uninterrupted speech is the total speaking time for a subject, excluding any and all pauses.)

For FT, approximately 4.3 minutes of uninterrupted speech are available, comprising a total of
870 words; for FK 9.5 minutes comprising 2045 words; for MP 10.8 minutes comprising
2554 words; and for FS 10.3 minutes comprising 2401 words.

6 Some remarks on the transliteration provided with the recordings

The data are provided with a word-level transliteration (word labelling). The transliteration
was performed by the author, a non-native (albeit competent) speaker of Swedish. Researchers
that wish to make use of the data may make use of this transliteration, possibly using it as the
basis for searches or subject it to automatic text processing. Therefore, the rationale behind
the transliteration conventions will be outlined here.

The aim of the transliteration was to facilitate lexical look-ups rather than to indicate or
reflect the segmental content. For instance, the function word det is always indicated simply as
“det” in the transliteration, without regard for any variability in its production (e.g. [det],
[de], [de], [e] or [de]). This approach was also applied in the labelling of minimal responses
and lexical fillers. For example, lexical fillers of the “eh” or “er” type are indicated with a
semicolon ; in the transliteration, irrespective of their segmental content (schwa-like, [e]-like,
[æ]-like, creaky, nasalized, etc.)

A prominent feature of the transliteration is that contiguous pieces of speech (i.e. stretches
of speech which contain no silence pauses) are demarcated at the onset and offset with a
period (full stop) symbol. Thus the transliteration does not attempt to reflect the syntactic
structure of an utterance, but instead only the presence of silence pauses. Note, also, that the
transliteration provides no evaluation of or amendment to the grammaticality of an utterance.

7 Format and availability

The sound files are 16-bit stereo (with one speaker on each channel) and have a sampling rate
of 16 kHz. The files are provided in the uncompressed Wave PCM format (i.e. *.wav). The
word label files are provided as text files in WaveSurfer format. The data are made available
as is, with no guarantee of groundbreaking research results. To obtain the data, please e-mail a
request to the author to obtain a web address from which to download the data.

Acknowledgements

The author would like to thank Sven Björsten, Peter Branderud and Hassan DjamshidiKey for
their assistance with the recording of the data.

References

215–226.

Linguistic Context in Read and Spontaneous Speech in Swedish. Proceedings of the 7th
ICSLP, Denver.

The present paper reports on a study which is part of a larger work where the next step will be
to investigate the effect of the same two pronunciation features upon intelligibility. In this
way I hope to shed some light upon the relationship between non-native pronunciation, degree of accent, and intelligibility.

2 Experimental procedure

2.1 Recordings
The speakers were 14 adult learners of Norwegian as a second language with British English, French, Russian, Chinese, Tamil, Persian and German as their L1s. There were two speakers from each of the L1s. The speakers were of both sexes. In addition one male native Norwegian speaker from the South East region was recorded in order to provide an N1 template.

The speech material was recorded in a sound-treated studio using a Milab LSR 1000 microphone and a Fostex D-10 digital recorder. Files were digitized with a sampling rate of 44.1 kHz and later high-pass filtered over 75 Hz. Speech analyses and manipulations were carried out with the Praat program (Boersma & Weenink, 2006).

The N2 speakers and the N1 speaker all read the same Norwegian sentence: Bilen kjøpte forbi huset vårt (=The car drove past our house).

2.2 Stimuli
Global intonation and global segment durations in the N2 utterances were computer manipulated to match the N1 production of the same sentence. The intonation was manipulated by replacing the intonation contour of each N2 utterance with the stylized intonation contour of the N1 utterance. Because of durational differences between the N1 utterance and the various N2 utterances, the intonation contour had to be manually corrected in the time domain. Because of pitch level differences between the speakers, especially between the sexes, the intonation contour also had to be manually shifted in frequency so as to suit the individual N2 speaker’s voice. Manipulation of segment durations required a phonemic segmentation of both the N1 and the N2 utterances. All segment durations were measured and the N2 phonemes were lengthened or shortened to match the segment durations of the N1 utterance.

Three manipulated versions of each speaker’s original utterance were generated: one intonation corrected utterance version, one duration corrected utterance version and one utterance version with both features corrected.

The stimuli thus consisted of four utterance versions for each speaker: the original utterance and three manipulated versions. These four versions were put together as pairs. Each pair was put in a separate sound file with a two-second pause in between. These stimulus pairs enabled the direct comparison of each speaker’s four utterance versions. Note that each stimulus pair consists of two utterance versions from the same speaker so that utterance versions are always compared within speaker.

2.3 Experiment
13 native Norwegian listeners evaluated the stimulus pairs. None reported experience with N2 speech out of the ordinary and none reported poor hearing. There were 8 listeners from low-tone dialects and 5 listeners from high-tone dialects. The listeners were paid for their participation.

The listener was seated in a sound-treated studio and the sound was presented through loudspeakers. The listener’s task was to judge which of the two utterance versions in each stimulus pair sounded less foreign accented than the other. They also had the option to rate the two utterances as equally foreign accented. All stimulus pairs were presented in random order, and they were presented 10 times each.

The listeners were not told that some of the utterances they would hear were altered through computer manipulation. The participants seemed to find the test design comprehensible.

3 Results
The listeners’ responses were subjected to statistical testing. However, no statistics will be presented in this paper. The main findings will be presented and discussed in the following.

3.1 Intonation vs. duration
The results show that when both global intonation and global segment durations are manipulated, this correction reduces the amount of perceived foreign accent in the N2 speech. This effect is statistically significant for all N2 speakers across the different L1s.

When the listeners are exposed to speech where only one pronunciation feature is corrected, it is shown that each correction separately contributes to the reduction of foreign accent. This effect is statistically significant for all L1 groups with two exceptions. For the N2 speakers with British English as their L1, the native listeners judge the degree of foreign accent as unaltered despite global intonation correction. For the N2 speakers with German as their L1, the correction of global segment durations does not affect the perceived degree of foreign accent.

It is thus clear that, in general, both global intonation and segment durations are significant contributors to perceived degree of foreign accent. The interesting question is which of these two corrections reduces the degree of foreign accent most effectively. This is shown to vary between the L1s as presented in Table 1 below. The table also shows the relative size of the accent reduction brought about by the corrections.

Table 1. The middle column shows the correction that contributes the most to degree of foreign accent for each of the L1s. The rightmost column shows the relative size of the accent reductions. T= Tamil, C= Chinese, E= English, F= French, G= German. >= larger effect.

<table>
<thead>
<tr>
<th>L1</th>
<th>Main contribution</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamil</td>
<td>Segment durations</td>
<td>T>C=E</td>
</tr>
<tr>
<td>Chinese</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>Global intonation</td>
<td>F>G</td>
</tr>
<tr>
<td>German</td>
<td>Equal effect</td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td>Persian</td>
<td></td>
</tr>
</tbody>
</table>

The table shows that the N2 speech produced by speakers with the native languages Tamil, Chinese and English is affected more by the correction of global segment durations than by the correction of global intonation correction for the purpose of foreign accent reduction. Conversely, the N2 produced by speakers with the native languages French and German is perceived as having less foreign accent when the global intonation is corrected than when the global duration is corrected. For the Russian and Persian participants there was no difference between the two pronunciation features. This means that correcting global intonation reduces the amount of perceived foreign accent to the same degree as correcting global segment durations.

The L1s can thus be categorized according to which of the two investigated pronunciation features reduces the foreign accent more than the other. There are however differences within each of these two categories as the degree to which the foreign accent is reduced by a correction differs between the L1s. Native speakers of Tamil, Chinese and English all benefit...
most from intonation correction, but the effect of the correction has greater impact on the foreign accent for some LI groups than for others. The Tamil speakers’ N2 is more foreign accent reduced by the correction than the Chinese speakers’ N2 and the Chinese N2 speech is more foreign accent reduced than the English speakers’ N2. Likewise, speakers with French and German as their native languages benefit most from duration correction, but the foreign accent reduction effect is larger for the French LI group than for the German LI group.

The native Norwegian listeners that participated in the experiment represented both low-tone and high-tone dialects. No correlation was found between listener dialect and responses in the perception experiment.

References

The Filler EH in Swedish

Merle Horné
Dept. of Linguistics and Phonetics, Centre for Languages and Literature, Lund University
merle.horne@ling.lu.se

Abstract
Findings from a pilot study on the distribution, function and phonetic realization of the filler EH in interviews from SweDia2000 interviews are presented. The results show that EH occurs almost exclusively after function words at the beginning of constituents. The phonetic realization of EH was seen to be of three basic forms: a middle-high vowel (e.g. [e], [e], [a]), a vowel+nasal (e.g. [em], [am], [an]), and a vowel with creaky phonation (e.g. [a], [g]). The vowel+nasal realization occurs as has been shown for English before other delays and is associated with planning of complex utterances. Since creaky phonation is associated with terminality, the creaky vowel realization of EH could be interpreted as signalling the juncture between the filler and an upcoming disfluency.

1 Introduction
The filler, or ‘filled pause’ EH has often been termed a ‘disfluency’ (e.g. Shriberg, 2001), since it constitutes a delay in the flow of speech associated with referential meaning. However, since it can often be assigned pragmatic functions, such as signalling an upcoming focussed word (Bruce, 1998), or need on the part of the speaker to plan or code his/her speech and thus a desire to hold the floor, EH can also be considered to be an integral part of the linguistic system (see e.g. Allwood (1994), and Clark & Fox Tree (2002) who refer to it as a ‘word’). In a study on English, Clark & Fox Tree (2002) found that its realization as Uh signals a minor delay in speaking, whereas Um announces a major delay in speaking.

A number of studies on Swedish have reported some characteristics of EH in different speaking styles, but none have focussed on the variation in the phonetic realization of EH as far as I know. Hansson (1998), in a study on the relationship between pausing and syntactic structure in a spontaneous narrative, found that the filled pauses (n=22) in her material occurred at clause boundaries after conjunctions and discourse markers and before focussed words. Lundholm (2000) in a study on pause duration in human-human dialogues found that the filler EH (n=55) in authentic travel-bureau dialogues occurred in turn non-initial position and had a duration similar to silent planning pauses (mean = 340 ms). Eklund (2004) in a number of studies on simulated human-human and human-machine dialogues found that the most common position of EH (n=2601) was utterance-initial before another disfluency and that it was most often followed by jag ‘T’, and det ‘den’ ‘it’. The filled pauses were found to have a mean duration of about 500 ms, thus considerably longer than those found by Lundholm (2000) in authentic task dialogues.

2 Current study
The present study has been carried out to pursue the investigation of EH in spontaneous data to get somewhat better idea as to its distribution, function, and phonetic realization in authentic interviews where the speech is basically of a monologue style. Spontaneous speech from the