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Abstract: The paper focuses on the internal validity of clustering solutions. The “goodness” of a cluster structure can be
judged by means of different cluster quality coefficient (QC) measures, such as the percentage of explained variance, the
point-biserial correlation, the Silhouette coefficient, etc. The paper presents the most commonly used QCs occurring in
well-known statistical program packages, and we have strived to make the presentation as non technical as possible to
make it accessible to the applied researcher. The focus is on QCs useful in person-oriented research. Based on simulated
data with independent variables, the paper shows that QCs can be strongly influenced by the number of clusters and the
number of input variables, and that the value of a QC can be fairly high even in the absence of any real cluster structure.
When evaluating the internal validity, it is helpful to relate the QCs of a clustering solution to those obtained in parallel
analyses of random data. We also introduce a new type of QC, measuring the relative improvement (MORI) of a QC
obtained for a certain clustering solution relative to the corresponding QC based on a relevant type of random data.

Keywords: person-oriented methods, classification, internal validity, cluster amalysis, cluster quality coefficients,
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Introduction

For thousands of years, man has been engaged in creating
classificatory systems. These have, for instance, concerned
physical objects, celestial phenomena, tribe identification,
dividing tribe members into good or bad hunters, into good
or bad food preparers, etc. In fact, we are hard-wired to cre-
ate order out of chaos by classification. This way of think-
ing, natural to us, was extensively used by early scientists,
like the Greek philosophers, and also much used in psychol-
ogy and psychiatry up to the beginning of the 20th century,
and in biology and medicine a classificatory approach is still
much in use. However, in psychology it largely fell into dis-
repute and it has since many decades been replaced by a
dimensional approach. One reason for this was the subjec-

tivity involved in early classificatory approaches and its fre-
quent view of class membership as innate and unalterable;
characteristics that do not apply to modern classificatory
research.

In this article, our attention will be restricted to classi-
fication analysis performed using cluster analysis (CA) of
a sample of persons, based on information of their val-
ues in a set of continuous variables (the value profile/pat-
tern). The purpose is to obtain a clustering solution (a set
of classes of persons) where each cluster is as homogeneous
as possible (persons in the same cluster have similar value
profiles) and distinct (persons from different clusters have
different value profiles). To achieve this, a large number
of clustering algorithms exist that, partly independently,
have been developed in many sciences, foremost in biol-
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ogy and computer science but also in psychology. It should
be recognized that different clustering methods normally
do not produce identical clustering solutions, even for a
given number of clusters, although good algorithms tend
to produce similar findings. It should also be recognized
that finding the “true” number of clusters is normally not
possible by objective means. This is not surprising, consid-
ering the complexity of modeling observations in a high di-
mensional space, often with substantial errors of measure-
ment present, and also considering that in the general case
there is no help from a theory providing specifications and
assumptions that can be used in the search of an optimal
method.

It is the purpose of this article to suggest and exemplify
suitable methods for evaluating the internal validity of a
clustering solution. This is not done in a general sense
but within the framework of a person-oriented approach,
which provides a theoretical background and assumptions
that may simplify the task of finding a good clustering pro-
cedure. The framework and its implications for the choice
of clustering method are discussed below. However, before
that is done it is helpful to first introduce CA and what we
mean by quality coefficients.

Cluster Analysis and Quality Coeffi-
cients

CA, technically, is a statistical method where the aim is to
create groups of objects (clusters) such that the objects in
a cluster will be similar (or related) to one another and
different (unrelated) from objects belonging to other clus-
ters (Pardo, 2010). Each type of CA attempts to reach this
aim by using an algorithm optimizing some criterion. Hav-
ing obtained a cluster structure, it is important to know
how “good” it is. Is it better than the structure obtained
by another procedure, for instance using a different CA al-
gorithm, another measure of (dis)similarity, or using a dif-
ferent number of variables or clusters? Is it better than a
structure obtained from a random data set? To help in an-
swering these types of questions there are special measures,
the so called clustering quality coefficients (QCs), by means
of which the goodness of a cluster model can be evaluated.
The term validation is used here to refer to the evaluation
process of a cluster structure. By “internal validation” we
mean a cluster validation where only internal criteria are
used to evaluate a cluster structure, based solely on the in-
formation intrinsic to the data alone (Rendón, Abundez,
Arizmendi, & Quiroz, 2011).

In the large literature of classifications many QCs have
been introduced (see e.g. Desgraupes, 2013, where 43 QCs
are explained, and Rendón et al., 2011). However, the most
common statistical program packages (e.g. SPSS or SAS)
provide only few of them, if any. Exceptions are ROPstat
(see www.ropstat.com or Vargha, Torma, & Bergman,
2015) with its pattern-oriented module, providing 7 QCs,
and the “clValid” module in the R package, providing more
than 40 QCs (Desgraupes, 2015) for evaluating the internal
validity of a cluster model.

Different QCs focus on different aspects of a cluster struc-
ture, thus it is very important to choose an appropriate set
of QCs to evaluate a concrete model. In general, QCs try to
measure one or both of two main characteristics of a cluster
structure, namely compactness (cohesion) and separabil-
ity (Jegatha Deborah, Baskaran, & Kannan, 2010; Pardo,
2010; Rendón et al., 2011). A structure is compact if it
consists of homogeneous clusters, where the within-cluster
variability is low. The separability of a structure concerns
the degree to which the clusters are different from each
other. From the many QCs we identify the following four
types (note that some QCs do not solely belong to any of
the types).

(A) Cohesion indices. Some QCs (indices Ball-Hall,
Banfeld-Raftery, Calinski-Harabasz, etc., see
Desgraupes, 2013; or HCmean = average cluster
homogeneity, see Vargha et al., 2015) depend only
on within-cluster distances: the higher the cohesion,
the better the structure. Also EESS% (= explained
error sum of squares percentage) is a cohesion type
QC, in spite of the fact that the total sum of squares
is included in its formula. This sum is constant for a
given data set and it is usually identical for different
data sets due to the frequent standardization of data
before analysis. Hence, EESS% can be expressed as
a simple monotonic function of the within-cluster
variability itself (see Vargha et al., 2015).

(B) Global separation indices. Other QCs depend on the
difference of the within- and the between-cluster pair-
wise distances. Most of them are some type of a cor-
relation/association measure calculated for all pairs
of objects (Pearson, Kendall, Gamma, tau) where the
pairwise dissimilarity is related to a binary variable
(belonging to the same cluster or not). Their com-
mon rational is that, in a good cluster solution, ob-
jects belonging to the same cluster are closer to each
other than objects belonging to different clusters. The
Baker-Hubert Gamma, point-biserial, Tau QCs belong
to this category (see Desgraupes, 2013).

(C) Minimal separation indices. In a third type, the QCs
depend on cluster homogeneities and the minimal dis-
tance between clusters. The common rational for this
type is that, in a good cluster solution, objects be-
longing to the same cluster - sometimes even to the
same most heterogeneous cluster - are closer to each
other than to any object in another cluster. The Davies-
Bouldin, Dunn, Silhouette, Xie-Beni QCs belong to this
category (see Desgraupes, 2013).

(D) Complex quality indices. In a fourth type, QCs depend
on both intra- and inter-cluster variability in a non-
linear way, where the effect of inter-cluster variabil-
ity cannot be expressed directly by the within-cluster
variability. QCs like PBM, SD, Trace WiB belong to this
category (see Desgraupes, 2013).

The above brief overview points to the fact that the
choice of a suitable QC is not straightforward and that it
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must depend on the specific context in which CA is per-
formed (e.g. depend on the type of data and on the sci-
entific problem under study with its concomitant assump-
tions of what type of structure is of interest and expected
to be found). In this paper, it is assumed that CA is per-
formed within a person-oriented framework. Therefore we
first present the basic view of classification structure within
this framework and from which follows a number of desir-
able characteristics that QCs should possess. This helps in
identifying a small number of QCs, suitable within a person-
oriented classification context that will be discussed in a
later section.

Cluster Analysis Within a Person-
Oriented Approach

The person-oriented approach is presented in Bergman and
Magnusson (1997) and it contains both a theoretical frame-
work and methods for empirical research that are aligned
to the framework. The theoretical formulation of the ap-
proach especially stresses the importance of considering the
individual as a “functioning totality” and, hence, as far as
possible regarding the information about an individual as
an indivisible whole, leading to that patterns of informa-
tion (value profiles) being the natural conceptual and ana-
lytical unit. It is claimed that typical individual patterns of-
ten occur in empirical data both intra individually (an indi-
vidual shows approximately the same value pattern across
measurement occasions) and inter-individually (a certain
pattern characterizes many individuals). These typical pat-
terns are seen as outcomes of a process characterized by
attractor states.

Starting from the discussion in Bergman, Magnusson,
and El-Khouri (2003), a number of specifications and as-
sumptions can be formed that are helpful in the search
for a suitable clustering methodology to apply in a person-
oriented context:

1. Each observed value pattern can usually be catego-
rized as belonging to one of three categories, namely

(a) a frequently observed pattern (typical pattern),
generated by the core properties of the process
under study,

(b) a more or less unique “true” observed pattern
caused by peripheral aspects of the process or by
the influence of individual life events that are un-
common, and

(c) a more or less unique observed pattern caused by
errors of measurement.

2. The main purpose of CA is to inform of the typical pat-
terns (i.e. those belonging to category (a) above). In
practice, this means that usually not all persons are
classifiable because most often not all persons belong
to category (a). This is important, not only for the-
oretical reasons but also for practical reasons, since
unique persons (i.e. those belonging to (b) or (c))
are essentially multivariate outliers and can distort the

classification structure of category (a) persons, if in-
cluded in the CA. Instead, more or less unique persons
should be removed before the main analysis and be
studied separately, perhaps by using qualitative meth-
ods (Bergman, 1988).

3. Often, the process under study is characterized by the
emergence of a large number of attractor states (typ-
ical patterns), some common and some less common,
if viewed at a detailed level and studied for a large
sample of persons. The discussion of typical sample
sizes in psychological sciences may benefit from in-
corporating results from empirical surveys. For exam-
ple, Marszalek, Barber, Kohlhart, and Holmes (2011)
analyzed sample sizes in psychological research over
the past 30 years and reported average sample sizes
ranges of 180–211. For samples of this size the less
common typical patterns will appear with fairly low
frequencies and they will be difficult to distinguish
from more or less unique states of categories (b) or
(c). This implies that the number of typical patterns in
the form of the number of clusters that are found can
be expected to increase with the sample size. Hence,
the question of the “true” number of clusters is almost
meaningless, the aim should be focused on finding
the dominant typical patterns and less common typ-
ical patterns should only be searched for if the sample
size is large.

4. The search for typical patterns should in many cases be
guided by theoretical expectations of typical patterns
(Bergman et al., 2003) and a “successful” clustering
solution should conform to these expectations, show
good values of quality coefficients, and present a clus-
ter structure that is significantly and substantially bet-
ter than what is achieved for random permutations of
the variables in the data set. Normally, no claim should
be made that the “one and true” cluster structure has
been found.

5. The internal and external validity of a chosen cluster
solution should be examined in different ways. It is
then important to distinguish between two different
purposes of a CA, namely (1) the demonstration and
description of common typical patterns and (2) the
correct assignment of class membership to persons. In
a less favorable situation with a not very clear classifi-
cation structure and with “noise” in the form of mea-
surement errors, the first purpose is usually more eas-
ily achieved than the second.

Desirable Characteristics of QCs in a
Person-Oriented Context

In most types of CA, the basic analytic units are the ele-
ments of the (dis)similarity matrix between all pairs of in-
dividuals’ value profiles. In most person-oriented applica-
tions, both level and form of differences between different
individuals’ value profiles are of interest. This is assumed
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to be the case in this presentation, and it is also assumed
that the variables are measured on an interval scale. A good
standard measure of dissimilarity between two individuals
and between an individual and its cluster centroid is then
the average squared Euclidean distance (ASED) and it is
helpful if a QC provides information interpretable in rela-
tion to ASED.

Further, as previously pointed out, multivariate outliers
can be expected and it is important that they are iden-
tified and brought to a residue, and are not included in
the CA (Bergman, 1988). The size and characteristics
of the residue can then form the basis for constructing
some QCs. This residual analysis is easy to perform in
ROPstat (see Vargha et al., 2015), but Mahalanobis dis-
tances can also be used to identify highly deviating obser-
vations (see, e.g., http://www.statistik.tuwien.ac
.at/public/filz/papers/minsk04.pdf).

When examining the internal validity in the present con-
text, the degree of cluster homogeneity is more important
than the size of the differences between cluster centers.
The reason for this is that theoretical expectations often in-
clude the existence of typical patterns whose values differ
only in a subset of the variables, which implies that some
cluster centers might not be far apart. Hence, QCs mea-
suring mainly cluster homogeneity are more informative
than QCs that also give large weight to cluster separation.
This implies that of the QCs being presented in this article,
those belonging to the cohesion type (such as EESS%) are
most informative, but global separation indices (such as the
point-biserial correlation) and minimal separation indices
(such as the Silhouette coefficient) may in some cases carry
useful additional information.

Beyond these considerations, it is also important that the
chosen QC has a straightforward meaning for the user. A
natural measure of cohesion is then a direct measure of ho-
mogeneity in the clusters that is well assessed by HC in-
dices and their means. The homogeneity coefficient (HC)
of a cluster is the average of the pairwise within-cluster dis-
tances of its cases. To evaluate a cluster solution, HCmean
can be used as a QC. It is the weighted mean of cluster HC
values (weights are cluster sizes). A cluster structure can
be regarded as good if all HC values are considerably less
than 1 and hence the same is true with regard to HCmean
(it is assumed that the variables have been z-standardized).
A preferable feature of HCmean is that it provides direct in-
formation about the average distance of cluster cases.

Another meaningful QC, measuring within-cluster homo-
geneity is EESS%, which can be defined as follows:

EESS%= 100 ∗ (SStotal− SScluster)/SStotal

= 100 ∗ (1− SScluster/SStotal). (1)

Here SStotal is the sum over the whole sample of each case’s
sum of squared deviations between each variable value and
the mean for the whole sample in that variable (if the vari-
ables are z-standardized SStotal equals V ∗(N−1), where V
is the number of variables and N is the total sample size).
SScluster (in some papers denoted as WGSS) is the sum
over clusters of the within cluster sums of squared devia-
tions between cases and variable centroids (see Bergman et

al., 2003, Chapter 9). EESS% can be interpreted as the per-
centage of the total variance that a clustering solution “ex-
plains” in the sense that it indicates the proportion of vari-
ance that the clustering solution makes “disappear”. Based
on formula (1), EESS% can also be explained as a measure
that indicates the extent to which cases are closer to their
own cluster centers than to the total sample center.

From the global separation (Type B) indices we suggest
to use in a person-oriented context the cluster point-biserial
correlation (PB), which is a Pearson-correlation computed
in the following way. All cases are paired with each other.
Variable X is a binary variable with a value 0 if the pair of
cases belongs to the same cluster and 1 if not. Variable Y
is the distance between the two paired cases (ASED). PB
is high if pairs being in the same cluster are substantially
closer to each other than pairs of cases that belong to differ-
ent clusters. A well-known formula of PB (see, e.g., Glass
& Hopkins, 1996):

PB =
M1 −M0

Sn−1

√

√ n1n0

n(n− 1)
, (2)

where M0 is the average pairwise within-cluster case dis-
tance, M1 is the average pairwise between-cluster case dis-
tance, n = N(N − 1)/2 is the number of pairs of cases in
the total sample of size N , and n0 and n1 are the number
of pairs of cases that belong to the same (n0) or to different
(n1) clusters. Finally, sn−1 is the SD of the pairwise differ-
ences of cases in the total sample of size N . Based on for-
mula (2), it is seen that the size of PB depends primarily on
the M1 −M0 difference, which is the extent to which cases
belonging to different clusters are more distant from each
other than pairs of within-cluster cases. The interpretation
of PB as a correlation is straightforward. However, consid-
ering that it depends primarily on the M1 −M0 difference,
the first component in formula (2), this component can also
be used as a QC. It is denoted CLdelta and we have:

CLdelta=
M1 −M0

sn−1
. (3)

CLdelta can be explained analogously to the well-known
Cohen delta effect size measure (Cohen, 1977), by which
the extent of mean differences can be assessed on a stan-
dard scale. CLdelta indicates the extent to which cases are
closer to their own cluster mates than to cases from other
clusters. Based on Cohen (1992, Table 1), for a very clear
cluster structure CLdelta is expected to be above 0.80 since
it corresponds to a "large effect" in Cohen’s sense.

From the minimal separation (Type C) indices we suggest
that in a person-oriented context the Silhouette coefficient
(SC) or the GDI24 generalized Dunn-index might be used.
A simplified version of SC can be defined as follows (see
SPSS1). First, compute SCi for each case i in the sample,
using formula (4):

SCi = (B − A)/max(A, B), (4)

1See http://www-01.ibm.com/support/knowledgecenter/
SSLVMB_21.0.0/com.ibm.spss.statistics.help/alg
_cluster-evaluation_goodness.htm
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where A is the distance from the case to the centroid of the
cluster which the case belongs to, and B is the minimal dis-
tance from the case to the centroid of every other cluster.
SC is the average of all cases’ SCi values. An SC value of 1
would mean that all cases are located directly on their clus-
ter centers. A high SC value indicates that on the average,
cases are substantially closer to their own cluster centers
than to the nearest of other cluster centers. The SC value
ranges between −1, indicating a very poor model, and 1,
indicating an excellent model. As found by Kaufman and
Rousseeuw (1990), an SC value greater than 0.5 indicates
reasonable partitioning of data; less than 0.2 means that
the data do not exhibit cluster structure.

The GDI24 index is a special case of the family of gen-
eralized Dunn indices and it can be defined as follows
(Desgraupes, 2013):

GDI24=
D

maxk(HCk)
, (5)

where D is the smallest pairwise distance between the dif-
ferent cluster centers, and maxk(HCk) is the HC value of
the most heterogeneous cluster. A high value of GDI24,
greater than 1, indicates that the average pairwise distance
even in the most heterogeneous cluster is smaller than the
distance of the two closest different clusters.

In a person-oriented context, it is not uncommon that
two distinct types are expected that are relatively close to
each other. For this reason, cluster structures in such situ-
ations have to be evaluated primarily by means of EESS%
and HCmean, secondarily by means of PB, and only in some
special cases by means of minimal separation indices.

Simulation Experiments

In order to have a clearer sight of the behavior of different
QCs we carried out a series of simulations.

Influence of Distance Measure on QCs

Different programs sometimes use different distance mea-
sures. As we explained above, in person-oriented classifi-
cations ASED is usually preferred and so is the case in ROP-
stat in its classification modules and in computing QCs for
evaluating different cluster structures. On the other hand
in several QCs computed in R, the usual Euclidian distance
is applied in the formula of several QCs (see Desgraupes,
2013, 2015). To provide information about the influence
of the distance measure type on the value of QC we com-
puted two QCs (PB and GDI24) using two different distance
measures (ASED and simple Euclidian) in 2 x 2 x 3 x 25
CAs (Ward type hierarchical analysis followed by reloca-
tion) based on random samples of size 181. We then com-
puted the Pearson correlation between the two types of PB,
and between the two types of GDI24. In the CAs the fol-
lowing factors were systematically varied.

(i) Number of input variables (V ): small (V = 3) and
moderate (V = 6)

(ii) Number of clusters (k): small (k = 3) and large (k =
7)

(iii) Type of distribution:

a. real data from a minority language shift study
carried out with Romanians living in Hungary
(Vargha & Borbély, 2016);

b. continuous uniform and independent variables;

c. normal and independent variables.

For each of these 12 (= 2 x 2 x 3) combinations 25 random
replications (random permutations for (iii)/a, and random
data generations for (iii)/b and (iii)/c) were performed.
The correlations were computed for each random block of
size 25. The average of the 12 correlations in the case of
PB was 0.967 (SD = 0.032) and 0.993 (SD = 0.004) in
the case of GDI24. These results showed that the distance
type did not have a substantial influence on the behavior
of the QCs. Their scale (mean and SD) varied but the rela-
tionships were very high between the same QCs based on
different distance types. For this reason, and to be consis-
tent, we preferred ASED in the computation of QCs.

Relationship Between Different QCs of the
Same Type

Our next question concerned the relationship between dif-
ferent QCs of the same type. Specifically, we were inter-
ested in the correlation between EESS% and HCmean and
between PB and CLdelta. We computed these QCs for the
same 12 combinations of 25 random replications detailed
above. The average of the 12 correlations in the case of
EESS% and HCmean was 0.9998 (SD = 0.0004) and 0.942
(SD = 0.098) in the case of PB and CLdelta. Hence, for the
data used in our simulation, EESS% and HCmean as well as
PB and CLdelta, measured almost the same thing. For this
reason, we used only one of each type (EESS% and PB) in
the correlational analyses presented below.

Relationships Between Some QCs of Different
Types

In order to have some information on the relationship be-
tween QCs belonging to different types, we computed the
pairwise correlations between EESS% (from cohesion type
QCs), PB (from global separation type QCs), and SC and
GDI24 (from minimal separation type QCs) for the same 12
combinations of 25 random replications that were detailed
above. It was found that, although the average correla-
tion was always positive and ranged from 0.242 to 0.622,
the minimum correlation was much lower, in some cases
even negative. These results imply that different types of
QC often provide different information about the clustering
structure.
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Figure 1. The average values of the EESS% in CAs for different
number of input variables (V = 3 or V = 6), different number of
clusters (k = 3 or k = 7), and for independent random variables
with different distributions (uniform continuous or normal).
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Figure 2. The average values of the cluster point-biserial correla-
tion (PB) in CAs for different number of input variables (V = 3 or
V = 6), different number of clusters (k = 3 or k = 7), and for in-
dependent random variables with different distributions (uniform
continuous or normal).

Influence of Number of Variables and Number
of Clusters on the Level of Some QCs

Simulations we have performed on data with independent
random normal variates suggest that there is often a strong
influence of the number of input variables (V ) and the num-
ber of clusters (k) on most QCs (Vargha & Bergman, 2015).
In the following, this is detailed for four representative QCs
(EESS%, PB, SC, and GDI24). Figures 1 to 4 show the av-
erage values of the four QCs in CAs with different number
of input variables (V = 3 or V = 6) and different number
of clusters (k = 3 or k = 7) for independent random vari-
ables of two different distributions (uniform continuous or
normal). The simulated data for the CAs were the same
that were used in the sections above (25 random samples
for each combination of V and k).

It is seen in Figures 1-4 that the number of input vari-
ables and the number of clusters had a high impact on the
average values of the different QCs in two situations where
no real cluster structure existed (independent variables in
the value profile). Fixing the number of clusters, the aver-
age value of a QC decreased with an increasing number of
variables, and fixing the number of variables, the average
value of a QC often increased with an increasing number
of clusters. Exceptions are PB and GDI24 for V = 3. The
average QC values belonging to CAs with uniformly dis-
tributed independent random variables were never lower

GDI24
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Figure 3. The average values of the GDI24 index in CAs for differ-
ent number of input variables (V = 3 or V = 6), different number
of clusters (k = 3 or k = 7), and for independent random variables
with different distributions (uniform continuous or normal).
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Figure 4. The average values of the Silhouette coefficient (SC)
in CAs for different number of input variables (V = 3 or V = 6),
different number of clusters (k = 3 or k = 7), and for independent
random variables with different distributions (uniform continuous
or normal).

than those obtained for normally distributed independent
random variables, and for PB (see Figure 2) they were con-
siderably larger. It is notable that for a CA (Ward type hier-
archical, followed by a relocation) with 3 independent ran-
dom variables, uniformly distributed, and with k = 7 clus-
ters, it was found that the average EESS% was as high as
75%, whereas with 6 variables of the same type and k = 3
clusters the average level of EESS% was only around 25%.

The findings we reported above show that in cases where
no real cluster structure exists (independent variables),
fairly high values of QCs can occur. Hence, there is a con-
siderable risk that a researcher not aware of that falsely
interprets that a real cluster structure has been found in a
situation where there is no such structure. Hence it is im-
portant to show that the cluster structure found could not
have emerged from an analysis of a multivariate distribu-
tion with independent variables. Therefore we propose that
the QCs of the cluster structure obtained when analyzing a
data set should be related to the QCs obtained by parallel
control CAs of data sets characterized by independent vari-
ables. A minimum requirement for having demonstrated a
real cluster structure is that the control analyses show the
QCs obtained when analyzing the real data set are higher
than those obtained in the control analyses.
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The MORI Index of Cluster Structure
and Significance Testing of a Cluster-
ing Solution

It is important to evaluate whether a QC indicates a “real”
cluster structure and not just reflects a structure that could
have emerged from analyzing random data. To help in this
evaluation we propose an index, denoted MORI (acronym
derived from Measure Of Relative Improvement), measur-
ing the improvement of a QC obtained by analyzing real
data as contrasted to the QC obtained by parallel analyses
of random data with independent variables. MORI is com-
puted according to Formula (6):

MORI =
QC−QCrand

QCbest −QCrand
. (6)

In Formula 6, QC is the quality measure of a cluster struc-
ture that we would like to evaluate, QCrand is the average
of QCs of CAs with simulated random data (performing
at least 20 independent random replications), and QCbest
is the (maximum) value of QC that is obtained when the
cluster structure is perfect. Specifically, QCbest = 100 for
EESS%, 1 for PB and SC, and 0 for HCmean. If QCbest is in-
finite large, we suggest that the denominator of (6) is set to
QCrand . In this case, MORI measures the improvement of
QC relative to the base level of QCrand . It should be noted
that similar validation approaches have successfully been
applied in the context of exploratory factor analysis (see,
e.g., http://pareonline.net/pdf/v12n2.pdf).

It is important to test the significance of a clustering so-
lution by data simulation. This can be done by performing
a one-sample t-test of whether the QC obtained when ana-
lyzing the original data is significantly larger than QCrand ,
the average of QCs obtained with simulated random data.
The number of independent iterations for this t-test is sug-
gested to be at least 20-252. However, to have a reliable
estimation of QC-levels and the MORI index, we suggest at
least 100 iterations.

An additional important consideration is the choice of
the type of control data sets that should be used. Possible
options are:

1. Independent random permutations of the values of the
input variables (see Vargha et al., 2015);

2. Independent random uniform variables;

3. Independent random normal variables.

In the case of option 1, the only difference between the
original variables and the control set of variables is that the
latter consists of independent variables; the marginal distri-
butions are identical. In this case the MORI index indicates
how much the relationship structure of the original vari-
ables adds to forming appropriate clusters. In the case of
the second option, the MORI index indicates how much the

2If a QC of a cluster structure is substantially better than the same type
of QC based on a series of random data set, 20-25 random replications
suffice to show a clear significance by means of the t-test.

obtained cluster structure is better than a cluster structure
created from a multivariate uniform distribution where no
peaks occur. In the case of the third option, the MORI index
indicates how much the obtained cluster structure is better
than a cluster structure created from a multivariate normal
distribution with only a single peak. For a good structure,
a MORI index should be considerably larger than 0 for op-
tions 2 and 3. For option 1, however, it is possible that a
MORI index is small also for a “good” natural cluster struc-
ture. In practice, this is rare but it can occur if in the original
data set there are variables with a strongly bimodal distri-
bution.

It should be noted that the K-Means module of ROPstat
not only evaluates the “goodness” of a cluster structure by
means of several QC measures (EESS%, HCmean, PB, etc.).
The module also performs an internal validation analysis
of the cluster structure by means of simulations of random
data, performing the t-test mentioned above for each QC
and computing the MORI index.

How should the size of an obtained MORI index be eval-
uated? A rule of thumb could be used similar to the one
used when evaluating the Cohen delta effect size measure,
where 0.2 is regarded the minimal level that deserves to
be interpreted, 0.5 can be regarded as the lower limit of a
moderate effect size, and 0.8 the lower level of a high effect
size (see Cohen, 1977). For interpreting MORI we suggest
for these three threshold levels of interpretation 0.15, 0.30
and 0.50, respectively. Certainly, this rule of thumb can be
modified. For instance, in the case of a very high QCrand ,
the value of MORI can be more difficult to interpret.

An Illustrative Example

An illustration of QCs and MORI indices can be found in
Table 1, based on data from the above mentioned minor-
ity language shift study (Vargha & Borbély, 2016). In the
study, a K-means CA was performed with 5 standardized
input variables (R/Wr: How often reads and writes in Ro-
manian; Family: How often speaks Romanian with family
members; Relig: How often speaks Romanian with church
fellows; Ident: Level of Romanian identity; Attit: Level of
positive attitude toward Romanian language) and a cluster-
ing solution with 7 clusters was chosen. The solution had
good properties according to criteria suggested by Bergman
et al. (2003), and it also conformed to theoretical expecta-
tions.

Table 1 shows that the value levels of almost all QC mea-
sures for the original data are rather high, suggesting a
good cluster structure. The most important QCs (EESS%
and HCmean) are highly significant (p < .001) for each
type of simulation of random control variables. For these
two QCs, the MORI indices are also substantial, ranging
from 0.41 to 0.52. The significances and the MORI indices
of PB and CLdelta are at a lower level, reaching an in-
terpretable level only for the normally distributed random
control variables. The SC MORI index indicates a moder-
ately clear structure.

The only QC not showing a good clustering structure is
GDI24 but, as explained before, this QC is of a type that is
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Table 1. Values of six QCs and the MORI index in a K-means CA with 5 input variables and 7 clusters for 25 random replications, computed
by means of ROPstat.

QCs found when the original data were analyzed

Measure: EESS% HCmean PB CLdelta SC GDI24
Value: 75.97 0.498 0.439 1.225 0.671 0.407

Control: Findings found for random permutations of variable values

EESS% HCmean PB CLdelta SC GDI24
Mean: 59.03 0.848 0.43 1.208 0.576 0.535
t-value: 69.36 68.47 2.701 2.242 26.21 -9.147
p-value: <.001 <.001 0.012 0.034 <.001 <.001
MORI: 0.41 0.41 0.01 0.01 0.23 -0.24

Control: Findings found for uniformly distributed independent random variables

Measure: EESS% HCmean PB CLdelta SC GDI24
Mean: 52.49 0.983 0.392 1.116 0.508 0.704
t-value: 74.58 74.83 21.49 16.26 57.74 -19.56
p-value: <.001 <.001 <.001 <.001 <.001 <.001
MORI: 0.49 0.49 0.08 0.1 0.33 -0.42

Control: Findings found for normally distributed independent random variables

Measure: EESS% HCmean PB CLdelta SC GDI24
Mean: 49.55 1.044 0.314 0.889 0.485 0.561
t-value: 45.14 45.17 33.48 35.73 70.68 -8.353
p-value: <.001 <.001 <.001 <.001 <.001 <.001
MORI: 0.52 0.52 0.18 0.38 0.36 -0.28

Note. The t and p values refer to results from significance testing the original QC.

not optimal in person-oriented research. Nevertheless, its
low level is an indication that there are some clusters that
are very close to each other. This was verified by computing
the pairwise cluster centroid distances using the Centroid
module of ROPstat, and we found two clusters (CL1 and
CL3) that are very close to one another with a distance of
only 0.36 (with standardized variables), lower than the av-
erage within-cluster distance (HCmean= 0.498). The only
difference between the two cluster centroids is the attitude
level toward Romanian language (average vs. very low).
However, theoretical expectations support that these two
clusters should be regarded as distinct clusters.

Discussion

A primary goal of the present paper was to draw the
reader’s attention to the internal validity of clustering solu-
tions and to the usefulness of appropriate QC measures for
evaluating the “goodness” of a cluster structure. The paper
presents several QCs that can be useful when carrying out
classification analysis in a person-oriented context. Often
the most useful QCs are those primarily measuring cluster
homogeneity (EESS% and HCmean) but some QCs that in
addition measure cluster separation can also be useful, for
instance PB and SC.

Based on simulated data with independent variables, we
showed that QCs can be strongly influenced by the number
of clusters and the number of input variables (see Figures
1 to 4), and in cases where no real cluster structure ex-

ists (independent random variables), fairly high values of
QCs can occur. This finding has also been pointed out by
others (see Handl, Knowles, & Kell, 2005; Pardo, 2010).
Hence, there is a considerable risk that a researcher not
aware of that falsely interprets that a “real” cluster struc-
ture has been found in a situation where there is no such
structure.

To protect against such a false interpretation we pro-
posed that the QCs of the cluster structure, obtained for
a data set should be related to the QCs obtained by parallel
control CAs of data sets characterized by independent ran-
dom variables. A minimum expectation in a situation with
a real cluster structure is that the QCs obtained when ana-
lyzing the real data set are significantly higher than those
obtained in appropriate control analyses. As an aid in eval-
uating the extent of “real” cluster structure in the sense of
the extent of structure beyond that what can be expected
for data with no relationships between the variables we in-
troduced the MORI index of relative improvement. It is
helpful to compute MORI indices for three types of distri-
butions with independent variables, namely random per-
mutations of the variable values of the real data sample,
independent random uniform variables, and independent
random normal variables. Findings for each type of distri-
bution display a different quality of the cluster structure in
the validation process.

In general, the need for evaluation of cluster solutions
has found considerable interest in the literature. Very close
to the content of our paper are a number of articles by
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Doug Steinley, and for the evaluation of cluster solutions
the reader may wish to consider Steinley (2004, 2006).

It should be pointed out that in the simulations and con-
trol comparisons, QCs were almost solely based on atypi-
cal data; that is data without any real cluster structure cre-
ated by a random data generation process. This is a reason-
able starting point, considering the extreme difficulty in ob-
taining any kind of representative sample of data sets with
real cluster structures, and considering that the informa-
tion value and the interpretation of the QCs are discussed in
general and theoretical terms, using the findings obtained
in the simulation experiments as illustrations of principles.

Of course, in the broad family of classification analysis
there exists other types of internal validation procedures
than those we presented, for instance comparing cluster
structure between random split-halves (Botta-Dukát, 2008)
or using bootstrapping (Bouwmeester et al., 2013).

It should be noted that the computation of the newly
presented QCs (HCmean, CLdelta) and the whole valida-
tion process can easily be performed by means of the K-
means (Relocation) module of the ROPstat statistical soft-
ware (see www.ropstat.com or Vargha et al., 2015). An
application of the ROPstat module was presented in the pre-
vious section. However, it would also be useful to present
a complete template study of CA in a person-oriented con-
text with the purpose to provide a guide for the researcher
to navigate the confusing jungle of person-oriented cluster
analysis-based approaches. This task is planned to be the
focus of a future article.
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