●● ●●● ●● ●● ●

● ●●●● ●●● ●●● ●● ●●● ●●●● ●

1 2345 6 78 91011 1213 141516 1718 1920 21

1 234 5 678 91011 1213 141516 17181920 21

β(1)

β(2)

Figure 9. Item plot for the worked example data.
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