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Abstract: A framework is presented for building and testing models of dynamic regulation by categorizing sources of
differences between theories of dynamics. A distinction is made between the dynamics of change, i.e., how a system
self–regulates on a short time scale, and change in dynamics, i.e., how those dynamics may themselves change over a
longer time scale. In order to clarify the categories, models are first built to estimate individual differences in equilibrium
value and equilibrium change. Next, models are presented in which there are individual differences in parameters of
dynamics such as frequency of fluctuations, damping of fluctuations, and amplitude of fluctuations. Finally, models
for within–person change in dynamics over time are proposed. Simulations demonstrating feasibility of these models
are presented and OpenMx scripts for fitting these models have been made available in a downloadable archive along
with scripts to simulate data so that a researcher may test a selected models’ feasibility within a chosen experimental design.
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Dynamics of Change

Much recent work has concentrated on psychological pro-
cesses that are hypothesized to exhibit regulatory dynam-
ics. These processes typically change relatively quickly:
Variables measuring these processes change over time
scales of as short as milliseconds to as long as days. Pro-
cesses hypothesized to exhibit regulatory dynamics include
perception–action processes (Jeka, Oie, & Kiemel, 2000;
Wohlschläger, Gattis, & Bekkering, 2003), daily fluctu-
ations in self-perceived mental health in recent widows
(Bisconti, Bergeman, & Boker, 2004, 2006), self-disclosure
and intimacy in married couples (Hamaker, Zhang, &
van der Maas, 2009; Laurenceau, Barrett, & Rovine, 2005;
Laurenceau, Feldman Barrett, & Rovine, 2005), symptoms
of disordered eating in young women (Edler, Lipson, &
Keel, 2007), and positive and negative affect (Chow, Ram,
Boker, Fujita, & Clore, 2005; Deboeck, Monpetit, Berge-
man, & Boker, 2009; Zautra, Affleck, Tennen, Reich, &

Davis, 2005). In each of these cases, some proportion of the
observed short–term changes in observed scores are pat-
terned in a time–dependent way that could reveal impor-
tant clues about regulatory mechanisms. For the purposes
of this article, the patterning of short–term change over
time will be referred to as dynamics of change — the dynam-
ical processes that are inferred from short term changes or
fluctuations in time–intensive repeated observations. Most
often, when authors write about the dynamics of a process,
they mean the dynamics of change.

It is reasonable to think that there may be individual dif-
ferences in the dynamics of change. That is to say, two indi-
viduals may regulate in somewhat different ways. Individ-
ual differences in the dynamics of change may take a variety
of forms. The current article will categorize several types of
individual differences in the dynamics of change and incor-
porate them into a common modeling framework. In this
way, parameters can be estimated and statistical tests can
be performed for hypotheses concerning relationships be-
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tween dynamics of change and other person–specific char-
acteristics.

The dynamics of change can be studied using measure-
ment bursts (Nesselroade, 1991); in other words, one or
more sequences of repeated observations closely spaced in
time with longer intervals between them. For instance,
daily diary studies (Laurenceau, Barrett, & Rovine, 2005,
e.g.,) and experience sampling methods (Bolger, Davis, &
Rafaeli, 2003; Cranford et al., 2006) can be considered ex-
amples of burst measurement with only one burst. Methods
such as time-delay embedding (Sauer, Yorke, & Casdagli,
1991; Oertzen & Boker, 2010), latent differential equations
(Boker, Neale, & Rausch, 2004), latent difference scores
(McArdle, 2001; Hamagami & McArdle, 2007), Kalman fil-
tering (Kalman, 1960; Molenaar & Newell, 2003; So, Ott,
& Dayawansa, 1994), dynamic factor analysis (Molenaar,
1985), and state–space (Chow, Hamaker, Fujita, & Boker,
2009) methods have been used to estimate parameters of
the dynamics of change from burst measurement data.

If characteristics of the dynamics of change are constant
over time, the dynamics are said to exhibit stationarity (see,
e.g., Hendry & Juselius, 2000; Shao & Chen, 1987, for dis-
cussions of stationarity). This is a convenient assumption,
as it means that for a selected individual any interval of
time can be considered to be a representative sample of the
dynamics of change for that individual. However, an as-
sumption of stationarity frequently does not hold for psy-
chological processes. Some processes, such as the dynam-
ics of head movements during conversation (Ashenfelter,
Boker, Waddell, & Vitanov, 2009; Boker, Xu, Rotondo, &
King, 2002), may be nonstationary during the same short
time scales in which they exhibit their dynamics of change
— that is to say these processes may exhibit nonstationary
regulation. While such processes comprise an interesting
category of psychological phenomena, they will be consid-
ered as outside the scope of the current article. We will
focus on a large category of phenomena where nonstation-
arity is observed, but operates at a slower time scale than
the dynamics of change for the process. This difference in
temporal scale can be exploited to provide simultaneous es-
timates of the short–term dynamics of change and longer
term change in dynamics.

Change in Dynamics

Many psychological phenomena exhibit slow nonstationar-
ity relative to their regulatory processes. Adaptation, learn-
ing, or developmental processes are examples of nonsta-
tionarity that could play out over a time scale of hours to
decades. For instance, day–to–day or minute–to–minute
emotional regulation may itself exhibit a developmen-
tal trajectory, comprising within–individual differences in
these regulatory mechanisms between childhood, midlife,
and late life. Such a process may exhibit approximate lo-
cal stationarity, that is to say over relatively short time
scales, the characteristics of the dynamics of change may
remain reasonably constant. However, over longer time
scales, a process with approximate local stationarity can
exhibit what will be referred to as change in dynamics —

relatively slow evolution of the parameters of the dynamics
of change. We can take advantage of this difference in time
scales to incorporate change in dynamics into existing mod-
eling frameworks for individual differences in the dynam-
ics of change so that hypotheses can be tested concerning
the relationship of within–individual change in dynamics
to other person–specific characteristics.

Two major categories of change in dynamics are: i)
change in the equilibrium set for the process and ii) change
in the attractor basin around the equilibrium set (Boker,
2013). The first category of change in dynamics is associ-
ated with the equilibrium set, the set of equilibrium states,
for a system. One simple and commonly used type of equi-
librium set is a point equilibrium (or homeostatic equilib-
rium) which is an equilibrium set with only one point in
it. A point equilibrium means that there is one “best” or
“optimal” or “goal” state for the system and that the system
regulates relative to that state. There are many other types
of equilibria (see, e.g., Hubbard & West, 1991, for a dis-
cussion) including, for instance, a zone equilibrium where
many values for a variable are equally good (Boker, 2013).
This so–called “comfort zone” is illustrated as the flat bot-
tom of the leftmost of the three basins in Figure1. One way
that long–term change in dynamics may occur is that there
may be changes in the equilibrium set. For instance, there
might be long term developmental change in the location of
the centroid of the equilibrium, e.g, an individual’s average
level of overall arousal might decrease from adolescence to
mid–life. Another possibility is that the type of equilibrium
set might change, e.g., from a point equilibrium to a zone
equilibrium.

The second category of change in dynamics is defined by
changes in the basin of attraction of the regulatory system
and can be estimated as change in the parameters of the
differential equation or difference equation that define the
short–term dynamics of change. For instance, individuals
might change in how they regulate — in adolescence a per-
son might tolerate large swings in overall arousal while in
mid–life that same person might exhibit much greater regu-
latory control over their arousal levels as shown in Figure 1.

In the arousal example for both categories of change
in dynamics, short–term dynamics have stable regulatory
characteristics, but over a longer timescale, these reg-
ulatory dynamics may exhibit interesting and important
change.

In order to estimate dynamics of change as well as
change in dynamics, measurements must be sufficiently in-
tensive in time to capture short term fluctuations as well
as have sufficient longitudinal spread to be able to esti-
mate developmental changes. Multiple burst designs are
an efficient way to acquire these data. Sort bursts of time–
intensive measurements (e.g., daily diary self–report or
ecological momentary assessments) can be separated by
longer intervals of time, e.g., months or years (e.g. Ong,
Bergeman, & Boker, 2009). In this way, change in dynam-
ics may be estimated from longitudinal changes in within–
individual parameters of the dynamics of change estimated
from each burst. However, it may not be immediately ob-
vious what these changes in dynamics might mean. The
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Figure 1. A hypothetical arousal regulation system exhibiting two categories of change in dynamics. i) the equilibrium at young ages is
a zone equilibrium set such that many similar levels of relatively high arousal are equally good and resulting in wide swings of arousal.
In contrast, at older ages a point equilibrium emerges where there is a single best, and somewhat lower, level of arousal. ii) the attractor
basin in the younger age is shown as having a flat bottom and shallow sides indicating a low degree of regulation while in older ages a
steeper basin emerges indicating a greater degree of regulation around the equilibrium thus resulting in smaller arousal fluctuations.

next section builds an individual differences model for the
dynamics of change a step at a time and discusses the mean-
ings for individual differences in each of the parameters of
the model. In this way, the stage is set for the last portion
of the article which will discuss the meaning of within–
individual change in these parameters and will present a
model framework for estimating changes in dynamics si-
multaneously with the dynamics of change.

Interindividual Differences in Dynam-
ics of Change

Let us consider three ways in which individuals may dif-
fer in their dynamics of change: i) individual differences in
equilibria; ii) differences in amplitude of fluctuations; and
iii) individual differences in the parameters of a selected
model of the dynamics. One strategy to estimate the mag-
nitude of individual differences in the dynamics of change
is to allow particular coefficients of a chosen model to take
on individual values for each person in a burst sample. The
specifics of this strategy will be presented in a later section,
but first let us examine the implications of individual dif-
ferences in dynamics of change.

First, individuals may differ in their equilibria. For a se-
lected variable, each individual may have a value around
which they fluctuate. As an example, consider a study of
cognitive abilities. On a day to day basis, a selected indi-
vidual may perform better or worse on a cognitive task than
her or his mean performance. Thus, for a cognitive perfor-
mance variable, the mean performance over repeated ob-
servations might be a reasonable estimate of a point equi-
librium for each individual and the individual differences
in within–person means could give an estimate of individ-
ual differences in equilibria. Another example might be a

variable such as degree of intimacy a married individual
feels with her or his spouse. Each individual husband or
wife might have a preferred level of intimacy. Greater or
lesser intimacy than the preferred level might be felt on
any selected day and regulatory processes might keep the
degree of intimacy somewhere near the equilibrium. But
there may be individual differences within the class of hus-
bands as well as within the class of wives. Also, within cou-
ples, it may be that similarities or difference between the
two spouses’ equilibrium values may be predictive of mar-
ital satisfaction. Estimating and accounting for individual
differences in equilibria is an important part of understand-
ing regulatory systems.

Second, it may be that the amplitude of fluctuations
around the equilibrium may differ across individuals. This
might be due to individual differences in context or indi-
vidual differences in regulatory dynamics. As an example
of contextual differences, one person might be in a high–
stress job whereas another person might be have a relaxed,
low–stress occupation. The person in the high–stress job
may have some days that are very difficult and troubling
and other days that are fantastically rewarding. Each day
for the person in the low–stress job may be quite like the
day before: relaxing but not terribly rewarding either. In-
dividual differences in contextual stressors for these two
individuals might manifest as differences in amplitude of
fluctuations in positive and negative affect. The affect of
the person in the high–stress job is likely to show greater
day–to–day fluctuations even if she is regulates her affect
in a very similar way to the person in the low stress job.
It is possible that the individual with the high stress job
has self–selected her occupation in part due to her ability
to effectively regulate stress. Whereas the individual in the
relaxed occupation may be less able to regulate his affective
fluctuations due to stress. Thus, the amplitude of observed
fluctuations in affect may be due to both the contextual ef-
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fects (the differences in stress levels of the job) as well as
individual differences in regulatory dynamics. If these two
individuals were to be presented with equivalent contexts,
the same amount of stress may lead to small fluctuations in
affect in the person who effectively regulates affect whereas
it might lead to large fluctuations in affect for the person
who does not regulate effectively. When modeling dynam-
ics of change, it is important to be able to distinguish be-
tween individual differences in context from individual dif-
ferences in the model parameters controlling the dynamics.

Third, there may be individual differences in regulatory
dynamics. That is to say, the dynamics by which one person
regulates may be somewhat different than it is for another
person even after accounting for differences in equilibrium
and differences in exogenous input. For instance, a large
magnitude stressor might resonate for one person for a rel-
atively long time, resulting in large fluctuations in affect
that take weeks to die away. Whereas, for a second indi-
vidual fluctuations associated with the same stressor might
be damped within a matter of a day or two. Or, one person’s
fluctuations might be rather slow relative to a second per-
son. These individual differences in dynamics can be sub-
stantively important and be related to other variables. For
instance, in a study of recently–bereaved widows, Bisconti
and colleagues (2006) found that how quickly fluctuations
were damped was related to the degree of reported emo-
tion focused coping provided by the widows’ social support
network.

Intraindividual Change in
Dynamics

Let us now consider the same three sources of differences,
but interpreted as ways in which the characteristics of an in-
dividual’s regulatory dynamics might slowly change. Mod-
els of change in dynamics must account for the fact that
while individuals in a study are assumed to be indepen-
dent of one another, a longitudinal model must be used to
account for intraindividual change in dynamics.

The first way that intraindividual change in dynamics
might occur is that the equilibrium value for the individual
might shift over time. For instance, in a daily diary study,
many recently bereaved widows exhibited a slow increase
in a Mental Health Inventory (MHI) measure over a period
of months (Bisconti et al., 2004). At the same time, these
widows showed large daily fluctuations in MHI that could
be modeled as a linear oscillator. The equilibrium point for
the oscillations slowly changed over a period of months as
the widows learned to deal with their loss.

A second possible way in which an individual’s regula-
tory dynamics might change is that there could be a slowly
evolving increase or decrease of amplitude of fluctuations
about an equilibrium. For instance, an individual’s context
may be changing across time and thus creating new exoge-
nous input to the system. A job might become more stress-
ful over time or retirement might change the pattern and
frequency of stressors. In such cases, the regulatory dy-
namics might stay constant while the observed amplitude

of fluctuations could increase or decrease. Changes in con-
text are not necessarily examples of change in dynamics of
regulatory systems. These changes might be entirely exter-
nal to the regulatory system under study. However, when
contexts are self–selected, one might consider contextual
changes as part of a long–term adaptive strategy.

A third possibility is that one or more parameters for
the selected dynamical systems model might change over
time, implying that the regulatory dynamics are themselves
changing. As an example, a younger individual might
poorly regulate large fluctuations in mood, but later in life
learn to become accomplished in such regulation.

Dynamical systems models are required to account for
the regulatory process and longitudinal models are re-
quired in order to account for long term within–person
change. These models must be able to discern the differ-
ence between changes in equilibrium, changes in external
context, and changes in dynamics. Thus, a common frame-
work is required that simultaneously models the dynamics
of change and longitudinal change in dynamics. We will
next provide a brief introduction of one common model for
the dynamics of change, a second order linear differential
equation. We will then extend this model to account for
individual differences in equilibria, individual differences
in the dynamics of change, and intraindividual change in
dynamics.

Example Model: Second Order Linear
Differential Equation

Differential equations can be used for the specification of
models for dynamical systems in psychology (e.g., Boker,
2012). These models specify a set of relations between the
time derivatives of the variables involved in the regulatory
system. The time derivative of a variable, written as ei-
ther d x/d t or as ẋ , is the amount of change occurring in
the variable at a specific moment in time. Thus, these dif-
ferential equation models are quite literally models of the
dynamics of change.

Linear second order differential equations have recently
been used to model a variety of psychological processes.
This model is intuitively appealing due to its correspon-
dence to physical systems that have been used as metaphors
for psychological systems. Continuously variable ther-
mostats, pendulums, and springs may all be modeled to
a first approximation with linear second order differential
equations. As an example, psychological resilience is often
described as the ability to “bounce back” from adversity.
Hooke’s Law shows us that a simple model for elasticity
with dissipation (akin to a bouncing ball that eventually
comes to rest) is a linear second order differential equation
(see Boker, Montpetit, Hunter, & Bergeman, 2010, for an
extended discussion).

The linear second order differential equation for a vari-
able x can be written as

ẍ(t) = ηx(t) + ζ ẋ(t) (1)

where x is the displacement of a variable from its equilib-
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rium. That is to say, the variable x is centered at its equi-
librium point. When a variable’s equilibrium is fixed and
known, we subtract that value from x to center the vari-
able. When a variable’s equilibrium is unknown, a num-
ber of strategies have been employed. We will discuss this
question in greater detail in the next section.

Note that the parameters η and ζ have substantive mean-
ing. Ifη < 0, then one may say that the farther the system is
from equilibrium, the greater the acceleration that would
turn it back towards equilibrium. Similarly if ζ < 0, one
may say that the faster the system is changing, the greater
the deceleration. As a way of intuitively grasping the im-
pact of these parameters, it might be helpful to think about
an automatic driver for a car. If η < 0 then the farther the
car is from its garage (i.e., equilibrium), the more it tends
to accelerate towards the garage. If ζ < 0, then the faster
the car is going, the more it tends to apply the brake.

This linear second order system has the interesting prop-
erty that if η < 0 and η+ ζ2/4< 0, then oscillations form.
One may use the parameters of the equation to calculate
the period of the oscillation (the time it takes for one full
oscillation) as λ = 2πp

−(η+ζ2/4)
. As will be seen in a later

section, this linear second order equation can be used to
model a variety of dynamic behaviors.

Figure 2 plots a time series for 50 measurements for two
simulated individuals, a and b who have the same param-
eters η = −0.3 and ζ = −0.1. However, a and b start at
two different initial values. That is to say, at time t = 0,
a’s score is 2.5 and b’s score is 0. The smooth curves are
“true score” values that obey the regulatory dynamics of a
second order linear differential equation. The noisy curves
are just the smooth curve at each measurement occasion
t > 0 plus a time–independent normally distributed ran-
dom value with mean of zero and standard deviation of
one. Note that if one were to take an average of a large
sample of these curves, the “true scores” would cancel en-
tirely since the initial starting point for each curve is a ran-
dom value. Thus, a standard latent growth curve approach
would completely miss the dynamics in these data and re-
port that there was only time–independent residual error.

In order to estimate parameters of differential equations
models from observed data, a number of techniques can be
employed. Exact discrete (Singer, 1993), approximate dis-
crete (Oud & Jansen, 2000; Oud, 2007), and Kalman filter
methods (Molenaar & Newell, 2003; Chow et al., 2009)
can be used to estimate parameters of differential equation
systems by first taking the integral and then estimating time
lagged data. Another method, Latent Differential Equa-
tions (LDE) (Boker et al., 2004; Boker, 2007b, 2007a) will
be used here. Although the modeling framework presented
in this article does not preclude using these other estima-
tion methods, the specifics of model setup would be quite
different than the examples presented here. At the core
of the LDE method is time delay embedding, a time series
technique that came to prominence in nonlinear dynami-
cal systems analysis in physics (Sauer et al., 1991; Takens,
1985; Whitney, 1936).

Time Delay Embedding

Time delay embedding is a preprocessing step that ensures
that each row of one’s data set has encapsulated within it
sufficient information to model the relevant dynamics of
change. Then, an estimation method such as LDE or others
can be used to model these dynamics. In essence, a short
time–sequential snip of data is placed on each row. The
starting point for each row is varied across all of the possible
starting points for each individual. The number of columns
in a snip is model dependent and data dependent, so this
step takes some careful thought.

Suppose a time series X has been centered around each
individual’s equilibrium values. If the original time series X
is ordered by occasion j within individual i then the series
of all observations x(i, j) for N people, each of whom have
been sampled P times, can be written as a vector of scores

X = {x(1,1), . . . x(1,P), x(2,1), . . . x(2,P), . . . ,

x(N ,1), . . . x(N ,P)}.

If we choose to create 5 columns in each snip, we can
now construct a 5–dimensional time delay embedded ma-
trix X(5) as





















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








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


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
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


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
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

.

Note that if one looks at the time delay embedded matrix
column–wise, each column contains the time series lagged
by an amount that is dependent on the column number. For
instance, the second column contains almost the same data
as the first column, except that it has been shifted up one
row within each individual’s block of data.

The power of this method lies in the fact that each row
of the matrix contains a sample of the time dependency
information. One side–effect of this is that the ordering
of the rows of a time delay embedded matrix does not af-
fect an analysis since the time–dependent information has
been captured within each row. This fact carries with it the
great advantage that so–called phase resetting phenomena
do not have large impacts on the parameter estimates of
models fit from time delay embedded matrices (Deboeck &
Boker, 2010). A phase reset might occur when a substan-
tial external event creates an abrupt change in the target
variable value. The variable’s value is subsequently reg-
ulated back towards equilibrium. Such phase resets are
common in psychological data. For instance, a participant
might be enrolled in a daily diary study of affect. On some
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Figure 2. Time series plots of 50 measurements of two simulated individuals, a and b. The smooth line is the underlying dynamic and
the noisy line has time–independent error.

random day during the study, the participant has a minor
car crash, causing a marked and abrupt disturbance to her
affect. Over the next few days she regulates back to equi-
librium. But then after another random interval, she wins
a prize, creating a second disturbance in her affect for a
few days. When we model affect, we are not interested in
accounting for the interval between the car crash and the
prize. This interval is not part of the affective regulatory
system. Time delay embedding isolates these exogenous
effects and balances their impact so that they induce lit-
tle bias in estimating parameters of regulation (Oertzen &
Boker, 2010). However, time delay embedding carries with
it a problem, in that the distribution of minus two times
the log likelihood is not chi–square distributed. Until this
problem is solved, standard error estimates for time delay
embedding cannot be obtained by normal parametric meth-
ods, but must be estimated by methods such as bootstrap-
ping.

Second Order Latent Differential
Equation

As an example, we will restrict our discussion to variations
on a linear second order Latent Differential Equation (LDE)
for the dynamics of change of one variable (see Boker,
2007b, for a step by step introduction). By starting with
a simple model, we can more easily focus later sections’
discussion on extensions that are necessary to account for
interindividual differences in dynamics and intraindividual
change in dynamics. Figure 3 presents a path diagram of
the second order LDE of a variable x using a 5–dimensional
time delay embedded matrix X(5). The latent second deriva-
tive with respect to time, g̈, for the jth row for person i in
X(5) is modeled as linear combination of the latent displace-
ment, g, and its latent first derivative, ġ,

g̈i j = ηgi j + ζ ġi j + ei j , (2)

where the residual term is assumed to be zero mean, inde-
pendent, and identically distributed.

In matrix form, a second order LDE model for X(5) can be
specified as

X(5) = GL+U, (3)

Where G is a matrix of unobserved latent derivative scores,
U is a matrix of unobserved unique scores and L is a fixed
matrix defined as

L =











1 −2∆t (−2∆t)2/2
1 −1∆t (−1∆t)2/2
1 0 0
1 1∆t (1∆t)2/2
1 2∆t (2∆t)2/2











, (4)

where ∆t is the elapsed time between adjacent lagged
columns in the time–delay embedded matrix X(5).

Fitting the model to data involves using the model–
implied covariances between the columns of G to provide
estimates of η and ζ, the residual variance for g̈ and for
the covariance matrix for U, which is constrained to be
diagonal with equal variances: a scalar matrix. We will
use RAM structural equation modeling covariance algebra
(McArdle & McDonald, 1984) and path diagram conven-
tions (McArdle & Boker, 1990; Boker, McArdle, & Neale,
2002) to set up the model for the latent variables, speci-
fying the covariance between columns of G as a product of
asymmetric and symmetric paths contained in two matrices
A and S,

A =





0 0 0
0 0 0
η ζ 0



 (5)

S =





Vg Cg ġ 0
Cg ġ Vġ 0

0 0 Vg̈



 , (6)

where Vg , Vġ , Vg̈ , and Cg ġ are the variances and covariances
of the latent variables g, ġ, and the residual variance for g̈.

Now, the model implied covariance matrix, Cov(G), of
the columns of the latent score matrix G can be calculated
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Figure 3. Path diagram of a second order linear latent differential equation model of a 5–dimensional time delay embedded matrix for
a single variable. The latent second derivative, g̈, is a linear combination of the latent displacement, g, and latent first derivative, ġ.

as

Cov(G) = (I−A)−1S(I−A)−1′ . (7)

When Cov(G) is scaled by the loading matrix L and added to
the covariance matrix of U, the expected covariance matrix
of X(5) can be written as

E (Cov(X(5))) = LCov(G)L′ +Cov(U) . (8)

An example OpenMx (Boker et al., 2011) script to fit this
second order linear LDE model using full information max-
imum likelihood is presented in Appendix A.

Individual Differences in
Equilibrium

The model in the previous section assumes that each in-
dividual’s data is centered around his or her own equilib-
rium. This is can be reasonable if there is a known popu-
lation equilibrium and there are no individual differences
in this equilibrium value. However, for many psycholog-
ical variables of interest, there are individual differences
in equilibrium values and there is no a priori knowledge
to guide us in centering individuals about their equilibria.
Consider the data plotted in Figure 4 for two married cou-
ples’ self–reported intimacy and disclosure scores over 45
days (Laurenceau, Barrett, & Rovine, 2005). By inspection,
each individual exhibits fluctuations about his or her own
individual equilibrium for each variable.

One way to account for these individual differences in
equilibrium value is to subtract a known or estimated equi-
lbrium value from each individual’s time series. This pro-
cess is sometimes called prewhitening or detrending in the
time series literature. For instance, each individual’s mean
over all occasions could be subtracted. But, it may be that
the individual differences in equilibrium value are part of
what one wishes to model. In this case it would be useful
to be able to simultaneously estimate the equilibrium value
and the parameters of the differential equation.

One way that individual differences in equilibrium values
can be estimated simultaneously along with the parame-
ters of an LDE is by adding a latent intercept term to the
model as shown in Figure 5. This model is a hybrid of an
intercept–only latent growth curve (LGC) model and a sec-
ond order linear LDE and can be fit using full information
maximum likelihood (FIML). The means for the data are
modeled as a structured LGC while the variances and co-
variances for the data are modeled as an LDE. This tech-
nique essentially forces the LDE model for the dynamics to
be fit to the residuals from the LGC means model where
each individual can have their own estimated equilibrium
value. Thus, we estimate the equilibrium value for each
person that simultaneously maximizes the likelihood of the
data given the chosen model for the dynamics. This simul-
taneous estimation is an improvement over separately esti-
mating individual means and centering each person’s data
about the mean in a prewhitening step.

In the RAM path diagram notation (McArdle & McDon-
ald, 1984; McArdle & Boker, 1990), variances are al-
ways explicitly represented as double–headed arrows from
a variable to itself. Note that the small circle near the bot-
tom of Figure 5 has no variance. This small circle is simply a
place holder to denote a matrix operation during estimation
and not an actual latent variable. Also note that the arrow
pointing from the triangle (constant) to the small circle is
labeled as I |i, denoting that there are separately estimated
intercept means (I) grouped (the vertical bar, |) by indi-
vidual (i). Thus, the individual differences in equilibrium
value are subsumed into the individually estimated mean
parameters, one for each individual. There is one intercept
value for each individual even though there are many rows
in X(5) belonging to that individual. This is quite different
than a standard growth curve model where the small cir-
cle would be taken to be a latent intercept with a variance
term that represented the individual differences. Here, it is
the vector of parameters I |i that carry the individual differ-
ences variance.

The model in Figure 5 can be written as

X(D)i = MiK+GL+Ui (9)
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Figure 4. Intimacy and disclosure scores for two married couples (a and b) over 42 days of a daily diary study (data from Laurenceau,
Barrett, & Rovine, 2005).
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Figure 5. Hybrid linear second order LDE with individual differences in equilibrium intercept estimated by a latent intercept with mean
grouped by individual.
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where Mi is the ith row of an N × 1 matrix of means for
the N persons in the sample , K is a 1 × D matrix with a
fixed value of 1 in each cell, G is the latent derivative score
matrix, L is the LDE loading matrix described in the previ-
ous section, and Ui is a matrix of residuals for person i. In
the example shown in Figure 5, D = 5, since this example
uses a time delay embedding data matrix with 5 columns.
In general the optimal number of columns for time delay
embedding will be dependent on the data and process to
be estimated (see, e.g., Hu, Boker, Neale, & Klump, 2014,
for techniques for estimating optimal D).

An example OpenMx script implementing this approach
is shown in Appendix B and the individual equilibria from
this simulation are plotted in Figure 7–c. This script takes
advantage of novel features available in OpenMx in order
to create a random parameters matrix (called “Rand” in the
script). The matrix Rand has a row for each individual in
the data set. This allows us to constrain the latent growth
curve intercept to be equal within–individual but allows it
to differ between individuals. In this way, estimates from
the LDE part of the model can affect the latent growth curve
part of the model which is grouped by individual.

A simulation was performed in which data were gener-
ated to conform to the model in Figure 5 with small varia-
tion in parameters between each of 100 replications. The
data were generated according to an experimental design
where 50 individuals were each measured on 50 occasions.
Each individual’s equilibrium value was drawn from a nor-
mal distribution withσ = 2.0. Each replication was then fit
using the model script in Appendix B and results are sum-
marized in Table 1 and Figure 6. One data set did not con-
verge and three data sets resulted in parameter estimates
that were extreme outliers (> 100 standard deviations from
the mean point estimate). These parameter values were
clearly impossible given the structure of the data and could
be easily excluded as being optimization failures. No at-
tempt was made to adjust starting values and refit for the
non-converging and extreme cases, instead these 4 cases
were removed from the summary results in Table 1.

Individual Differences in
Equilibrium Change

One assumption of the model in the previous section is that
there is no change in the equilibrium value during the burst
of measurements. In many cases this assumption is rea-
sonable, but in some cases it may not hold. For instance
in Bisconti and colleagues’ study of recently bereaved wid-
ows (Bisconti et al., 2004), there is good reason to believe
that the equilibrium value was likely to be lower at the be-
ginning of the 90 day study than it was at the end. Also,
there was evidence of individual differences in this change
in equilibrium value. This makes sense from a substantive
standpoint since there are so many different possible cir-
cumstances for a death. One death may be sudden and
come as a great shock to surviving family members. An-
other death may be after years of protracted illness and
pain and survivors may find a sense of relief that a loved

one’s pain is finally over.
Figure 7 presents time series plots of two samples of sim-

ulated data. In Figure 7–a there is no change in equilibrium
value, consistent with the model from the previous section.
But in Figure 7–b there are individual differences in not
only the intercept, but also the slope of changing equilib-
ria. Figures 7–c and 7–d show the results of fitting models
allowing for individual differences in equilibrium and equi-
librium change to the respective simulated data. The four
plots in Figure 7 are produced as part of the scripts in Ap-
pendix A and Appendix B.

Figure 8 presents a path diagram of a model that can
simultaneously account for regulatory fluctuations and
longer–term linear changes in equilibrium. The linear sec-
ond order LDE portion of the model is unchanged from the
previous model, but now we add a slope parameter, S|i,
which is grouped by individual i. That is to say, the mean
slope is constrained to be equal within–individual, but al-
lowed to vary across individuals.

The model can be written in a similar form to the previ-
ous model in Equation 9,

X(D)i = MiK+GL+Ui , (10)

but now Mi is the ith row of an N × 2 matrix of means
for the N persons in the sample and which contains the
individual–specific means for the latent intercept and slope.
The matrix K is a 2×D fixed matrix of values that allow the
estimation of the latent intercept and slope. However, since
the time delay embedded matrix X(D)i has many rows for the
same individual, while the matrix K is fixed for each row, its
values must be calculated anew for each occasion j within
each individual i’s block of data in X(D)i .

If∆t is the interval of time between successive measure-
ments in the D = 5 columns of X(5)i , then one may pre–
specify matrices two fixed value matrices, C and H such
that

C =
�

1 1 1 1 1
−2∆t −∆t 0 ∆t 2∆t

�

and

H =
�

0 0 0 0 0
∆t ∆t ∆t ∆t ∆t

�

. (11)

For the jth occasion of measurement within individual i’s
data, create a matrix J

J =
�

0 0
0 j

�

.

Now, one may calculate K as

K = JH+C. (12)

These row–specific calculations can be performed within
OpenMx using its definition variable facility. Thus, if the
occasion of measurement for each person is stored as a col-
umn augmenting the time–delay embedded matrix, X(5)i j ,
then the occasion of measurement, j, may be substituted
into the matrix J for each row of a full information maxi-
mum likelihood calculation. An example script is provided
in Appendix C illustrating the use of individual–specific
means and row–specific matrices to estimate this hybrid
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Table 1. Simulation results for recovering individual differences in equilibrium value. Data were fit with the model shown in Figure 5 and
scripted in Appendix B. The simulation includes 100 replications of an experiment with 50 individuals each measured on 50 equal-interval
occasions. Standard deviations (sd) are the standard deviations of the simulated and estimated parameters.

Simulated (sd) Estimated (sd)

N 100 96
Did Not Converge 1
Extreme Outliers 3
Eta Mean -0.200 (0.014) -0.189 (0.016)
Zeta Mean -0.100 (0.015) -0.110 (0.026)
Intercept Mean -0.026 (0.289) 0.004 (0.311)
Intercept Variance 4.081 (0.830) 4.641 (4.411)
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Figure 6. Scatterplots of simulated versus estimated parameters for a) η, b) ζ, and c) intercept for 96 replications of fitting the model
shown in Figure 5 using the script in Appendix B.
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Figure 7. Time series plots of data with (a) individual differences in mean equilibrium and (b) individual differences in both intercept and
slope of the equilibrium. Individual differences in equilibria are shown as lines resulting from (c) fitting the model from Equation 9 and
(d) fitting the model from Equation 10. LDE parameters are simultaneously estimated from the residuals of these estimated equilibria.
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Figure 8. Hybrid linear second order LDE with individual differences in equilibrium intercept and slope estimated by latent intercept and
slope terms with means grouped by individual.
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LDE and LGC model and individual equilibria for the first
10 individuals from this simulation are plotted in Figure 7–
d.

A second simulation was performed in which data were
generated to conform to the model in Figure 8 with small
variation in parameters between each of 100 replications.
The data were once again generated according to an exper-
imental design where 50 individuals were each measured
on 50 occasions. Each individual’s equilibrium intercept
and slope was drawn from a normal distribution with in-
tercept σ = 2.0 and slope σ = 0.3. Each replication was
then fit using the model script in Appendix C and results are
summarized in Table 2 and Figure 9. Five data sets did not
converge and two data sets resulted in parameter estimates
that were extreme outliers. Again, the non-converging and
extreme outlier cases were removed from the summary re-
sults.

Individual Differences in
Dynamics

The models presented in the three previous sections do not
take into account the possibility that individuals may dif-
fer from one another in the way they self–regulate, that is
to say there may be individual differences in the shapes of
the systems’ basins of attraction. In many regulatory sys-
tems it may be expected that there will be measurable in-
dividual differences in the parameters of models of regula-
tion and that these individual differences would be substan-
tively important. For instance, variables such as resiliency
in older adults (Montpetit, Bergeman, Deboeck, Tiberio,
& Boker, 2010), disclosure and intimacy in married cou-
ples (Laurenceau, Rivera, Schaffer, & Pietromonaco, 2004),
and hormone cycles and disordered eating in young women
(Edler et al., 2007) all have shown evidence of substan-
tively important individual differences in the parameters of
dynamical models.

Figure 10 presents nine examples of how different tra-
jectories can result from parameter differences in a second
order linear differential equation. In each of these time
series plots, the same equation is used and only the param-
eters and starting values are changed. These plots illus-
trate how seemingly different behavioral trajectories may
result from a single underlying differential equation pro-
cess. Figures 10–a, 10–b, and 10–c are oscillating systems
with damping. That is to say oscillations tend to die out
over time if they are not perturbed by external events. Fig-
ures 10–d, 10–e, and 10–f are oscillating systems with am-
plification; systems that tend to amplify perturbations from
exogenous sources. Finally, Figures 10–g, 10–h are over-
damped, and 10–i is nearly overdamped. These systems
show trajectories that seem very similar to a first order lin-
ear system with exponential decay.

We can make an adjustment to the model from the previ-
ous section in order to estimate individuals’ parameters of
the LDE as shown in the path diagram in Figure 11. This
adjustment requires individual level subscripts on the LDE

model equations which can be written,

g̈i j = ηi gi j + ζi ġi j + ei j (13)

X(5)i j = MiK+GiL+U. (14)

This model can be implemented in OpenMx using the same
mechanism that we used to group the intercepts and slopes
by individual. We add two new columns to the random pa-
rameters matrix and use the individual ID as an index into
the random parameters matrix in order to constrain ηi and
ζi within–individual while allowing individual differences
in these parameters. An OpenMx script implementation is
shown in Appendix D.

A third simulation was performed in which data were
generated to conform to the model in Figure 11 where
each individual’s parameters of the second order differen-
tial equation were drawn from a normal distribution with
means and variances shown in Table 3. The data were again
generated according to an experimental design where 50
individuals were each measured on 50 occasions. Each in-
dividual’s equilibrium intercept and slope was drawn from
a normal distribution with intercept σ = 2.0 and slope
σ = 0.3. Each replication was then fit using the model
script in Appendix D and results are summarized in Table 3
and Figure 12. All data sets converged and one data set re-
sulted in parameter estimates that were extreme outliers.
Again, the non–converging and extreme outlier cases were
removed from the summary results.

Individual Differences in
Variability

Another important and often studied source of individual
differences is variability. Variability is sometimes opera-
tionalized as the within–person variance (or standard de-
viation) of repeated observations of a variable. However,
this definition misses an important distinction: the differ-
ence between the overall amplitude of the displacement
from equilibrium and the amplitude of the first derivatives
(Deboeck et al., 2009). This distinction is illustrated in Fig-
ure 13.

Both of these types of variability may be estimated by
allowing individual differences in the variances of the dis-
placement and first derivatives. Thus, the path model from
the previous section can be relaxed further as shown in
Figure 14 where V g|i and V ġ|i are the variances of the
displacement from equilibrium and first derivatives respec-
tively grouped by individual i. This model can be imple-
mented in OpenMx in the same manner as was used in mod-
eling individual differences in the parameters of the differ-
ential equation. While we do not show this in an Appendix,
a script implementing this is included in the downloadable
archive file.

Second Level Predictors

When there are individual differences in parameters of a
dynamical systems model, it may be of interest to predict
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Table 2. Simulation results for recovering individual differences in equilibrium value and equilibrium change. Data were fit with the
model shown in Figure 8 and scripted in Appendix C. The simulation includes 100 replications of an experiment with 50 individuals
each measured on 50 equal-interval occasions. Standard deviations (sd) are the standard deviations of the simulated and estimated
parameters.

Simulated (sd) Estimated (sd)

N 100 93
Did Not Converge 5
Extreme Outliers 2
Eta Mean -0.200 (0.015) -0.203 (0.016)
Zeta Mean -0.099 (0.014) -0.110 (0.022)
Intercept Mean 0.021 (0.272) 0.044 (0.332)
Intercept Variance 3.992 (0.967) 5.492 (7.946)
Slope Mean 0.002 (0.037) 0.003 (0.037)
Slope Variance 0.087 (0.017) 0.086 (0.017)
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Figure 9. Scatterplots of simulated versus estimated parameters for a) η, b) ζ, c) intercept, and d) slope for 93 replications of fitting the
model shown in Figure 8 using the script in Appendix C.
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Figure 10. Nine time series resulting from the equation g̈ j = ηg j + ζ ġ j + e j . Smooth lines are the underlying dynamics (Vu = 0) and
noisy lines include time–independent additive error (Vu = 1). (a) η = −0.3, ζ = −0.1 (b) η = −0.05, ζ = −0.05 (c) η = −0.1, ζ = −0.2
(d) η = −0.3, ζ = 0.02 (e) η = −0.1, ζ = 0.1 (f) η = −0.01, ζ = 0.02 (g) η = −0.01, ζ = −0.2 (h) η = −0.01, ζ = −0.1 (i) η = −0.05,
ζ= −0.2

Table 3. Simulation results for recovering individual differences in dynamics of a second order linear differential equation with individual
differences in equilibrium value and equilibrium change. Data were fit with the model shown in Figure 11 and scripted in Appendix D.
The simulation includes 100 replications of an experiment with 50 individuals each measured on 50 equal-interval occasions. Standard
deviations (sd) are the standard deviations of the simulated and estimated parameters.

Simulated (sd) Estimated (sd)

N 100 99
Did Not Converge 0
Extreme Outliers 1
Eta Mean -0.201 (0.013) -0.231 (0.015)
Eta Variance 0.010 (0.002) 0.016 (0.004)
Zeta Mean -0.099 (0.014) -0.119 (0.025)
Zeta Variance 0.010 (0.002) 0.034 (0.014)
Intercept Mean 0.037 (0.281) 0.042 (0.312)
Intercept Variance 3.845 (0.787) 4.863 (3.417)
Slope Mean -0.007 (0.044) -0.005 (0.044)
Slope Variance 0.088 (0.018) 0.088 (0.017)
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Figure 11. Path diagram of a hybrid second order linear LDE and LGC with individual differences in equilibrium level, equilibrium change
and dynamic parameters.
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Figure 12. Scatterplots of simulated versus estimated parameters for a) η, b) ζ, c) intercept, and d) slope for 93 replications of fitting
the model shown in Figure 11 using the script in Appendix D.

48



Journal of Person-Oriented Research 2016, 2(1–2), 34–55.

a b

0 20 40 60 80 100

−2
−1

0
1

2

Occasion

Sc
or
e

0 20 40 60 80 100

−2
−1

0
1

2

Occasion

Sc
or
e

Figure 13. Illustration of the difference between standard deviation of the displacement and standard deviation of the first derivative.
The time series in a) and in b) each have 100 observations and standard deviation of the displacement σ = 1.0. However, the standard
deviation of the first derivative is much smaller in a), σ = 0.14, than it is in b), σ = 0.74.

Vg..

x1 x2 x3 x4 x5

g g g
. ..

1

I | i S | i

ζ | i

η | i

e1

L

Kt

Mi

u1 u2 u3 u4 u5U

Vg | i Vg | i.Gi

X(5)

Figure 14. Path diagram of a hybrid second order linear LDE and LGC with individual differences in equilibrium level, equilibrium
change, dynamic parameters, and amplitude of fluctuations.
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these differences from other measured characteristics or
traits of the individual. For instance, fluctuations in self–
perceived mental health in recently bereaved widows were
damped more quickly in widows who reported a high level
of social support from their family members, while widows
who cycled at a faster rate were reported by family mem-
bers to have lower levels of perceived control (Bisconti et
al., 2006). Individual differences in equilibrium level and
slope may also be predictable from other individual charac-
teristics (Boker, 2013) and could be modeled in the same
manner as illustrated here.

g̈i j = ηi gi j + ζi ġi j + ei j

ηi = η+ηzzi

ζi = ζ+ ζzzi (15)

X(5)i = Mi +GL+Ui (16)

Note that the subscript i is no longer present on the la-
tent structure matrix, G. This model can be fit using a
two column indexed parameter matrix containing only the
individual–level means and slopes. The assumption that
we make is that the interindividual differences in the la-
tent differential equation structure is characterized by the
between–persons variance in the individual characteristic
variable zi . Positive consequences of this assumption are
that the model can estimate the effect of z on the param-
eters of the dynamic (as shown in Equation 15) and that
the model can be estimated more quickly than one with
individual–level parameters. The approach shown in Ap-
pendix E can be used to estimate the mean effects and as-
sociated individual second–level effects.

A fourth simulation was performed in which data were
generated to conform to the model in Figure 15 where
each individual’s parameters of the second order differ-
ential equation were predicted by a trait–level variable z
drawn from a normal distribution with mean µ = 0.0 and
standard deviation σ = 1.0. The data were again gener-
ated according to an experimental design where 50 indi-
viduals were each measured on 50 occasions. Each indi-
vidual’s equilibrium intercept and slope was drawn from
a normal distribution with intercept σ = 2.0 and slope
σ = 0.3. Each replication was then fit using the model
script in Appendix D and results are summarized in Table 3
and Figure 12. All replications converged and there were
no extreme outliers.

Longitudinal Change in
Dynamics

Over longer periods of time, the regulatory dynamics ex-
hibited by an individual may change. Examples of sub-
stantively interesting changes in dynamics include devel-
opmental mechanisms, changes in an individual’s context,
or changes due to learning and/or plasticity. Long–term
changes in dynamics can be estimated using data from a

multiple burst design. For instance, the Notre Dame Study
of Health and Well–Being (Ong et al., 2009) includes three
52–day bursts of daily self–report, where bursts are sepa-
rated by an interval of two years.

Figure 17 plots simulated data for four individuals for a
3–wave burst design. In these simulated data, equilibrium
intercepts and slopes as well as the parameters of regula-
tory dynamics change across waves. One way to model this
change is to construct a variable that represents the tempo-
ral interval in such a way that individuals are temporally
aligned on that variable. For instance, for younger indi-
viduals, age in years might be an appropriate variable. In
samples of elders when mortality data are available, an-
other time–aligning variable that has been used is years
to mortality (e.g., Gerstorf, Ram, Röcke, Lindenberger, &
Smith, 2008). Or, in some cases it might make sense to
align all individuals by burst, such as in an intervention
study where the first burst might be pre–intervention with
a second burst after intervention and a third burst as a
long term followup. In each of these situations, the con-
structed time–aligned variable can be substituted into the
model in Figure 15 as the variable z, allowing the estima-
tion of between–persons time–dependent changes in dy-
namics that can be detected when the bursts are time–
aligned.

Given that this simulated example has only three bursts,
the most complex change in dynamics we can estimate is
linear change. When there are more than three bursts of
data, more sophisticated questions could be posed about
the evolving nature of within–person change in dynamics.
If there is a theoretic reason for a particular form of nonlin-
ear change (e.g., negative exponential growth to an asymp-
tote as might be postulated in a training study) then the
variable z can be constructed so that the theoretic non–
linear basis is built into its values. In that case, the model
in Figure 15 can be used to estimate a nonlinear change in
dynamics.

Summary

The article presented structural equation models for simul-
taneously modeling equilibria and the dynamics governing
regulation about the equilibria. We used a modified latent
growth curve approach to create a structured means model
that estimates the level and linear change in the equilib-
rium. The covariances of the residuals from this structured
means model were in turn modeled as a latent differen-
tial equation. By combining these two approaches we can
obtain estimates for the parameters describing the equilib-
rium and the dynamics that simultaneously maximize the
likelihood of the observed data. This is an improvement
over methods that first subtract means and/or trends from
data and then later estimate models for the dynamics of
these residuals.

We presented a framework for thinking about and devel-
oping models of individual differences in equilibria, dynam-
ics, and intraindividual variability. These models started
with a restricted model that assumed no individual differ-
ences and relaxed this assumption in a structured way: first
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Figure 15. Path diagram of a hybrid second order linear LDE and LGC with individual differences in equilibrium level, equilibrium change
and a second level predictor of η and ζ.

Table 4. Simulation results for recovering second level effects on parameters of dynamics of a second order linear differential equation
with individual differences in equilibrium value and equilibrium change. Data were fit with the model shown in Figure 15 and scripted in
Appendix E. The simulation includes 100 replications of an experiment with 50 individuals each measured on 50 equal-interval occasions.
Standard deviations (sd) are the standard deviations of the simulated and estimated parameters.

Simulated (sd) Estimated (sd)

N 100 100
Did Not Converge 0
Extreme Outliers 0
Eta Mean -0.200 (0.000) -0.198 (0.008)
Zeta Mean -0.100 (0.000) -0.119 (0.014)
Eta Interaction 0.100 (0.000) 0.098 (0.016)
Zeta Interaction 0.100 (0.000) 0.108 (0.020)
Intercept Mean -0.027 (0.225) -0.073 (0.238)
Intercept Variance 3.892 (0.779) 4.089 (0.787)
Slope Mean -0.004 (0.034) -0.002 (0.034)
Slope Variance 0.088 (0.018) 0.087 (0.017)
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Figure 16. Boxplots and scatterplots of simulated versus estimated parameters for a) η and ζ, b) the interaction between z and η and ζ,
c) intercept, and d) slope for 100 replications of fitting the model shown in Figure 15 using the script in Appendix E.
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Figure 17. Multiple bursts with longitudinal change in dynamics in both equilibrium intercept and slope.
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allowing individual differences in the intercept and slope
of the equilibrium; next allowing individual differences in
the parameters of the system dynamics; next allowing in-
dividual differences in the variability of the displacement
and first derivative; and finally adding a second level inter-
action term to estimate regression relationships between
trait level variables and parameters of dynamics. Finally
we proposed an experimental design and model that could
estimate change in dynamics simultaneously with change
in equilibrium over time.

Overall, the estimates of individual differences in in-
tercept and slope were exceptionally good for all models
presented here, with the exception of a few extreme out-
liers. While the dynamic parameters showed more vari-
ability with respect to their originally simulated values, the
estimates were reasonable give the relatively short (50 oc-
casions) time series for each individual and relatively low
simulated signal to noise ratio of 1/1. Data with higher reli-
ability and/or more observations per individual would have
improved these parameter estimates. Estimates of damping
showed (≈ 10%) bias towards stronger damping (ζ) than
was simulated. The only model that showed appreciable
(≈ 10%) bias in frequency (η) was the individual differ-
ences in dynamics model from Appendix D.

All of the model scripts and data simulation
scripts described in the article are available for
free download from the corresponding author’s web
site: http://people.virginia.edu/~smb3u/
ChangesInDynamics.zip. We encourage interested
readers to modify the simulation scripts to apply to their
own experimental design and assure themselves that the
results that they obtain from fitting these models provide
tolerable estimates. The simulation scripts may also be
useful in calculating power prior to beginning an intensive
longitudinal experiment. In particular, we recommend
power estimates be obtained for longer bursts and fewer
individuals relative to shorter bursts and more individuals.
The particulars of an experimental question will determine
in which of these two direction the data design is best
steered.

Limitations

In order to estimate derivatives for the second order dif-
ferential equation models presented here, one will need on
the order of a minimum of 400 observations. These ob-
servations could be configured in a variety of ways, e.g.,
as 20 individuals with 20 observations each or as 10 indi-
viduals with 40 observations each. As with any simplistic
rule-of-thumb such as suggested here, actual power will be
dependent on the characteristics of the data: the reliabil-
ity of the within-person measurements (Hu et al., in press);
the degree of within-person equilibrium change over time;
and the degree of between-person differences. The more
one wishes to know about the person-oriented variables,
the more data one will want from each person. At the
extreme, when one disregards between-person differences
and can only afford P observations, more power is always
obtained from more observations from fewer individuals,

and so one is left with the maximum power when all P ob-
servations are from a single individual. If one is willing
to ignore within-person change in dynamics and is only in-
terested in between-person differences, maximum power is
obtained when one has the minimum number of observa-
tions per person that have degrees of freedom to estimate
the derivatives and residuals of a single fluctuation. Assum-
ing an optimal sampling interval that is 5 observations per
person, so maximum power would be obtained with 5 ob-
servations sampled from P/5 individuals. However, one is
unlikely to know the optimum sampling interval, since that
dependent on each individuals’ dynamics. Thus one will
wish to oversample at the individual level. We have often
recommended a minimum of 30 observations sampled at
a shorter interval than required by a hypothesized fluctua-
tion. As an example, suppose a hypothesis of a weekly cy-
cle. The optimum might be 5 observations per week. But in
order to also cover the possibility of daily and also monthly
cycles, one might consider sampling 5 times a day for a
month: 150 observations per person. There are two down
sides to such intensive sampling: participant fatigue and
less power to detect between-person differences. But the
gain is substantial — If there are changes in daily dynamics
that play out over the course of a month, the within-person
model has sufficient data to detect them.

The framework presented here distinguishes between
some useful types of regulatory dynamics, but is by no
means comprehensive. Important sources of individual dif-
ferences in behavioral and physiological regulation that
were not addressed include some types of nonstationary
systems. For instance, some regulatory mechanisms may
exhibit nonstationary change in dynamics that occur within
the same time scale as the regulatory dynamics of change.
The proposed modeling framework cannot capture these
multiple co–occurring sources of nonstationarity. We be-
lieve that the current framework can be extended to es-
timate such sources of nonstationarity, but indentification
conditions for such models are not yet well established.

A second type of potentially important systems is one
where the dynamics of change are occurring at multiple
time–scales. This type of system might have faster regula-
tion embedded within slower regulatory systems. For in-
stance, while there is evidence that affect has one dynamic
that results in fluctuations with an approximately 6 to 7
day cycle (e.g., Chow et al., 2005), it is self–evident that
emotional and affective states can change quickly — within
minutes. Estimating models that could test hypotheses of
how multiple timescales of affective regulation interrelate
would require a framework that would be able to accom-
modate multi–timescale delay embedding. This is an active
area of inquiry and much work needs to be accomplished
before such models can be reliably brought into a frame-
work of change in dynamics and dynamics of change.

Some of the modeling procedures outlined in this article,
in particular the indexed parameter matrix method, require
free parameters for each individual in the data set. While
this type of model is tractable for smaller data sets, a few
hundred individuals, the estimation time for these models
grows approximately with the cube of the number of indi-
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viduals. Thus, numerical fitting procedures for this type of
model quickly become intractable as the number of indi-
viduals becomes large. Methods need to be developed that
overcome this computational limitation without losing the
flexibility of the current implementation.

Conclusions

We have presented a framework to help organize develop-
ment of models for the dynamics of change exhibited by
regulatory systems while taking into account some plau-
sible sources of change in dynamics. Change in dynam-
ics was partitioned into categories that include change in
equilibria, change in basins of attraction, and change in
variance. These types of change were modeled in a frame-
work in which the change in dynamics can be estimated as
an individual differences characteristic, a within–individual
adaptation, or both. A method was proposed for modeling
dynamics of change and change in dynamics from multiple
burst designs. While the presentation remained within the
context of simulated data, we expect these methods to be
immediately applicable to an increasing number of studies
as it becomes more widely recognized that individual–level
dynamics and adaptation provide important understanding
of human behavior, physiology, and development over the
lifespan.
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