LUND UNIVERSITY

DEPARTMENT OF LINGUISTICS

General Linguistics

Phonetics

WORKING PAPERS
29.1986

LUND UNIVERSITY DEPARTMENT OF LINGUISTICS
 General Linguistics
 Phonetics

WORKING PAPERS
 29.1986

Department of Linguistics and Phonetics
Helgonabacken 12
S-223 62 LUND

This issue has been edited by Eva Garding, David House and Janna Geggus

This number of Working Fapers covers a large span of topics due to contributions from both sections of our department. The varied typography is due to the different word processors and printers used.

The report will start with a list of the seminar programs.
Friday seminars (Phonetics)
Sept 13 Problems in intonation analysis: The phrase Eve Garding
Sept 20 Report from the summer school in psycholinguistics in Brussels
Ann-Christine Bredvad-Jensen and Christina Dravins
Sept 27 Experiments with a tonal grid in fluent speech Dieter Huber
Ort 4 Tone and intonation in Hausa Taghrid Anbar (Cairo)
Oct 4 Fresentation of some programming problems to representatives of the department of computer engineering
Mats Eeg-Olofsson
Oct 18 Acoustic-articulatory relationships in Arabic vowel production
Kjell Norlin
Oct 25 Direct and indirect perception: Intonation and memory
David House
Nov 8 Unorthodox tonogenesis in Hu Jan-0lof Svantesson
Nov 15 French intonation research
Georges Boulakia (Paris)
Nov 22 Intrinsic piteh in Chinese Shi Bo
Dec 13 Learning to write early Caroline Liberg (Uppsala)
Jan 17 Prosodic dialectology in Fenno-Scandia Kalevi Wiik (Turku)

In January through April the Friday seminar hours were occupied by courses for advanced students. Lennart Nord's course had started in December:

Reading spectrograms
Lennart Nord (KTH Stockholm)
Intonation across several languages
Eva Garding
Some observations on the biology of language Alvin Liberman

Apr 14 Intonation in Finnish
Kjell Weimer
Apr 18 Summary of the course "Intonation across several languages" Eva Garding
Apr 25 The biology of language Alvin Liberman
Apr 25 Speech and the hemispheress report on a project David Ingvar, Christina Dravins
May $2 \quad$ Problems of perceptual testing
May 30 Report from the International Conference on

Dingusticter To

Two courses open to advanced students had been given in the fall:

```
Models and methods
Bengt Sigurd
A computer program for statistics:
Theory and practice
Mats Nystrom
```

The General semimar "Language, Speech, Sourd \& Hearing" aims at a wide audience and is conducted by the whole department in cooperation with the Department of Logopedics and Phoniatrics. It covered the followirg subjects.

Sept 16 Clinical voice research Peter Kitzing (Malmó)
Sept 30 Causes behind reading and writing difficulties, report on a project
Kerstin Naucler, Eva Magnusson
Oct 7 Pragmatics and the pragmatic development of chiddren
Carol Prutting (uCLA\}
Oct 22 Expressions of politeness in Smedish Claes-Christian Elert (Umes)
Nov 4 Speechs language and computers: A presentation of a computer linguistics course in Gothenburg Dieter Huber
Nov 18 The acoustics and physiology of bird song
Lars Gurding
Dec 2 The history of phonetics in Sweden Bertil Malmberg
Dec 16 Lerymgeal articulation; Kinematics, control and coordination
Anders Lofquist
Jan 17 The phonalogy of prosody
Jargen Rischel (Coperhagen)
Fab 2 Situation semantics
and the psychology of perception
Robif Cooper
Feb 24 Specializations for speech and other biologically significant sounds Alvin Liberman (Yale University, University of Connecticut, Haskins laboratories)
March 3 Phonology and the problems of learning to read and write
Isabelle Liberman funiversity of Connecticut, Haskins laboratories
March 10 Some observations on the biology of laguage Alvin Liberman
April 11-12
Humanistdagarna. Gpen house at the departments of the Philosophical faculty.
Theme: Emotion
Lectures:

Sprak, människor och känslor (Bertil Malmberg) Mapuche. ett minoritetssprak i Chile (Emilio Rivano)
Dans som sprak (Jana Geggus)
Känslospraket mänkiska-hund (Gisela Hakansson) Intonation och Känslor (Eva Garding)
Kommunikationssvarigheter för höselskadade (David House)
De eller dom, en kanslosak (Thore Pettersson) Artighet, ritual i stället för kanslor (Jear-Jacques Bertout)

May 26 Unusual passives and related matters
Edward Keenan (UCLA)
The department benefited greatly from having two Fulbright scholars staying with us for the larger part of the spring term, Professors Alvin and Isabelle Liberman. Alvin Liberman gave a series of lectures on the biology of language and Isabelle Liberman lectured on dyslexia problems to the special seminar devoted to such issues. This seminar is chaired by Kerstin Naucler and Eva Magnusson.

We also enjoyed having two Swedish Institute scholars at the department. Professor Taghrid Anbar from the University of Cairo worked with Kjell Norlin on contrastive studies of Arabic and swedish during some weeks in the fail and shi Bo, MA from the Acoustics Institute of Academia Sinicag Bejjing, joified the program for graduate students during the whole amademic year. She and Faul Touati assisted me in the course. "Intonation across several languages".

There is a final report on the project "Phonetic descriptions of some important non-European languages" (HSFR) in this issue. One of the announced coming dissertations, "Language ary the hemispheres", has almo been sponsored by the Research Council (HSFR). The project "Reading and spelling difficulties" (HSFR) is ertering its third year and "From text to prosody" (RJ, i.e. the Bank of Sweden Tercentenary Foundation) its second.

We are grateful to the Research Council for making it possible for us to buy a new graphic terminal. It is a special pleasure to acknowlege the regular support from Einar Hansen's foundation which has the aim of promoting collaboration betweer the universities of Lund and copenhagen. One of the results of this exchange was a visit in January to the Dept of Audiologopedics and the Phonetics Institute at Copenhagen University by the logopedics students and their teachers David House and Sidney wood. As usual they were extremely well received.

By the end of 1985, 26 logopedics students had completed their two-term phoneties training. As so many times befores, a large group of students from the Teachers' Callege in Malmo were registered at our depertment and fulfilled the requirements for the basic course in phonetics. In addition we have had a number of students taking courses of phonetics at different levels. A group of students from Lirköping University specializing in communication joined us for several days in order to get some training in experimental phonetics. A special program was designed for them.

Kurt Johansson took over the chairmanship after me on July 1 s 1985 and was elected for a new three-year period in June.

Gosta Bruce spent the whole academic year in Stockholm where he substituted for Bjorn Lindblom. On July 1st, 1986, he succeeded me as professor of phonetics at Lund University. I wish him success in his new office.

Lund in September 1986
Eva Garding
professor em.

CONTENTS

Robert Bannert	From prominent syllables to a skeleton of meaning: a model of prosodically guided speech recognition	1
Robert Bannert	Independence and interdependence of prosodic features	31
Antonis Botinis	The prosodic structure of Greek: a phonological, acoustic, physiological and perceptual study	61
Helen Goodluck	Notes on some particle and prepositional constructions in Swedish and English	67
Eva Gårding	A visit to China 29.4.-7.6. 1986	89
Eva Gårding and David House	Production and perception of phrases in some Nordic dialects	91
Eva Gårding,	Final report: Phonetic analyses of	115
Mona Lindau,	some non-European languages	
Kjell Norlin and Jan-Olof Svantesson	(LUCLA)	
Lars Gårding	A simple qualitative model for the vibration of the vocal folds	139
Magnus Olsson	Backness and roundness harmony in Hungarian	147
Shi Bo and Zhang Jialu	Vowel intrinsic pitch in Standard Chinese	169
Bengt Sigurd	Understanding measure and comparative sentences through Prolog	191
Jan-olof Svantesson	A note on Kammu perception verbs	219
Paul Touati	Structures prosodiques du suédois et du francais: le cas de la focalisation et du contraste	225

From prominent syllables to a skeleton of

meaning: a model of prosodically guided

speech recognition

Robert Bannert

Abstract

In this paper an attempt is made to contribute to a better understanding of the probesses involved im speech recognition. The results of some experiments constitute the basis for an outline of a model of speech recognition where orasady, especially the accentuated syllable, plays a gulding role.

In the experiments, Swedish utterances were used that were spoken with foreign aceent and that, above all deviated tonally and rhythmically in a clear way. By introducing ppropidate corrections step-by-step in a controlled manner certain selected prosodic features in the speech signal representing the uttexances were altered by LPC-synthesis), it was possible to observe the effect of these features on perception. It turned out that the word arcent plays a redominant role. Accentuated syllables act as islands of clarity and stability in the speech chain due to theix joint marking by a tonal change clear spectrum, duration, and intensity, Therefore the listener is able to process these orominent and conspicuous syllables quickly and accurately. other linguistic features (spectral, morphological, syntactic and semantic) which are contained in the phonetically bluried and incomplete parts of the signal are subordinated to the linguistic strucutre of the identified accent pattern. The model of prosodically guided speech recognition presented here shows some sperific features. for instance, the aracessing units are not considered to be words in the orthographical. sense (strings of letters separated by spaces on paper) but rather the accentuated syllables as anchors or fixation points surrounded by unstiessed syllables. The speech recognition process does not lead to the identified meaning of a given utterance by matching a word completely analysed and with exactly defined boundaries by the acoustic-phonetic amalysis with a corresponding template stored in the lexicon. The identification of meaning is instead achieved by a continuous intexactive searching which is performed as an ongoing interplay between different levels of the speech recongition process. Duxing this jnterplay, the current structuxe may be altered at any time as a consequence of several factors: new acoustic information which i.s continuously extracted from the incoming speech signal. linguistic constrajnts applicable to the intermediary structures, and the general and pragmatic knowledge of the ijstener.

INTKOOUCTION

Perception plays a very important part in speech communication. Perception in speech can be defined as the listener's active processing of the speech signal in order to reconstruct the message intended by the speaker.

There exist a number of models of word and speech recognition. rhey represent different approaches and views and partly are designed in basically different ways. often word recognition is synonymous with pattern recognition implying that the structure arrived at by the acoustic-phonetic analysis of the incoming signal is compared and matched with templates that have been stored previously. As the next step, lexical access is exeruted where the semantic representation, i.e. the meaning is identified. Pisoni (1984) points out particularly that a clear distinction has to be made between word recognition and lexical access. Pisoni also presents a good overview and a review of seven recent models of word recognition, among which the Phonetic Refinement Theory developed by him and his collaborators (Pisoni et al. 1985) is to be found.

The Phonetic Refinement Theory and the moded of Shipman and Zue (1982) represent a real development of earlier models because they take into due consideration phonetic features and interrelationships. However, it seems to me that these models can be further developed and supplemented, especially where the role of prosody, i.e. the tonal and rhythmic aspects of speech, in word and speech recognition is consexned.

Every linguistic unit, like syllable, stress group, phrase, sentence, and text, has a specific structure, the knowledge of which is of central significance for speech recognition. The competence of the speaker/listener also contains, among other things, the knowledge of the phonotactic structure of syllables and words, their morphological structure (root, affixesl, their prosodic structure, and the number of reductions and assimilations. The prosodic features are very often strongly interxelated with other phonological and morphological features, for instance phonotactic, morphophonological, and syntactic ones.

Models of speech perception have to cope with the fact that the speech signal is not always distinct and complete. Instead, most often the acoustic signal ariiving at the listener's ear contains distortions of different kinds. These
deviations appear as the consequences of at least three dimensions of indistinctness, namely of speech tempo (slow ... fast), of articulation (distinct - lax), and of the linguistic distance between a norm or standard and the actual form (small - large) which contains regional. social, and individual features and foreign accent as well. These deviancies include reduced or missing spectra compared to the intended form both of which can originate from lax or fast speech of from external cistortions. opposite to imcompleteness, the signal may contain a larger number of segments, e.g. produced by vowel epenthesis. Some spectra may be analysed only to a certain extent, e.g. an [m] only as nasal, an [b] only as palatal, prosodic features may be wrong (short instead of long vowel), the accent may be placed on the incorrect syllable (celephone), etc. Therefore it has to be assumed that the result of the acoustic-phonetic analysis not always amounts to a complete and unambiguous phonologjoal form which will lead directly to the lexical element which, eventually, will be identified cormertiy. on the contrary, the phonological representation as the result of the working of the bottom-up processes has to be thought of as incomplete and deviant compared to the meaning intended by the speaker.

An adequate model of speech perception should be able to handle a rather wide variation in the speech signal. Listeners do communicate with each other in spite of individual, social, geographical, and other differences in their pronunciation. A clear instance of large acoustic deviances is to be found in foreign accent. Thus phonetic variation is a rather complex phenomenon, resulting from a given language being spoken not only as the first language but also as the second language by people with different first languages. A simplified multi-cimensional model of phonetic variation is presented in Bannert (1982).

It is the aim of this investigation to present an outline of a model of speech recognition in which prosody plays a significant and leading role (*). This model is compatible, to certain parts, with othex models of word or speech recognition, especially with the Phonetic Refinement Theory presented by Pisoni et al. (1984). However, it adds some new aspects focussing on the incompleteness and fuzziness of the results of the acoustic-phonetic analysis. It does not work with the processing unit of the word characterized by clearly defined boundaries. The phonological form of the word is being built and assembled starting from phonological fragments and applying, among other things, the morpho-phonological knowledge of the listener.

METMOD AND MODEL

As the basis for testing intelligibility of Swedish spoken with a foredgn accent, the so-called correction method is used (Bannert 1978). The staxting point is an utterance spoken by a non. Swedish speaker. It contains certain features which are analysed and well-defined. These deviations are corrected in the acoustic signal step-by-step by means of LPC-synthesis. The tonal feature of accent corresponds to wertain parts of the Fo-contour of the utterance, the temporal features of quantity and phrase rhythm are manifested in the durations of the segments and their relationships to other segments and groups of segments (syllables). The Lund model for swedish intonation (Bruce 1977, Garding and Bruce 1981) served as the model. for the tonal corrections. The temporal corrections had to be carried out according to estimated values which wexe then checked auditoxily. We are stizl lacking a comprehensive model for Swedish speech rhythm.

Intelligibility of foreign accent is investigated against the background of a kind of Active Direet Access Modej for word recognition similar to the model developed by Marslen-wilson and welsh (1978). Recognizing a word is considered a time-dependent active process where acoustic (bottom-up) and iinguistic, pragmatic, and general information (top-down) conspire.

Intelligibility is seen as an aspect of the bottom-up processes. Intelligibility is high if the acoustic, auditory. and phonetic analysis of the speech signal results in a possible phonological struteure processed in the short-term memory that easily and quickly can find its way to the phonological representation of a word stored in the long-term memory. In the opposite case, intelligiblity is low if the speech signal is analysed in such a way that no rorresponding lexical element caf be discovered. rhus intelligibility facilitates decoding by decreasing the demands on the top-down component and makes comprehension faster, easiex and better.

If the model of Active Direct Access is expanded to foreign-accent speech, one prediction, then, will be that a longer stretch of acoustic information - a larger chunk of the speech signal - is needed before a word spoken with a foreign accent can be recognized. Thus, due to the acoustic deviations, it should also take more time to process foreign accent. Foreign accent puts a lot of strain on the short-term
memory and a heavier demand on the top－down processes．

TEST PARADIGM

Testing intelligibility is not an easy task．After considering different problems，their approaches and possible solutions，a test paradigm was constructed which is shown in Fig．1．Samples of foreign accent that are clearly deviating in the prosodic features to be investigated constitute the starting point．Using LPC－speech synthesis，each utterance is altered in such a way that corrections corresponding to the deviating prosodic features are introduced into the speech signal 〈1〉．In this way，families of utterances are created that consist of several members，namely the original utterance and several versions that differ from the foreign accent original by a certain correction or improvment．Each family of utterances is extended by adding an idiomatic version spoken by a male stockholm speaker．Thus a dimension of variation within each family is established where the foreign accent original and the Swedish version mark the end points and the corrected versions are assumed to lie in between．
All these utterances are then distorted in different ways， using noise and increased speech tempo＜2＞．This test design makes it more difficult for the listener to understand speech，and，at the same time，it is easier to discern the effects of the various corrections．In both tests，the signal－to－noise ratio in the noise test and the speech tempo in the second test were chosen based on preliminary tests using naive listeners．The listeners understood the utterances with difficulty．

The swedish listeners who were not accustomed to foreign accent participated individually in the listening tests．They heard the test utterances via loudspeakers in the perception laboratory and repeated in their own swedish without hesitation what they could understand of the utterances played to them 〈3＞．The listeners were urged to respond，even if they did not understand the whole utterance and to guess freely in case of uncertainty．The test utterances and each listener＇s responses were recorded on djfferent channels of a REVOX tape recorder．The responses were analysed，evaluated， and compared to the intended meaning．Response time in the noise test was measured．Transmitted prosodic information analysed in the oral responses and response time are the

MATERTAL AND CORRECTIONS

The test material consjsted of g relatively short utiexances $\langle 4\rangle$ the length of which ranged from a single compound word of 3 syllables（utterance 6）to a complete sentence consisting of subject，adverb，and adverbial phrase（utiexamie 4）．The test utterances were rendered by three male speakers with French，Greek，and Persian（Farsi）as their first language （LI）．These utterances and their corrections are shown in Fig．2．The features of quantjty and phrase rhythm are corrected by changing segment durations，the feature of accent 〈5〉 is corrected by inserting a tonal peak in ithe accentuated syllable and，at the same time，deleting the origjnal peak in the jncorxect syljable＜6＞．An illustration of che temporal and tonal corrections in utterance 8 is shown j． n Fig． 3 ．

The kind of stimulid and their mumber varied from test to test．The test material．common to all 3 tests ronsisted of the 9 original utterances spoken with foreign accent and three corrections each．They were intexspersed with twelve different utterances spoken with foxeign accent which served as distracters and，at the same time，as calibxators for the reliability of the listeners responses．The intelifigitility tests also contained a version of earh of the orjginal． utterances of foreign accent spoken by a male stockholm speaker．Furthermore，the joteldigibility test presented with increased speech tempo and the acceptability test also contained a version of earh of the g oxiginal foreign accent utterances representing deteriorated Swedish．These deteriorated swedish utterances were produced by jntroducing into each of the original swedish utterances all the prosodic deviations of its original．utterances 〈7＞．Ali the stimuli were re－synthesized．They wexe free from distortions such as clicks or buzzes and sounded quite natural．

LISTENING TESTS

Each listening test concerning intelligibility consisted of three parts．First，the utterances of the four speakers were presented in the following order：French，Greek，Persian，and

Fig. 2 The eight utterances and their corrections.

Fig. 3 An illustration of the temporal and tonal corrections.

Swedish. The speakers read aloud a text, approximately 45 seconds each. Thus the listeners were given the opportunity to adapt to the four speakers voices and pronunciation. This speaker adaptation is also necessary as a precondition in order to be able to comprehend speech in a normal way. In the acceptability test, the swedish speaker was exluded, as were the original Swedish utterances. Second, eight utterances (six in the acceptability test) followed, two for each speaker, presented in the same way as the test proper. The utterances of the second part were intended to get the listeners accustomed to the presentation of the utterances under noise, with increased speech tempo for the intelligibility tests or in the normal way for the acceptability test and to practice responding to the stimuli. These practice utterances did not appear in the test. Third, the noise test proper contained 21 utterances, namely nime test utterrances (1 version of each original utterance) and 12 distracters. As each listener responded to each utterance only once, the 45 stimuli [(original foreign accent utterance +3 corrections + original Swedish version) $\times 9$ utterances] of the whole test were divided into 5 series and administered separately to 5 different listener groups. The test with increased speech tempo contained 54 test stimuli (45 stimulia + 9 deteriorated swedish utterances). The test was divided into 6 series and given to 6 new listener groups.

In the two intelligibility tests, each listener heard and responded to each test utterance only once. In the acceptability test three marks 11 for a low degree of foreign accent, 2 for a high degree of foreign accent, and x for a degree of fareign accent in between) were given to each stimulus by each of the 20 speakers. The total duration of the listening test under the conditions noise and increased speech tempo, respectively, was about seven mjnutes. The acceptability test took about 20 minutes. Fifty South Swedish listeners (university students) took the noise test individually. Thus each version was given io responses by the whole group. The test with increased speech tempo was taken by 30 listenexs under the same conditions. Thus, in this test, each version was given 5 responses by the whole group.

The responses of the two intelligibility tests were analysed and evaluated according to a scoring system that primarily counted the prosodic information contained in the listeners responses, such as number of accents, number of syllables (vowels), stress pattern, syllable quantity (long/short vowel and consonantl, etc. The response time was defined as the time lag between the end of the test utterance and the beginning of the listener's response measured on
duplexoscillogrammes. The marks of the acceptability test were counted and are given as group scores.

RESULTS

The results of the three experiments are reported as follows: The effects of various prosodic features along the dimension intelligibility are shown under the two conditions, namely original speech tempo and noise in Experiment i (Fig. 4) and increased speech tempo in Experiment 2 (Fig. 5). In parallel and supporting this aspect, the reaction times of Experiment 1 illustrate rather the psycholinguistic dimension of speech processing (Fig. 6). Some selected typical examples of listener responses that did not correspond to the intended utterances and which may provide some revealing information about the processes involved in speech recognition are presented and analysed. The assessment of the stimuli according to their acceptability in Experiment 3 provides some useful illustration of the psychological and subjective aspects of speech recognition (Fig. 7). Finaliy the results of each experiment are compared with one another: Intelligibility and Reaction time in Experiment 1. both with Intelligibility in Experiment 2, and the three of them with Acceptability in Experiment 3 .

Intelligibility

In Figures 4 and 5 , the distribution of the stimuli under the condition Noise (original speech tempol and Increased speech tempo, respectively, are given as percentage along the dimension intelligibility which is defined in terms of transmitted prosodic information and represented as a straight line. Each of the 8 families of utterances $\langle 4\rangle$ is shown individually.

Fig. 4 shows that the utterances with the original and uncorrected foreign accent often have only a low intelligibility which expectedly is in opposition to the Swedish corresponding utterances that are understood very well and without difficulty. However, in both cases there are several exceptions. Utterance 4 is especially conspicuous showing a relatively high degree of intelligibility in spite of its foreign accent. The corresponding swedish utterance, on the contrary, shows a low degree of intelligibility. In

Fig. 4 The effect of the corrections on intelligibility expressed as the prosodic information contained in the listeners' responses (noise condition).

Fig. 5 The effect of the corrections on intelligibility expressed as the prosodic information contained in the listeners' responses (increased speech tempo).
most utterances, the corrections bring about an increase of the degree of intelligibility, utterances nos. 4, 5, and 6 being the exceptions. In some cases lutterances nos. 2, 3. 4), in fact, a high degree of intelligibility is reached as a consequence of the corrections. Distributed across the whole material, the corrections of word accent and (phrase-)rhyhtm produced the best results lexceptions here are utterances nos. 4 and 8).

Fig. 5 also shows the distribution of the stimuli along the dimension Intelligibility, but here the deteriorated swedish versions are added. Compared to fig. 4, this result, by and large, is quite similar. The utterances with the foreign accent show a relatively low degree of intelligibility, their original Swedish counterparts, on the other hand, a very high degree. Even under this condition, utterance no. 4 is the exception. The original swedish utterances suffer from a dramatic decrease in the degree of intelligibility when the deterioration of the prosodic features are introduced into the signal. This holds especially for utterances nos. 3, 4, and 6. Under the condition of rncreased speech tempo, too, the corrections increase intelligibility. And here, too, the combined correction of word accent and (phrase-)rhythm lead to the best results in most cases (clearly in utterances nos. 2, 3, 4, 6, 8).

A comparison of Figures 4 and 5 reveal minor differences. For instance, the corrections of utterances nos. 2, 3, and 8 in Fig. 5 (Experiment 2) produce higher values. These differences might be attributed above all to the diffexent conditions in the two experiments. The behaviour of utterance no. 4 which clearly deviates from the other utterances, even with respect to reaction time (see the following section), might be attributed to its syntactic complexity and its length.

Reaction times

Fig. 6 shows the distribution of the stimuli of Experiment 1 (original speech tempo, noise) according to reaction time of the group scores. Compared to the results concerning intelligibility, by and large, similar relationships between the different versions of an utterrance are to be found. The original Swedish utterances almost always show the shortest reaction times, as could be expected, But even in this case. utterance no. 4 comes out as the real exception. In only a

Fig. 6 Response times (noise condition).

Fig. 7 Acceptability of the original foreign accent utterances, their corrections, and the deteriorated Swedish utterances.
few cases do the uncorrected foreign accent wterances have the largest reaction times. The shortest reaction times among the corretted utterances are for those stimuli in five cases where woid accent and (phrase-)rhythm were corrected in combination (utterances nos. 1, 3, 6, 7, 8).

A comparison of these results concerning reaction times in relation to the corrected versions reveals that the combined correction of word accent and (phrase-)rhythm are characterized by the shoxtest reaction times which may be intexpreted as an indication of easy and fast processing and. at the same time, bring about the highest degree of intelligibility.

Acceptability

Fig. 7 shows the djstribution of the stimuli assessed by the listeners according to the degree of foreign accent which may serve as a direct measuxe of acceptability. The test material. here is arranged along the dimension of high vs. Low acceptability. In most cases, the utterances with the original foreign accent are assessed with the lowest degree of acceptability. Only utterances nos. 4 and 5 represent clear exceptions. Those corrections where the features of word accent and (phrase-)rnythm wese manipulated in combination, with only one exception, namely uttexance no. 5, show the highest degree of acceptability.

The deteriorated versions of the original swedish utterances show a very low degree of acceptability in six cases (utterances nos, 1, 2, 3, 4, 5, 7), and in four cases (utterances mos. $2,3,4,5$), in fact, the lowest degree of all. versions.

Comparing the results concerning acceptability with those comcerning intelligibility under different conditions, reveals a clear and parallel behaviour of certain stimuli. Among the corrected features, the combination of word accent (accent pattern) and (phrase-)rhythm stands out as the most effioient one. These stimuli obtain the highest degree of intelligibility under different conditions, need the shortest reaction times, and are accepted most readily.

Response patterning

Analysing and evaluating listener responses with respect to the altered features of the stimulus may provide some information about the processing of the incoming signal. Those cases where the listener did not respond at all or responded with the intended utterance 〈8> are not very interesting.
Some typical examples of listener responses showing the effects of only correcting word arcent on the results of the speech recognition processes, i.e. putting the tonal change onto the correct syllable, are given in Table 1.

In general, the accentuated syllables in the stimulus, no matter where, come through very well. The responses to the original utterxances where word accent falls on the wrong syllable correspond exactly to this accent pattern. By correcting the word accent only, i.e. by shifting the tonal change onto the right syllable, the responses change in such a way as to correspond to the new and correct accent pattern. In many cases it can be observed that the accent pattern of the incoming signal determines the accent pattern of the response which will be identical, although the other linguistic structures and features of the response differ with respect to the simulus. It seems as if spectral, morphological, syntactic, semantic, and pragmatic elements are fitted into the framework laid out by the accent pattern. Thus it appears rather clearly that the word accent syllable serves as the first and decisive sign post or guide in the processing of the acoustic information at non-peripheral levels. Therefore word-accentuated syllables, as a consequence of their prominent marking by combining tonal. rhyntmic, spectral, and dynamic features in them, play a predominant part in speech recognition. other linguistic aspects of the possible linguistic structure, drawing upon all kinds of information available, seem readily to be subordinated to the gross structure defined by the accent pattern.

OISCUSSION

First the effects of the corrected prosodic features on speech recognition are commented upon. Second an outline of a model of prosodically guided speech recognition will be

Table 1. Some typical listener responses

SWEDISH	FOREIGN ACCENT (ORIGINAL)	CORRECTED WORD ACCENT
en 'kaffe, bricka	(en kaffebri'cka:) ja e inte klar en liten 'flicka	```en 'vacker 'flicka kaffet e 'klart```
'båda är 'dyra	```(båda är 'dyra) va de 'blix på dig 'båda fotogra'fi```	bada, dera både ...
'mar, katta	(mar'ka:ta) man 'pratar dom e 'korta ma'kaber	prata marknad
det är en måndag, morgon	```ldet är en mån'da:gmorgon) det är en nou'gatmålning, det är en han'garmålning```	$\begin{aligned} & \text { det är en } \\ & \text { 'vårmorgon, } \\ & \text { det är en } \\ & \text {, söndagmorgon. } \\ & \text { det är en } \\ & \text { ' kundradio } \end{aligned}$
i sam, hälet	(i sam'hä:let) i sin 'helhet utan teve	$\begin{aligned} & i \quad \text { sandträdet } \\ & i \quad \text { samlingen } \\ & i \text { 'handingen } \end{aligned}$

The accentuated syllable is marked by , preceding it. A long vowel is specified in the very broad transeription of the original stimulus in parentheses for reasons of clarity.
presented and, third, speech recognition is discussed under the aspect of the difficulties related to foreign accent.

The effect of the corrected prosodic features on speech recognition

It was expected that the manipulations in the speech signal which were made in a controlled and step-wise way should make it possible to make clear and definite statements about the effect of the corrected prosodic features. However, the results clearly show that there is not always a simple and direct relationship between the roriection of a given prosodic feature and the listenexs reaction to it. Thus it happens several times that the correoted version shows a lower degree of intelligibility than the utterance with the original forejgn accent for instance fig. 4 , utierance no. 5; Fig. 5, utterances nos. 1, 2, and 4). Corresponding statments can be made with respect to reaction times and acceptability, In the opposite case, the swedish original utterances, too, get low scores rather often and, in fact, they score worse than some corrected versions (for instance, Fig. 4 , utterances nos. 3 and 4 ; Fig. 5, utterance no. 4 ; Fig, 6, utterance no. 4).

This unexpected behaviour may have several explanations. No doubt, however, the reason can hardly be found in the fact that the score of each version in the dimensions Intelligibility, Reaction time, and Acceptability, respectively, was given by a different group of listeners. In order to eliminate this supposed factor, the number of the listeners has to be increased considerably, But, as far as the assessment of the speech signal by the listeners is concerned, it is quite clear that phonetjc and phonological deviating features are analysed and evaluated rather differemtiy. In my experience, this individual reaction pattern on behalf of the listeners always becomes obvious, even when trained and experienced teachers of Swedish as a second language are exposed to foreign accent.

However, a more plausible explanation for this divergent behaviour seems to be found on purely phonetic and phonologital grounds. The various manipulations, e.g. only vowel or consonant duration, only word accent, may have a somewhat negative effect on the processing of the speech signal by the listenex. This is because some manipulations may interfere with the various processes involved in speech recognition or even impair and, at worst, block them. We must
not forget that even the corrected signal is clearly heard as foreign accent as it still contains certain prosodic and all of the segmental deviances. By correcting only one feature at a time, new constellations of foreign accent may be created which, against the background of the interplay between prosodic features, segmental features, morphological and syntactic features, may exert an impairing influence on the processing of the speech signal.

In conclusion, then, a general statement can be made: compared to the original Swedish utterances and also to the deteriorated Swedish utterances, most of the prosodic features affect speech recognition in a positive way by increasing the degree of intelligibility, by derreasing the reaction time, and by being accepted to a higher degree compared to their deviant counterparts. The largest positive effect js exerted by the combination of word accent and rhythm.

With respect to the significance of prosody in speech recognition, another general statement can be made: The accent pattern, rhythmic structure, and overall intonation contour facilitate purposefully the successful piocessing of the speech signal. These features give a macro-structure to the speech chain by dividing the spectral events or the stream of sounds into useful units larger than sounds and syllables, namely arcent groups, prosodio phrases or intonation units (cf. Nespor and Vogel 1983) <9>.

Outline of the model

On the basis of the results of my investigations and the models of word recognition mentioned in the introduction, a prosodically guided model of speech recognition has been developed. Prosodic features play che decisive part for the searching of lexical elements. The model, outilined in the following in a simplified way, is shown in Fig. 8 < 0 , 0 . It describes an interactive process on several levels where information and knowledge of various kinds affect the recognition process from the speech signal to the identified meaning.

Starting with the input, the acoustic-phonetic basic information of (one part of) the utterance is extracted by the peripheral auditive-acoustic analysis. This first automatic analysis proceeds from left-to-right, i.e. the incoming speech signal is processed continuously along the

Fig. 8. A model of prosodically guided speech recognition.
time axis.

The acoustic analysis is done in two different channels, namely the prosodic and the spectral one (cf. Svensson 1974, House 1985). While in the prosodic channel the tonal and temporal features of the chunks of the processing units are established, the spectral channel provides the information about the qualitative features (formant frequencies, band widths, etc.) of the segments 〈11〉.

Quite often the auditive-acoustic analysis cannot always result in a complete phonetic basic structure. The speech signal may be blended with acoustic distortions from outside, the signai-to-noise ratio may be too small or the speech signal might contain in some form components that are reduced, missing or, with respect to the form expected by the listener, deviant in some other way.

The auditive-acoustic analysis is followed by the phonetic analysis which combines and integrates the auditive-acoustic parameters into chunks of approximately the size of a syllable and which labels it phonetically. The phonetic labelling, most. often, cannot be performed in a refined way (cf. Pisoni et al. 1984). The phonetic interpretation provides the basis for the acoustic-phonetic basic jnformation about the chunk of the speech signal to be processed.

The acoustic-phonetic basic information is structured according to prosodic and spectral features. The prosodic features provide the position of the accentuated syllable or syllables in the chunk or shunks; the spectral features contain information about the spectral gestures of the segments. Taken together they provide information about the number of syllables in the chunks. There is, however, a clear difference between the two dimensions: while the accentuated syllable always appears correct in the basic structure, the spectral component often remains classified only in a gross mannex.

This fact has certain consequences for the emergence of the hypothesized phonological basic structure on the following level: The spectral elements in the acoustic-phonetic basic information are subordinated to the prosodic structure of the accent groups where accent group means the accentuated syllable suriounded by the unstressed syllables. This subordination is brought about by the top-down constraints and the general knowledge of the listener which operate in generating the hypothesized phonological structure. These
constraints are phonetic, phonological, morphological. syntactic, and semantic.

The hypothesized phonological structure is not generated only once and for ever but, instead, can be altered in a short period of time as a consequence of not only new acoustic-phonetic information but also of new top-down information which i.s flowing forth and thus becomes available all the time. The definite hypothesized phonological structure of accent groups generates the possible phonological strcuture of (chunks of) utterances which are stored in the Short-Term Memory (STM) as well. Now the search in the lexicon in the Long-Term Memory (LTM) for lexical elements which correspond phonologically to the equivalent elements stored in the lexicon will start. The semantic elements of the lexicon are arranged in a multi-dimensional fashion according to various phonological features and structural characteristics. These possible phonological structures provided by the analysis of the speech signal and the working of linguistic constraints, it must be assumed, normally do not look like orthographic words with clearly defined boundaries, which correspond exactly to a stored counterpart. They are not searched for like a numbered book in a bookshelf and found immediately by its distinctive digit. Approaching the lexical elements would rather amount to a search consisting of a large array of activities utilizing different features simultaneously. The possible phonological structure which emerged from the fragments of the acoustic-phonetic basic information contains the accentuated syllable as its most important search criterion which is stuffed with the most distinct acoustic and structural information. Therefore it can be assumed that the search starts out for phonological representations of lexical elements showing the identical accent pattern and most of the spectral features of the accentuated syllable. Of course, all the information concerning the surrounding syllables is used as a supporting criterion as well. In general, it has to be assumed that speech recognition is characterized by an interplay of activities where all information available is processed simultaneously and optimally. This kind of search assumes explictily that the boundaries in the possible phonological structure need not be defined exactiy and in advance, The first aim of the search for lexical elements seems to be to find the syllables with the most distinct marking which, in turn, are identical with the basic meaning of the root or stem of a word, i.e. to find the skeleton or the corner stones of meaning.

As is generally known, languages use different principles for
accent distribution in their information structure. In accent languages like, for instance, Swedish, English, and German, word accent, in principle, exactly functions for signalling the word stem as the kernel of the meaning of a word. This is true both of morphologically simple and complex words. But also in languages with different principles for accent distribution, like for instance Finnish and czech with initial accent or polish with accent on the penultimate, the accentuated syllable represents a prominent feature of the phonological structure of lexical elements and thus a clear and distinct signal for starting the search and for the successful finding of lexical elements.
The information which is still needed at this point in order to be able to reconstruct completely the utterance containing several words will be processed and gained in the next step where verification is carried out by a component called the Master. Here, accessing the remaining information in the possible phonological structure and the top-down component, at this point especially syntax, pragmatics, and semantics, the missing parts of the phonological-syntactic structure are hypothesized and built into the total structure corresponding to (parts of) the utterance. After this vexification, the process of speech recognition, hopefully, will end up with the identified meaning. As can be seen in Fig. 8, the Master has access to the linguistic constraints and the knowede which, in turn, have access to the three lower levels. For the Master there is also a feed-back channel to the possible phonological structure which, again in turn, feeds back to the two lower levels. Thus it becomes quite clear that the top-down information is available to different and rather low levels of processing in speech recognition. It becomes also clear that, due to this fact, the speech signal need not be clear and distinct at every point in time. of course, the more distinct the signal is, the easier and faster the lexical search can be because almost no support by the top-down component and no feeding-back is needed in this case. If the verification of some chosen lexical elements by the Master as to their linguistic and pragmatic correctness and of their semantic credability comes out negative, the feed-back channel to the possible phonological structure, the hypothesized phonological structure and, if necessary, to the acoustic-phonetic basic information will be activated. Then a change of the phonolgical structure already arrived at will be enforced by starting the searching process anew which, finally, will arrive at an acceptable result after having passed through a number of stages a second and maybe a third time.

In this interactive process of speech recognition, it is
obvious that prosody, especjally word accent, plays a direct and guiding part. Searching for lexical elements stored in LTM takes place not by using words with vlearly defined boundaries but rather by using prosodic features where word accent and phrase accent or focus distinctly point to the most important semantic elements of an uttexance. The syllables which are prominent due to word accent represent reliable islands in the stream of sounds and there they function as the anchor or fixation points of speech recognition. Therefore it is easily understood that word boundaries are not an absolute and significant support or even a precondition for speech recognition. Phrase boundaries, however, play an important part in dividing the speech chain into appropriate processing units. It is inter esting to notice in this respect that phrase boundaries are clearly marked, often by several prosodic means. In contrast, word boundaries, are not maxked in any special way. Even where morphological word structure is concerned, unstressed syllables, especially at the end of a word, as markers of concord, normally contain linguistic information which can easily be derived. Therefore it is not astonishing to learn that speech recognition systems cannot find words in the signal of continuous speech if the word, even in longer texts, are not pronounced in a staccato way, i.e. surrounded by pauses. In the speech signal there are no word boundaries but acoustically more distinct and elaborated chunks of the size of a syllable, namely the prominent and accentuated syllables.

The model of speech perception outlined here differs from previous models in several respects, although some parts, especially at the more peripheral levels, coincide. In the present model, prosodic information in the signal and in the linguistic constraints applying to different levels and structures play a leading and guiding part in solving the task of searching for a lexical element, namely the finding and identifying of, above all, basic semantic elements, making up the skeleton of meaning.

In contrast to the cohort theory, there is no activating of groups of possible word candidates all of them beginning with the same sound and the number of which will be gradually decreased as a consequence of acoustic information arriving later and of contextual constraints until, in the end, only one candidate will hold the floor. In my model, the spectral information of phonemes does not play a predominant part. Guided by the prosodic information pointing especially to the clearly marked accentuated syllable, one or more possible phonological structures not exactly defined by word
boundaries, may start for the search of lexical elements, Very often they may even act as competitors (cf. Bannert 1980).

Rather as an amendment to the Phonetic Refinement Theory, in my model the strong part of prosody in finding the most significant and central elements of meaning is duly recognized. The process of speech recognition obeys the principle of clarity. The accent pattern, prominent in the signal and easily to be discovered and processed, forms a linguistic frame or skeleton which the spectral features are subordinated to and built into. Every part of the phonological structure which is missing or indistinct, if possible, will be restored or corrected later in the interactive processes.

Another virtue of this model lies in the fact that it is applicable to the whole range of different conditions of the speech signal in verbal communication and the bottom-up component of speech perception. The top-down component is always at work. It is obvious that a distinct and good speech signal makes speech recognition easier, faster, and accurate. If the speech signal is deviant with respect to a given band of) norm or distorted by extermal sources, a larger period of time will be needed in order to identify a meaning because a larger burden is put onto all kinds of memory, information paths, and feed-back channels. An increased activation of search processes and memories explains the fatigue experienced by listenexs who are exposed to speech in noisy environments or to strong foreign accent for longer stretches of time.

In conclusion, then, this model also covers speech recognition under different conditions: the optimal speech signal, spoken distinctiy and free from external acoustic distortions, the speaker and listener using approximately the same standard of pronunciation; the indistinct pronunciation due to lax or fast articulation; the acoustically distorted signal: the perception of the hard of hearing and the deaf; the perception under inattentiveness and non-listening of the intended listener; the geographical, dialectal, social, and individual varieties of a language; the foreign accent.

Recognizing foreign accent

There is clearly no doubt that the speech signal containing foreign accent is analysed auditorily and acoustically in the
same way as the speech signal derived from standard language. First differences are to be found at the point of the acoustic-phonetic analysis. Searching for lexical elements cannot be done in real time, because the incomplete and fragmentary basic acoustic-phonetic juformation does not permit generating a hypothesized phonological structure leading to a possible phonological structure, As a consequence of this failure, information has to be kept in the short-term memory which puts an extra load on j.t, while the searching for a word is expanded by waiting for more phonetic bottom-up information and by switching on the top-down restoration and corrections components. This, in turn, will put even more stiain on the recognition processes.

Another problem for lexical search arises when the possible linguistic structure points to the wrong lexiral element. This is the case when a word pronounced deviatingly coincides with a different, existing word; for instance when the phoneme /y/ is rendered as the phoneme/i/ (swedish byta bita 'change - bite'). In thjs sase, the lexical search seemingly will succeed in identifying a word and finding a meaning. However, this mistake will be discovered when the word is put into the phrase or sentence where the context discloses that the wrong word was pirked. The interpretation of the whole phrase or sentence has to be rejected at this stage and a new recognition process has to be started, now also by activating the restoration component. Again a greater strain is put on the processing of the speech signal. Furthermore, it has to be pointed out that the speech signal., while repetitions and retentions in the short-term memory are in full progress, continues to enter the ear, and the peripheral automatic acoustic analysis must continue its work without interruption.

The decoding processes for foreign accent should show the heaviest strain with listeners who are not accustomed to this phonological variation and who are not motivated to do such extra labour. The decoding processes for forejgn arcent should show the lightest strain with listeners who have developed in their longterm memory a rich component of correction rules for foreign accent - which is closely related to the typical features of foreign atoent of a given L1 - and who realiy want to understand foreigners by activating both the feed-back path (the correction component) and the aceess path of top-down information lthe restoration somponentl.

FOOTNOTES

$\langle *\rangle$ I would like to thank Klaus－Jürgen Engelberg，David House，Bexnhard Keck，Gerhard Rigoll，and Herbert Tropf for helpful and valuable comments and contributions to this paper．
This research was supported by the Bank of Sweden Tercentenary foundation．
＜1＞The manipulations of the speech signal were made at the Department of Linguistics，Uppsala University．I am very grateful to Sven Ohman for his kind support and Lennart Nordstrand for his expert assistance．
＜2＞It became evident from preliminary tests using filtering as a means of distoxting the acoustic speech sjgnal that intelligibility would not be decreased to a sufficient and desired degree，rherefore the planned experiment with filtered speech was excluded（cf．Bannert 1984）．
＜3）The listenjing tests were disguised as reaction tests attempting to measure the listeners＇ability，as quickly as possible，to prompt the utterances spoken by foreigners and presented under hard listening conditions．
$\langle 4\rangle$ One utterance（ $L 1=$ Greek）that was part of the test was excluded from the presentation of the results as the manipulation of voicing and voicelessness of the obstruent cluster by LPC－synthesis is not reliable in this respect．
＜5＞Quantity in Standard Swedish is manifested as the complementary length pattern／V：C／Vs／VC：／in the stressed sylable．Fhrase rhythm means the temporal relationships between successive syllables．Accent is a tonal feature of syllable prominence and is manifested as a change of F in or in connection with the accentuated syllable．

〈6〉 The parameter of volume（intensity）of syllables was not included in the manipulations of accent．This does not mean，of course，that intensity might not be a contributing factor in the complex feature of accent．It is belifeved，however，that intensity is not an essential feature of normal word accent（as opposed to contrast or emphasis）．

〈7）These prosodic deteriorations corresponding to the

```
    features of phrase rhythm, quantity, and pitch accent,
    had a detrimental effect on the identity of the
    utterances. In several instances of demonstrations where
    the deteriorated Swedish utterances were played to
    Iinguists, phoneticians, and experienced teachers of
    Swedish as a second language, these disguised utterances
    were accepted as foreign accent and associated with
    certain first languages L. 1.
<8> As individuals, listeners react differently to the
    presentation of the stimuli. Whille some of them always
    try to respond even guessing to some degree, others
    hesitate to respond at all if they are not quite sure
    about the intended structure.
<9> For these larger units no definition is provided here.
    Yet it is assumed chat the notion is wellmestablished.
<10> Some possible elaborations in certain respects may look
    like parts of the model in lea et al. (1975).
<11\rangle The dimensions of voice quality and volume will also be
    analysed on this level. This processes are only
    mentioned to complete the picture and will not be dealt
    with here.
```


REFERENCES

Bannert R. 1975. The significance of vowel features in the perception of complementary length in central. Bavarian. Lund University, Department of General. Linguistics and Phonetics, Working Papers 12, 1-45.

Bannert R. 1978. Prosodiska egenskapers effekt pa försiàeligheten. In: Kommunikativ kompetens och facksprak. Linnarud M. and Svartvik J. (eds.). Lund

Bannert R. 1980. Phonological Strategies in the Second Language Learning of Swedish Prosody. PHONOLOGICA 1980, 29-33. Innsbruck

Bannert R. 1984. Prosody and intelligibility of Swedish spoken with a foreign accent. Nordjc Prosody III, $C-C . E l e r t$, Johansson, and E.Strangert (eds.). Acta Universitatis Umensis, Umea studies in the Humanitjes

59, 7-18
Bannert R., Engstrand O., Eriksson H., and Nordstrand L. 1982. Phonetics and Identity. Uppsala University, Department of Linguistics, Report 8, 22-58

Bruce G. 1977. Swedish Word Accents in Sentence Perspective. Travaux de I^{\prime} Institut de Linguistique de Lund XII. Lund

Cole R.A. and Jakimik J. 1980. A Model of Speech Perception. In: Perception and Production of Fluent Speech, 133163. Cole R.A. (ed.). Hillsdale

Elman J.L. and McClelland J.L. 1984. Speech Perception as a Cognitive Process: The Interactive Activation Model. In: Speech and Language: Advances in Basic Research and Practice, Vol. 10, 337-374. Lass N.J. (ed.). New York.

Elman J.L. and McCleiland J.L. 1985. Exploiting Lawful Variability in the Speech Wave. In: Variability and Invariance of Speech Processes, Perkell J.S. and Klatt D.H. (eds.). Hillsolale, N.J.

Forster K.I. 1979. Levels of Processing and the structure of the Language Processor. In: Sentence Processing: Psycholingustic Studies Presented to Merrill Garrett, Cooper W.E. and Walker E.T. (eds.). Hillsdale, N.J.

Gårding E. and Bruce G. 1981. A Presentation of the Lund Model for swedish Intonation. Lund University, Department of Linguistics and Phonetics, Working Papers 21.69-75

House D. 1985. Sentence prosody and syntax in speech perception. Lund University, Department of Linguistics and Phonetics. Working Papers 28, 91-107

Klatt D.H. 1979. Speech Perception: A Model of Acoustic~ Phonetic Analysis and Lexical Access. J. of Phonetics 7, 279-312.

Klatt D.H. 1980. Speech Perception: A Model of AcousticPhonetic Analysis and Lexical Access. In: Perception and Production of Fluent Speech, 242-288. Cole R.A. (ed.). Hillsdale, N.J.

Lea W.A. 1980. Prosodic Aids to Speech Recognition. In: Trends in speech Recognition, 166-205. W.A.Lea (ed).

Englewood Cliffs, N.J.
Lea W.A., Medress m.F., and Skinner T.E. 1975. A Prosodically Guided Speech Understanding Strategy IEEE rransactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, 30-38

Maassen B. and Povel D-J. 1985. The effect of segmencah and suprasegmental corfections on the intelujgibility of deaf speech. JASA 78, 877-886

Marslen-Widson W. D. and Welsh A. 1978. Proressing interactions and lexical access during word recognitjon jin continuous speech. Cognitive Psychology 10, 29-63
Morton J. 1979. Word Recognition. In: Psyrholinguistics 2: Structures and Processes, 107-156. Morton 3 . and Marshall J.C. (eds.). Cambridge, MIT Press.

Nespor M. and Voged. I. 1983. Prosodic Structure Above tite Woid. In: Cutler A. and Lado D.R. (eds), prosody: Models and Measurements, $123-140 \quad(=$ Language and Communjoation 14). Berlin

Nooteboom S.G. 1981 Lexical retrieval from fragments of spoken Words: Beginnings vs. endjngs. Journal of Phorietics 9,407-424

Osberger M.J. and Levitt H. 1978 . The effect of time errors on the intelligibility of deaf childxen's speech. JASA 66, 1316-1324

Pisoni D.B. 1984. Acoustic-Phonetic Representations in woxd Recognition. Indiama Unjversity. Researioh on Speech Perception, Progress Report No.10, 129-152

Pisonj. O.B., Nusbaum H.C., Luce P.A., and Slowiaczek L.M. 1985. Speech Perception, Word Recognjtion and the Structure of the Lexjeon. Speech Communication 4, 75-95

Sendlmeier W.F. 1985. Psychophonetische Aspekte der Wortwahrnehmung (= Forum Phoneticum 35). Hamburg

Shipman $D . W$, and Zue V.W. 1982. Properties of large Lexicons: Implications for Advanced Isolated word Recognition Systems. ICASSP 82, 546-549.

```
Svensson S-G. 1974. Prosody and Grammar in Speech Perception.
    University of Stockholm, Monographs from the
    Institute of Linguistics 2
van Wijk C. and Kempen G. 1984. From sentence structure to
        intonation contour. Germanistische Linguistik 79-80,
        157-182. Müller 日.S. (ed.). Hildesheim
```


Independence and interdependence of prosodic

features

Robert Bannert

ABSTRACT

Considering existing prosody models, two fundamentally different approaches can be discerned. In one case, the tonal structure is treated as independent, whereas the temporal structure is seen as dependent and derjvable from the conal. structure. This approach assumes the primacy of intonation. In the other case the two djmensjons of tume far intionather frequency (Fo) are treated as independent of each other. Therefore the one cannot be derived from the other. Instead the basic temporal and tonal structures are generated separately. This approach ascribes time and intonation an autonomous status.
Starting from this dichotomy this paper will promote the discussion about the principles of building prosocy models. It seems essential to abandon the categoxical question about the eithermor status of time and intonation and to recognjze the complex interrelationships between these two dimensions. Therefore time and intonation should be considered equal in principle although it is quite obvious that there exist cextain relationships between them.
An attempt is made to illustrate the approach of equality etween duration and fo using swedjsh test material. Aspects of word and sentence level prosody are investigated. The independence and interdependence of duration and Fo will be displayed. The question which is put forward and which seems more fruitful is not whether there are any dependencies but rather what the interrelationships look like. It will also be demonstrated how tonal. features behave in a case of extreme time shortage. When several tonal features of an utterance are forced into one single syllable, a total reorganization of the tonal contour is to be observed exhibiting a cleax tonal hierarchy on the word and sentence llevel.

The observations on the Swedish material are supported by references to pquivalent phenomena in some other languages thus lending a more general character to them
The results of thjs investigation are the starijug point for the outline of a new prosody model. The tonal and temporal structures of utterances will now be generated in parallel with interactive processes. Linguistic rules and information of different kinds are applied. Therefore the adjustment: component in an earlier version of the model is disposed of.
Last not least, shedding light on the relationships between time and intonation is important also for the development of high-quality speech synthesis in text-to-speech systems.

INTRODUCTION

For over ten years now，a discussion has been going on concerning the relationship between the two prosodic features of segment duration，i．e．the temporal structure of utterances，and the tonal movements in utterances，j．e．their tonal structure．The question has been whether these two features are independent of each other or if one can be derived from the other，Adherents of the latter view assume that the tonal gestures（movements）constitute the primary， basic feature out of which the segment durations follow as am automatic consequence of the tonal demands and requixements． This stand，which may be termed the primacy of Fo in a prosody and speech model，is taken，for instance，by bhman et al．（1979）and Lyberg（1981）．
opposing this view，the time and tone dimensions of speech are considered to be separate entities，each of which exists on its own grounds．However，time and frequency do not exist independently of each other．Nevertheless，in a generative prosody model，the basje temporal and tonal structures of an utterance are indeed generated separately of each other．The temporal structure is processed first，because it serves the tonal structure，defined by its tonal anchor points 〈1〉，as a reference for projection．Then the basic temporal and tonal． structures are added where different kinds of adjustments become necessary．This is the case when a tonal gesture or successive tonal gestures only have a limited time to be executed．The resulting tonal conflicts are of two kinds： time－dependent and position－dependent（Bruce 1977，74）．The approach which considers time and frequency as separate dimensions，although time is seen as primary delimitating frequency in cases of conflict between them，is represented by Thorsen（1980），Bruce（1977，1981），Gårdinget al．（1982）， and Bannert（1982a，b）and may be termed the autonomous model of prosody．

A discussion of the relationships between tonal and temporal features in a prosody model and a first examination of L．yberg＇s model of Fo－dependent segment duration is to be found in Bannert（1982a）．

Taking these opposing approaches as the starting point，it is the aim of this paper＜＊＞to continue the discussjon and to arrive at a clearer picture of the principles of a prosody model 〈2〉．It will be asked if it is justified at all to formulate categorical questions about the dependence or independence of time and intonation since data suggest that there is a complex acting together of segment durations and

Fo. Therefore the dimensions of time and frequency should be treated as equal partners and processed separately, although they share independencies and interdependencies. Using Swedish material which contains temporal and tonal variations, these interrelationships will be demonstrated.

Compared to previous studies, the present investigation atso widens the number of variables by including the following three variables: (1) the opposite tonal manifestation of identical tonal features (word accent I I and sentence arcent) in two swedish dialects (standard and Southern swedish). (2) the quantity (complementary length of the stressed vowel and the following consonant in Standard swedish and long/short vowel contrast in southern swedish), and (3) three, different, non-final sentence positions of the test word.

THE INVESTIGATION

The variables are presented that are used for the intended variation of time and frequency. Then the desjign of the test is shown and information about the recordings and the analysis is given.

Variables

The following variables were changed in a statement spoken as the answer to an appropriate question:

```
    sentence accent
    quantity
    sentence position of test word (sentence medial.)
    dialect (Standard Swedish, Southern Swedish)
    speakers
```

For the manifestation of the prosodic features the following differences can be observed:

Besides the tonal differences in the accentuated vowel of word accent II in both dialects (a fall in standard swedj.sh, a rise in Southern swedish), sentence accent is manifested strikingly differently.

There are also dialectal differences as to the manifestation of quantity. Whereas the stressed $V C-s e q u e n c e s$ show the
pattern of complementary length ($V: C / V s / V C: /)$ in standard Swedish, Southern Swedish displays quantity in the stressed vowel only (/V:C/ vs /VC/).

Material

As the starting material, the following sentence was chosen which, with respect to its phonetir and syntactic structure, corresponds to a well-established standard in intonation studies of Swedish:

Test words were stäa with a long vowel and stäcka with a short vowel. which were also used in Bannert (1979). The two test words were inserted in turn into the three sentence positions. Sentence accent was placed on the three positions using questions as appropriate contexts. otherwise, when the test words should not be in focids, sentence accent was placed on the time adverbial (atta) at the end of the sentence. Thus j. was ensured that the word accents were not influenced by the sentence accent because the word accent in position 3 was followed by three unstressed syllables preceding the final word carrying sentence accent. In all, the whole material consjsted of twelve sentences: six sentences where the test words did not carry sentence accent, the time adverbial being focussed, and sj.x sentences with sentence accent on each of the three positions and the two test words. Sentence accent was shifted by asking questions about the test words in the different oositions lcf. the method used in Bruce 1977, 21 ff.).

Recordings and analysis

The test material was read in a kind of one-person dialogue of questjon and answer (: test sentence) by four speakers seven times each. Informants were TB (male) and EH (female) from stockholm (identical with the informants in Bannert
1979) representing Standard Swedish and EK and AO (both female) from Malmö and Lund, respectively, representing Southern Swedish. The sentences were read fluently as one single prosodic phrase, i.e. they were produced in one breath without pausing before the time adverbial. The material. was recorded in the acoustic studio of the Department of Lingujstics and phonetics, Lund unjversjty, usjng a STUDER-tape recorder A 62 at the speed of 7.5 ips. The recordings were analysed acoustically using a Fr申kjaer-jensen Pitch Meter yielding a duplex oscillogramme and an Fo curve and, at the same time, a FoNEMA Intensity Meter yielding an intensity curve; recording speed was 100 mm/s. The registrations were segmented by hand; segment durations (a[n], s, t, ö, $k, a)$ were measured with an accuracy of 5 ms; Fo was measured at tour pojnis A, B, $c, ~ D$ defined below (cf. Fig. 1) with an accuracy of 5 Hz. The individual means were calculated and rounded off to the nearest 1 ms and 1 Hz respectively. Standard deviations were diso calculated.

RESULTS

Superimposed tonal contours of a typical utterance containing the test word stöka as an adjective in position 2 witm and without sentence accent for both dialects are shown in fig. 1. The four points of tonal measurement A, B, C, \quad and D are jndicated and defined as follows:

> Point A: End of the preaccentuated, unstressect vowel. Point B: Beginning of the acsentuated vowel. The Fominimum in the southern swedish curves are most often preceded by a short, small fall.
> Point C : End of the accentuated vowel. The Fo-maximum in the Southern Swedjsh quives are most often followed by a short, small fal.d.
> Point 0; Fo-value at the VC-boundary. i.e. at the end of the unstressed vowel [a] in the second syluable of the test word.

The results are presented as follows:
First, based on the means of all the measured values of segment durations and Fo in the rour tomal points, some general observations are made. An overvjew of the tonal. aspects of the material is given in Fig. 2 where the Fo-pojnts are plotted time normalized including all variables for each speaker. Then, based on the mean values, the influence and effect of quantiuy, sentence accent, and

Fig. I Superimposed, typical Fo-contours of the test word in medial sentence position (position 2) with and without sentence accent. Four points of tonal reference (A, B, C, D) are shown. Standard Swedish, speaker EH, above; Southern Swedish, speaker EK, below.
sentence position on the temporal and tonal siructure of the test words respectively are reported. In each case, the djfferences calculated from the means are given jn tables. Finaliy a conflict situation between time and frequency is shown where time dominates over frequency, and a tonal hierarchy at work is illustrated.

Segment durations and Fo-values

on the basis of mean values, the following general observations can be made:

Duration

1. Sentence accent increases the duration of all segments with all four speakers, although in some cases only to a small extent. There are also instances, however, where the increase i s considerable. There is only one exception: Speaker AO, final [a], all positions, where a systematic decrease of segment duration is to be found.
2. Many segments show smaller durations in sentence position 2 compared to the other positions. This seems to be a positional effect, i.e. an expression of the rhythmical, organization. According to this principle, a succession of two or more equal accents is avoided by weakening the accent in the middle temporally as well as tonally (ef. Bruce 1983 for swedish and Bannert 1983 for German).
3. The vc-sequences of the stockholm speakers show the typical pattern of complementary length (cf. for instance Elert 1964) which the Southern Swedish speakers do not have. Their consonants following short vowels are only shightiy longer ($6 f$. Gårding et al. 1974).

Fo

Fig. 2 clearly shows the different tonal behaviour of the Fo-points and the Fo-movements with and without sentence accent, with long and short vowels, in the three sentence positions, between the two dialects, and between the two speakers of each dialect. It shoula be noted, however, when inspecting the curves that only the movement between point B and C lbeginning and end of the accentuated vowell is to be seen completely in the registrations (rf. Fi.g. 1). The othex two points are simply connected by straight lines. For the

Fig. 2a. Superimposed Fo-contours (time normalized) of the test word in the three positions 1, 2, 3 for the Standard Swedish speakers (EH above, TB below). Four conditions: Long/short vowel, with and without sentence accent.

Fig. 2b. Superimposed Fo-contours (time normalized) of the test word in the three positions 1, 2, 3 for the Southern Swedish speakers (EK above, AO below). Four conditions: Long/short vowel, with and without sentence accent.
aim of this juvestigation, the variation of the fo-pojnts is of interest and not the complete fo-movement.

Al. variables show an effect on the fo-values, although the shape and movement of the tonal contours, by and large, are preserved in each case. The tonal gesture of the word accent is treated differently in the two dialects. Whereas the tonal fall of accent I in standard swedish is truncated, the tonal rise in Southern swedish is reorganized (cf. Bannert and Bredvad-Jensen 1975). Sentence accent shows up tonally not only in the post-accentuated syllable - as a high point in Standard Swedish and as a low point in Southern Swedish - but also in the accentuated syllable itself (this is clearly to be seen in the curves of the Southern swedish speakers). Thus sentence accent exerts ar influence tonally and temporally on the whole test word. This jinfluence, though, is still greater where the pre-focal accent and the overall shape of the sentence contour is concerned (this effect can be clearly seen in Fig. 1).

Quantity and sentence position also affect the tonal structure. In fig. 2, the Fowdeclination throughout the utterance is to be seen exhibiting differnces between the speakers.

What, then, are the effects in this particular case that quantity, sentence arrent and sentence position have on the tonal and temporal. structure of the test word in both dialects? We will look for paterns of variation or consistency that can be found eithex in the whole material or in one dialect, respectively.

Quantity

Durations

The durational changes of all test segments as a consequence of quantjey are calculated and given in Table 1 . A mjous sign indicates that the duration of a given segment is larger in the word with the short vowel. As for the following tables, the values in Table 1 are derived from the means of the basic data. For the sake of simplicity, the standard deviations are omitted 〈3〉.

Table 1 shows that, as a rule, the duration of all segments varies in all conditions. The largest durational differences
Table 1. Differences of segment durations (ms) due to quantity.

[^0]are to be found in the ascentuated vowel and the following consonant, especially in the vc. sequence with sentence arsent. Most clearly, this difference is to be seen with the stockholm speakers. Thus the VC-sequences display a ronsistent pattern of variation. The other segment durations vary, by and large, only to a smalle extent and without any discrrnible pattern.

Fo-points

Table 2 shows the differences of tre fo-means in the four tonal pojnts A, B, C, and D as a consequence of quantity (of. Fig. 2). The minus sign indiciates that the fo-value in the test word containing the short vowel is greater (the point is higher) than in the test word with the long vowel (cf. Fig. 1). In this case, except for a few instances apecially in sentence position 2, a consistent pattern of variation for the whole material is to be found. The stotkholm speakers show a tonal difference at the end of the vowel (fompoint C) which is considerably larger than at the beginning. The end point of the short vowel contour with and without sentence accent in each position is clearly higher than that of the long vowel contour. The southern swedish speakers show the largest tonal difference at the beginning of the vowel (Fo-point B), the short vowel causing the highest fonvalues. The Fo-values in the other points A and 0 , in general, vary only slightly and inconsistently.

Sentence accent

Durations

With a few exceptions, sentence accent causes an increase in the segment durations. Table 3 gives the differences of segment durations as a consequence of sentence accent. The minus sign indisates that the segment duration in the test word without sentence accent is larger than in the test word with sentence accent. Large and systematic variations are to be found in the segments [s], the accentuated vowel. [o], the following comsonant [k], and the unstressed vowel [a]. The smallest and most inconsistent durational changes are to be observed in the segments $[a(n)]$ and [t]. In Standard Swedish,

Table 2. Differences of $F o(\mathrm{~Hz})$ at the four Fo-points due to quantity.

$\begin{aligned} & \text { POSITION } \\ & \text { FO-POINTS } \end{aligned}$		1				2				3			
		A	B	C	D	A	B	C	D	A	B	C	D
STOCKHOLM	+ SA	- 1	-7	-15	0	1	-4	-14	1	1	-3	-12	-3
TB	-SA	-3	5	- 10	0	-1	-1	-5	3	0	-4	-15	-2
	+SA	-8	3	-37	-10	1	8	-23	-5	1	5	-29	6
EH	$-S A$	0	6	-9	4	1	8	-8	0	-1	-3	-11	-4
SKANE	+SA	-5		-5	-4	2	-2	-3	2	-2	-10	1	0
	-SA	1	-8	-2	5	10	-5	2	2	1	-5	-2	2
	+SA	-3		1	0	5	-13	14	3	0	-11	2	4
	-SA	-3	-15	4	-8	-3	-8	2	0	-4	-23	-4	-10

Negative values indicate that the Fo-points with short vowels are higher than with long vowels.

Table 4. Differences of Fo (Hz) at the four Fo-points due to sentence accent.

Negative values indicate that the Fo-points with sentence accent is lower than that without sentence accent.

the durational differentes are largest jn the long segment (V : and $C:$), respectively.

Fompoints

Sentence accent also affects the Fo-values. Table 4 shows the Fo-differences in the four tonal points $A, 8, G$, and D as a consequence of sentence accent. The minus sign indicakes that the value of the Fo-point is largex in the test word without sentence accent, i.e. it is higher. No consistent pattern for the whole material ban be found. Withjn the two djalectis, however, there is a similar tonal behaviour.

With the stockholm speakers, the large tonal difference appears ju point D. At this point (VC-bouncary), the Fowmaximum of the sentence accent is almost reacmed. The high tonal pojnt at the begjnning of the word actent rall (pojnt B) is also migher with the sentence accent, both the long and shoit vowel and in each sentence position. poimt A, the Fo-minimum in the pre-accentuated syllable romains nearly unchanged. At point c, the Fo-minimum of the word accent fall, the speakers behave differently. Whereas speaker TB hardly varies in this point, speaker EH makes the word ackent fall with sentence accent end considerably lower only in the long vowel.

The picture is more uniform with the Southorn Swedish speakers. The Fo-pojnts A, B, and D are lower with sentence accent, point C is higher fone exception: speaker AO, position 2, short vowel and posi.tion 3). Yhis means that the tonal movement before and in the test word is larger with sentence accent; i.e. the Fo-curve makes a darger excursion up and down, the tonal movement shows a larger range (cf. Fig. 2).

Positions

Durations

Segment durations vary also as a consequence of sentence position. Table 5 gives the durational differentes betwern the positions where the value of position 2 serves as a reference. The first value in Table 5 corresponds to the

Table 5. Differences of segment durations (ms) between positions.

SEGMENTS				$a(n)$	s	t	$\ddot{ }$	k	a	VC	WORD
STOCKHOLM											
TB			+SA	$\begin{array}{r} 18 \\ 5 \end{array}$	1	6 -6	0	3 9	$\begin{array}{r} -9 \\ 8 \end{array}$	3 9	$\begin{array}{r} 5 \\ 16 \end{array}$
		V :	-SA	$\begin{array}{r} 14 \\ 5 \end{array}$	$\begin{array}{r} -5 \\ 1 \end{array}$	3 -3	5	2	$\begin{gathered} -5 \\ 9 \end{gathered}$	7 22	$\begin{aligned} & -8 \\ & 11 \end{aligned}$
			+SA	$\begin{array}{r} 17 \\ 6 \end{array}$	-3 1	4 -3	0	$\begin{array}{r} -10 \\ 10 \end{array}$	$\begin{aligned} & -4 \\ & 20 \end{aligned}$	$\begin{array}{r} -10 \\ 14 \end{array}$	$\begin{array}{r} -11 \\ 32 \end{array}$
		V	-SA	$\begin{array}{r} 21 \\ 3 \end{array}$	8 9	0 2	2 5	5 4	$\begin{aligned} & -7 \\ & -4 \end{aligned}$	7 9	$\begin{array}{r} -2 \\ 8 \end{array}$
EH			+SA	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 18 \\ & 11 \end{aligned}$	$\begin{array}{r} -11 \\ -1 \end{array}$	$\begin{array}{r} 8 \\ 16 \end{array}$	1	$\begin{array}{r} -13 \\ -3 \end{array}$	9 20	$\begin{array}{r} 0 \\ 28 \end{array}$
		V:	-SA	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & 19 \\ & 11 \end{aligned}$	$\begin{array}{r} -6 \\ 0 \end{array}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{array}{r} -10 \\ -5 \end{array}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 20 \\ & 28 \end{aligned}$
			+SA	$\begin{array}{r} 18 \\ 4 \end{array}$	12 2	2	$\begin{aligned} & 8 \\ & 3 \end{aligned}$	$\begin{array}{r} 13 \\ 9 \end{array}$	$\begin{array}{r} 4 \\ 11 \end{array}$	$\begin{aligned} & 21 \\ & 12 \end{aligned}$	$\begin{aligned} & 34 \\ & 26 \end{aligned}$
		V	-SA	$\begin{array}{r} 4 \\ -3 \end{array}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 11 \\ 3 \end{array}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & -2 \\ & -3 \end{aligned}$	12 7	$\begin{aligned} & 24 \\ & 22 \end{aligned}$
SKANE	EK		+SA	$\begin{aligned} & -2 \\ & 12 \end{aligned}$	$\begin{array}{r} 6 \\ 15 \end{array}$	$\begin{array}{r} -1 \\ 4 \end{array}$	$\begin{array}{r} 9 \\ 20 \end{array}$	$\begin{array}{r} 0 \\ 24 \end{array}$	$\begin{array}{r} 3 \\ 49 \end{array}$	9 44	$\begin{array}{r} 16 \\ 111 \end{array}$
		V:	-SA	$\begin{array}{r} -8 \\ 3 \end{array}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & -6 \\ & -2 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{gathered} -2 \\ 13 \end{gathered}$	$\begin{aligned} & 0 \\ & 9 \end{aligned}$	$\begin{aligned} & 12 \\ & 28 \end{aligned}$	$\begin{aligned} & 11 \\ & 44 \end{aligned}$
			+SA	$\begin{array}{r} -4 \\ 8 \end{array}$	$\begin{aligned} & -1 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 7 \\ 10 \end{array}$	$\begin{array}{r} 1 \\ 25 \end{array}$	$\begin{array}{r} 2 \\ 44 \end{array}$	8 35	$\begin{array}{r} 9 \\ 94 \end{array}$
		V	-SA	$\begin{array}{r} -14 \\ 1 \end{array}$	$\begin{array}{r} -3 \\ 2 \end{array}$	$\begin{array}{r} -1 \\ 6 \end{array}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{array}{r} 0 \\ 17 \end{array}$	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{array}{r} 7 \\ 25 \end{array}$	$\begin{array}{r} 3 \\ 44 \end{array}$
	AO		+SA	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} -10 \\ -9 \end{array}$	$\begin{array}{r} 6 \\ 12 \end{array}$	$\begin{array}{r} 8 \\ 20 \end{array}$	$\begin{array}{r} 2 \\ 13 \end{array}$	$\begin{aligned} & 14 \\ & 32 \end{aligned}$	$\begin{aligned} & 22 \\ & 54 \end{aligned}$
		V:	-SA	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{array}{r} 2 \\ -5 \end{array}$	$\begin{aligned} & -6 \\ & -5 \end{aligned}$	$\begin{array}{r} -4 \\ 2 \end{array}$	$\begin{aligned} & -8 \\ & 10 \end{aligned}$	$\begin{array}{r} 0 \\ 17 \end{array}$	$\begin{array}{r} -12 \\ 12 \end{array}$	$\begin{array}{r} -20 \\ 16 \end{array}$
			+SA	$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & -7 \\ & -9 \end{aligned}$	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{aligned} & 34 \\ & 29 \end{aligned}$	$\begin{array}{r} -2 \\ 4 \end{array}$	$\begin{aligned} & 44 \\ & 37 \end{aligned}$	$\begin{aligned} & 53 \\ & 50 \end{aligned}$
		V	-SA	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	-5 7	$\begin{aligned} & -12 \\ & -14 \end{aligned}$	-1	$\begin{array}{r} -12 \\ 13 \end{array}$	$\begin{aligned} & -2 \\ & 21 \end{aligned}$	$\begin{array}{r} -13 \\ 17 \end{array}$	$\begin{array}{r} -33 \\ 33 \end{array}$

Line above: difference between 1 st and 2 nd positions, negative value indicates that the segment duration in the 1st position is smaller than that in the 2nd position
Line below: difference between 2nd and 3rd position, negative value indicates that the segment duration in the 2nd position is smaller than that in the 3rd position
durational difference of a given segment between position and 2, the second value to that between position 2 and 3. A negative value indicates that the segment duration in the first position is smallex than that in the second position and that the segment duration in the second posijion i.s smaller than that in the third position <4>. As Table 5 shows, no pattern of variation of segment duration between positions can be found, neither for the whole material, nor for each dialect, nor for each speaker. This is also true of the duration of the VC-sequence and the word.

Fo-points

With only a few exceptions, above all for speakex AO, the position of the test word in the sentence, i.e. its placement in the tonal contour of the sentence with reference to the time axis, affects the fo-points in a systematic way. Table \quad gives the differences in $H z$ of the four tonal points A, B, C, and D between the sentence positions (tf. Fig. 2). The first value in Table 6 is the Fo-difference between positions 1 and 2, the second value is the fo-difference between positions 2 and 3. A minus sign preceding the first value indicates that the fo-value in position 2 is larger than that in position 1. A minus sign preceding the second value means that the Fo-value jn position 3 is larger than that in position 2 . Table 6 shows that each Fo-point decreases the further it is located to the right in an dtterance. Thus all the four points obey the following rank order: $1<?<3$, i.e. the Fo-values are largest in position 1 and smallest in position 3. In other respects, however, no systematic variation is to be observed. Nevertheless, there are individual differences as to the size of the tonal differences according to position. Whereas the fo-values of speaker tB only show small differences, they drop, sometimes considerably, with the other speakers. This means that the fo-declination of speaker $T B$ is rather small, the other speakers showing a clear declination (cf. also Fig. 2). Speaker AO manifests the largest irregularities in her tonal variation.

The two-dimensjonal analysis of this investigation has shown that the tonal. and temporal features affect each other mutually to some degree. However, the prosodic features themselves are preserved as characteristic temporal and tonaj. patterns. Sentence accent turns out to be a prosodic feature with a Janus face; it is clearly signalled tonally as well as temporally over the whole word which it makes prominent on

Table 6. Differences of Fo-points (Hz) between positions.

FO-POINTS			A		B		C		D	
DIFFERENCE POSITIONS	WEEN		1-2	2-3	1-2	2-3	1-2	2-3	1-2	2-3
STOCKHOLM										
TB	V :	+SA	5	3	2	8	1	4	0	7
		-SA	4	4	12	3	-1	8	2	7
	V	+SA	7	3	5	9	2	6	1	3
		-SA	5	5	6	0	4	-2	5	2
EH	V:	+SA	14	4	11	5	0	6	7	5
		-SA	16	9	11	13	9	7	9	14
	V	+SA	23	6	16	2	16	0	12	16
		-SA	17	5	13	2	10	4	5	10
SKANE										
EK	V :	+SA	1	7	3	21	12	14	4	31
		-SA	2	9	9	17	17	17	10	24
	V	+SA	8	3	12	13	14	18	10	29
		-SA	11	0	12	17	19	13	7	24
AO	V:	+SA	4	13	-2	13	10	8	-7	19
		-SA	-1	10	-7	9	-6	-7	0	19
	V	+SA	12	8	0	15	23	-4	-4	20
		-SA	0	8	0	-6	-8	-13	8	9

the sentence level.
In the present investigation, the tonal features jn each position had enough time (syluables) at theix disposal in order to be manifested without difficulty. However, a posjtive statement about the jondependence or dependente of variables can best be made when a conflict arises between the dimensions. Such a casm of conflice between tonal features and the temporal structure of the utterance, $i . e$. between frequensy and time, will be demonstiated jn the following section.

A tonal hierarchy

Starting from a phrase with four sylaboles and the three tonal features of word accent I, phiase (sentence) accent and terminal juncture (statement), atepwise reduction of the number of syldables will show the dependence of tonal features on time. The tonal feature, with the largest domain will dominate over the othes features which rank lower ju the tonal. hierarchy.

Consider the four swedjsh phrases:

```
å "Iänderma "and the countries"
a 'länder" "and countries"
a "Iand "and country"
    'Iand "country"
```

As the number of syllables is decreased, the duration of the phrase is also derieased, namely from about 750 ms fo about, $400 \mathrm{ms}$. The number of the $i o n a l$ features, however, is kept constant. Thus the one-syliable uttexance is produred with the same tonal features as the four-syluable utteranod. Fig. 3 shows the changes of time and Fo-contoux in each utterance spoken by a stockholm speakej. In this time-dependent case of conflist, it betomes obvious that the complex overall Fowcontour shrinks considerably. the tonal contour is reorganjzed displayjng a alear hierarchy between the three tonal gestures each of which can be seen in the complete tonal contour (cf. also Bruce 1977,92 ff.). The final. fal. associated with the texminal juncture is preserved in the one syllable phas se but, at the same time, it becomes stepepex and "moves" to the left on the time axis into the final. (and only) accentuated vowel. The tonal movements associated with the two other gestures are skipped. The subordination of

Fig. 3 Hierarchical order of tonal features illustrated by a step-by-step shortening of the duration available for three tonal features. The final fall of the terminal juncture dominates over the features of phrase accent and word accent which have smaller domains.
tonal features of a temporally smaller domajn under the feature of terminal juncture with the largest domain is to be observed in other languages too. Even jif the njerarohically lower gestures are extinguished from the fo-curve, they, however, do not disappear for the listener. They will be reconstructed and thus "heard" as a consequence of the remaining tonal movement of the hierarchioally highest feature drawing upon the knowledge of the rules of tonal variation in swedish with reference to the syllable structure of the utterance and thus, finaliy, to its duration.

DISCUSSION

Before outlining a new concept of a prosody model, some aspects of the interrelationships between time and Fo will be discussed.

Interrelationships between time and fo

The results of the present investigation show that there is no simple relationship between the temporal. and tonal. structure of an utterance. Instead both structures are connected and interlocked with each other in different ways. Segment durations and Fo-movements that are to be found in the speech signal result partly from autonomous prosodic features of time and tone, partly from their mutual effects (tonal-to-temporal and temporal-to-tonal), and partly from intervening factors like speech tempo and the individual behaviour of the speaker. Thus, in conclusion, the relationships between duration and Fo in speech are not simple and unidirectional, but rather complex and bidirectional.

After all, is it really justified to ask the categorical question as to the independence of time and Fo-structure? A question which leads, for instance, to the view of the primacy of fo. As a matter of fact, the tonal gestures or features, alone or in combination, are assigned to certain linguistic units like vowel, syllable, stress group, phrase, sentence, and text. Therefore the prosodic gestures are associated phonologically with linguistic units in some arrangement which is to be thought of as linear and punctual. However, even abstract tonal gestures are related to time because these linguistic units have to be projected onto the
time dimension when manifested.
Time remains an autonomous dimension of prosodic features, even if we, as the gesture theory (ohman et al. 1979. Engstrand 1983), assume that all the phonological gestures, spettral and prosodjc, are not defined in temporal terms, but appear, for a given utterance, in an abstract string of simple or combined gestures and which are coarticulated together. When all these timeless gestures are executed, all of them, nevertheless, canot come out as a natural consequence of their essential conditions and requirements. Some phonological gestures are, sui generis, temporal by nature. One and the same gesture may result in very different segment durations, acrording to context. The s-gesture, for instance, will be executed temporally in different ways depending on the segmental and prosodic context. Second, segment duration also vaxies in passages, context being constant, where Fo does not change and thus the constant Fo does not put any requirements at all on a given spectral gesture. Third, the vjew js generally accepted that the length distinction of quantity in swedish and other languages, such as oanish and Gelman, is tied to stress, i.e. quantity can only appear in stressed syllables. In this respect, a coarticulation of prosodic features exists. In unstressed positions, however, a reduction or neutralisation of quantity takes place, as is often the case with spectral gestures, fox instance vowel reduction in English and Russian. In other quantity languages, like for instanct Finnisti and czech, the quantity gestures also appear in unstressed sylfables. Thus they are independent of stress in these languages.

The autonomy of temporal. patterns will be even more obvious j.n a contrastive perspective, Take for instance the gesture or gestures for a voiceless, word-mediai. /p/ which we assume to be jdentical j.n languages, surn as Fjnnjsh, Standard Swedish, Spanish, and Greek. It is a matter of fact that usually the /p/ in Greek and Spanish, absolutely and relatively, shows a much shorter duration than the /p/ in Standard Swedish ox Finnish. In order to execute the essential element ox elements of the p-gestuxe, a cextain minimum of time j.s required. However, it is quite evident that the p-occilusion in Finnish and Standard swedish is held longer tham necessamy, esperially following atressed short vawel in Standard swedish or in a long consonant in finnish, in order to be able to produce a good and complete /p/. Therefore everybody will. realize that in cextain languages, like for instance Swedish and Finnish, temporal gestures or fedtures (quantity) are superimposed on spectral and tonal
features in certain positions or, to put it in terms of the gesture theory, spectral and tonal features are coarticulated with temporal gestures, the latter, though, providing the basic and controlling frame of reference.

From a general linguistic vjew, it can be assumed that, in principle, temporal and tonal phonological features are autonomous in every language. The kind and degree of mutual. relationships, of course, may vary from language to language. For instance, the tonal feature of sentence accent or emphasis does not increase segment duration in Danish (Thorsen 1980), in German it may do it optionally (Bannext 1982b), whereas in Swedish it will do so obligatorily. Danish does not show the decrease of vowel duration as a consequence of the increasing number of unstressed syllables in the stress group (Fisther-jørgensen 1982) whith is well witnessed in many languages.

Another problem with the model of the primacy of fo (Lyberg 1981) where the duration of the stressed vowel is calculated from the change of fo over this segment is the fact that, as a consequence, no segment duration can be calculated when there is no change of fo over a given segment. The Fo-declination throughout the utterance is not considered as an Fo-change in this respect. A non- changing Fo is to be found in cases where forpoints of the same level are concatenated low or high. Take, for instance, long compounds in Standard Swedish like bostadsbyagnadsprogramkommitte where the low end of the word accent fall is connected low with the beginning of the rise of the phrase accent in the penulitima or sentences with several syllables between accentuated ones: Det var iu fér som skulle ha skrivit brévet. Here the tonal concatenation is high between the high tone of the phrase accent in Per and the fall of the word accent in bre... If, then, vowel duration cannot be calculated in such cases, let alone the duration of consonants, duxations, in a model of speech processimg, have to be taken from somewhere in ordex to assign typical and correct durations to all. these segments. Even this consideration pojnts to a solutjon treating durations and tonal movements as autonomous units.

Apart from the autonomous temporal and tonal features that, alone or in coarticulation, lay out their basic patterns in the time and frequency dimensions, one can observe various mutual effects of the prosodic features on each othex at the phonetic level. These effects are temporal-to-tonal and tonal-to-temporal as well. A rising tonal movement usually takes more time than a falling one (cf. Ohala and Ewan 1973, Sundberg 1979; Elert 1964). This effect, however, is rather
small compared to the total segment duration.

One effect of duration on Fo is due to speech tempo. Increased speech tempo leads to shorter segment durations and therefore there is less time available to execute the tonal gestures in addition to the spectral and temporal ones. Increased speech tempo, in general, increases fo globally throughout the utterance and the range of fo-variation is decreased (cf. Gårding 1975).

Qutline of a model for prosody

The evaluation of the results of this study and the data and conclusions of other investigations (e.g. Thorsen 1980 . Bruce 1981, Bannert 1982 b) Leads to the reasonable view that the temporal and tonal structures of an utterance, in one sense, are dotally indopondont of oach other. In another sense, however, they are connected and interlocked with each other, The temporal structure is considered primary, thus representing the necessaxy requirement for the execution or coarticulation of tonal featuxes. Theretore, in a generative model of prosody, both dimensions, time and frequencey, have to be treated as autonomous dimensions, although mutual. dependencies are to be found. What is important for the design of a prosody model is reajizing that there are some separata temporal and tonal phonologicaj features, thus that neither jas derived from the other. The essential parts of the tonal contour of an utterance, expressed as tonal points or tonal. movements, however, are projected onto the temporal. structure which has been processec without amy a priori dependence on tomal features.

Every prosody model repiesents only one part of a comprehensive speech model. The generation of prosody must not he seen as the last step in the dexivation of the speech signal. Given the jntex locking of the prosodic features with different linguistic compoments fpragmatic, semantic. syntacijic, morphological, and phonologicalo, jt becomes quite obvious tmat the frosodir features have to be processed in a fully integrated way on several levels fof. van wijk and Kempen 1985). Ir accordance with thjs view of jntegration, the treatment of temporal and tonal structure isolated from other features arid processes is abaridoned and a comprehensive and interactive prosody model will be outlined. It is illustrated in Fig. 4 .

Fig. 4 Ouiline of a model for prosody where the prosodic structure of utterances is processed in parallel
 structures of the output.

As before, the input of the prosody model is a ingujstically fully specified string of linguistic units in a phonologically canonical form. The string is completely defined and contains all the necessary phonological (spectral, temporal, and tonal) features including voice qualily arid volume 〈5〉, as well as the morphological. syntartic, semantic, and pragmatic features. In contrast to some prosody models, it is assumed that all relevant linguistis rules have operated before. Therafore i presuppose that all accent deletions, the assignment of sentence accent, etc. have already been done.

The processimg of the information of the input is not done step by step where the output of one step serves as the only input to the next step. In a previous version of a prosody model, the basic temporal and tonal siructures of an utterance were processed in a stepwise way, then added and finally, accounting for the mutual effect:s, modified in the modification component.

The design of the new model is based on the clear distinction between linguistic rules, information, and knowledge of various kincis. Ala ainguistio rulef and information including dependencies between features on different linguistic levels which are necessary for generating the prosodic structure of an utterance are availablo for the processing of the utterance simultaneously and contimuously. obeying the principles of applicability and utility, the rules and information are recalled and used whenever necessary and suitable. Fig. 4 shows the outiline of a prosody model designed according to the primciple of contimuousiy flowing and complete joformation processing. Although the basic temporal and tonal. structures, and the dimensions of volume and vojee quality as welj, are generated jn separate channels, these sub-processes are effected and controlled all the time by the rhythmical and tonal rules, the jonformation about the mutual effects of time and frequency, about speech tempo, assimilations and reductions (spectral arrangements). As a consequence of this, no further or finat modification which otherwise would be necessary after the addition of the basic structure is needed. In the present version of the model, the prosodic structures are generated and processed in accordance with context and all the other relevant factors from the very beginning. It is immediately clear, however, that generating prosody in this on-line model amounts to a very complex process indeed. Nevertheless, the complexity of the processing of the speech signal should not be a deterrent argument agajnst such an approach. On the contrary, it has to
be assumed that the present outl.jne of a prosody model i.s psychologically more realistic than the more simple and 1. inear step-by-step model. In any tase, the present desjgn of the pxosody model appears to be in rather good acordance with the essential jdeas of coarticulation of gestures suggested in the gesture theory of ofman et a... (1979).

It seems superfluous to remark, of course, that the present outijine of a prosody model needs elaborating, completion and testing. However, the model in its present form makes it easier to formulate xelevant and intexesting questions. It ahso represents a new test programme in order \quad bo, in a coherent and dynamic model, investigate prosodic rules and interrelationships between different features in the time and frequency dimensions. Using speech synthesis by ruhe, it will. be possible to optimize prosodis xeseareh by way of djrect feed-back. The present model of contiruuous information processing for the genaration of prosody can be conected with the representation of krowledge of artificial. intellijgenke amd wjithexpert systems.

FOOTNOTES

$\langle *\rangle \quad$ This research was supporter py the Bank of sweden Texcentenary Foundation.
$\langle 1\rangle$ These are the higti and low points which, in intonation models, aze jnserted as supporijung pojnts by rule with reference to segments or syllables, thus genexating the Fo-contour step by step.
$\langle 2\rangle$ For valuable nelp and discussion \quad am giateful to klausJürgen Engelberg, Ol. 1 Engstrand, Lennart Nordstrand, Gerhard Rigoll, arid Herbert Tropf.
$\langle 3\rangle$ No statistical testing was carijed out for several reasoms: The mumber of observations i, soo smal. thad they rould not be collapsed over variables and speakers.
$\langle 4\rangle$ For the purpose of this comparison, it is immatorial that the first segment in position 1 is [an] of kan, whereas the fixst segment in positions 2 and 3 is [a] of lämna and länga, respectively.
$\langle 5\rangle$ The dimensions of volume (jotensity) and voice quality are included and indicated to complete the piotuxe.

REFERENCES

Alstermark M. and Eriksson Y. 1972 . Fundamental. frequency שorixlates of the grave word accent in Swedish: The effect of vowel duration. STL-QPSR 2/3, 53-60

Baninet R. 1979. The effert of sentence acrent on quantity. Proceeditgs of the gth International congress of Phonetic Scjencos, Vol. II, 253-259. Copenhagen

Bannert R. 1982 (a; An row dependent model for segment duration? Uposala University, Reports from the Institute of binguistics 8, 59-80

Bannert R, 1982 (b). Temporal and tonal control jun Gexman. Lund University, Department of Genemal linguistics and Phonetios, Working Papers 22, $1 \cdot 26$

Bannert R. 1383 , Some phorictic tharactoristits of a model for German prosody. L. mad tanjeversjuy, Department of Gonexal Linguistics and Phonetios, Working papers $25,1-34$

Bannert R. 1984 . Towards a model for German prosody. Lund Hniversity, Dupartment of Gemexal Ljoguistios and
 Linguistica XIX, 3>1•34

Bannext. R. arid Arodvad... Jensen A-C, 1975. Temporad osganiz. atjom of Swodish tomal acients: The effect of vowel. duration. lund Jniverssity, Depastment. of Generad. L. inguistiocs and Phonetios, Woxking Paper: $10,1-36$ arid Working Papers 15, 133.138

Bannert R. and Bruce \quad. 1975. Svenska rytmer i I jud och bjud. Umeá Hniversity, Department of phonetics. Publication 10, 2-6

Bolingex [). 1958 . A Theory of Pitoh Acoent in English. Worcl 14, 1000149

Bruce f. tg7\%. Swedish word accents in sentence perspective.

fruce G. 1981 . Tonal and temposal intexphay. Lund University, Droatument of Genaral Lingujstjes and phonetjes. Wouking Fapeas 21, 49-60. Also: Nordic Prosody II, 6374. Fretheim \quad. (ed.). Trondhejm

Bruce G, 1983 . On Rhythmic Alternation. Lund Unjversity, Department of Linguistics and Phonetics. Working Papers 25, 35-52

Elert $C-C$. 1964 . Phonologicat studies of quantity in Swedish. tuppsala
Engstrand 0. 1984 . Articulatory coordination in selected VCV utterances: A Means-End View. Uppsala University, Department of Linguistics. Report 10

Engstrand 0., Nordstrand L., and Zetterlund S. 1978. Some observations on the role of prosodic parameters in the perception of phrase structure in swedish. Phonetics Symposium, 11-13. Nord L. and Karlsson I. (eds). Speech Transmission Laboratory, Royal Institute of Technology, stockholm

Fischer-jorgensen E. 1982, Segment Duration in Danish Words in Dependency on Higher Level. Phonological Unjes. University of copenhagen, Annual. Report of the Institute of Phonetics 16, 137-189

Gárding E. 1975. The Influence of Tempo on Rhythmic and Tonal patterns in Three Swedish Dialects, Lund University, De-partment of Linguistics and phonetics. Working papers 12, 70-83

Gåding E. 1981. Contrastive Prosody: A Model and its Applijcation . Studia Linguistica 35, 145-165

Gårding E., Botinis A., and Touati P. 1982. A Comparative Study of Swedish, Greek, and French Intonation, Lund University, Department of Linguistics and Phonetics. Working Papers 22, 137-152

Gåding E. and Bruce G. 1981 . A presentation of the Lund model. for Swedish intonation. Nordic Prosody II, 33-39. Fretheim T. (ed.). Trondheim. Also: Lund University, Department of General. Linguistics and Phonetics, Working Papers 21, 69-75

Gåding E., Bannert R., Bredvad-Jensen $A-C$. Bruce G., and Nauclér K. 1974. Talar skåningarna svenska? Svenskans beskrivning $8,107-117$. C.Platzack (ed.). Lund

Klatt D.H. 1975. Vowel lengthening is syntactically determined in a connected discourse. J. of Phonetics 3. 129-140

Lindblom B. 1979. Final lengthoning in speech and music. Nordic prosody, 85-101. Garding E., Bruce G., and Bannert R. (eds). Travaux de I'Institut de Linguistique de Lund XIII

Lindblom $B .$, Lyberg B., and Holmgren K. 1981. Durational patterns of swedjsh phonology: Do they reflect shortterm memory processes? Indiana University, Linguistics club

Lyberg E. 1981. Temporal properties of spoken Swedish. Monographs from the Institute of Linguistics 6 , stockholm Univesity

Öman $S .$, Zetterlund $S ., N o r d s t r a n d L$., and Engstrand 0. 1979. Fredicting segment durations in terms of a gesture theory of speech production. Proceedings of the $9 t h$ International congress of fhonetic sciences, Vol. II, 305-311. Copenhagen

Ohala 3. and Ewan W. 1973. Speed of Pitch change. JASA 53, 345 (A)

Sundberg 3. 1979. Maximum Speed of Pitch Changes in Singers and Untrained Subjects. Journal of phonetics 7, 71-79

Svensson S-G. 1974. Frosody and Grammar in speech Perception. University of Stuckholm, Monographs from the Institute of Linguistics 2

Thorson N. 1900 . Neutral. stress, emphatic stress, and sentence intonation in Advanced Standard Copenhagen Oanish. University uf Copenhagen, Institute of Phonetics, Annuai Repoxt 14, 121-205
van wi.jk C. and Kempen G. 1985. From sentence structure to intonation contour. An algorithm for computing pitch contouxs on the basis of sentence accents and syntactic structure. Gexmanistische Linguistjk 79-80, 155-182. Sprachsynthese, Mülex B.S. (Hrsg.). Hildesheim

Zetterlund 5. Noxdstrand L., and Engstrand 0. 1978. An Experiment on the perceptual Evaluation of prosodic parameters for phxase structure Decision in swedish. Nordic prosody 15-22. Travaux de 1 Institut de Linguistique de Lund XIII. Gårding E., Bruce G., and Bannert R. (eds). Lund

The prosodic structure of Greek

A phonological, acoustic, physiological

 and perceptual study
Antonis Botinis

Summary and results

0 Outline

first part (1) the phonological system of Greek prosody at the lexial: leve!, word leve!, phrase leve', and sentence level is descriteazatio rules to assign lexical stress, word stress, phrase stress and serterin stress to the corresponding level are presented

The second part (2) is a report of three acoustic expermerts Tha purpose of experiment : was to nemestigate the contributicu of the then acoustic paraneters of funcamental frequency for, duratior ar.u intensity to the construction of word and sentence stress. Experment:.: was to investigate the three parameters' contributior to phase stees and compare the acoustic manifestation of an enchitic structure ta ore of a proclitic structure. Experiment In was to investigate two differen: syntactic structures acoustic manifestations and examine the:r reation to prosody.

The third part (3) is a report of a physiologica! investigation of the variations of subglottal air pressure (Fs) asseciated with word stress ir post-focal position. The purpose of this experiment was to finc out how the acoustic parameters co-vary with subglottal pressure and if
subglottal pressure affects one or more acoustic parameters, to what degree

The fourth part (4) is a report of six perceptual experiments. The purpose of experiment! was to find out which of the acoustic parameters contributes most to the perception of word stress after focus. Experiment II wss to find out which of the acoustic parameters contributes most to word stress perception before focus. Experiment III was designed to test if Fo, which contributes most to pre-focal word stress, is perceived categorical'y or continuously in the vertica! dimension; experiment Ill! was to test if Fo is perceived categoricaly or continuously in the horizontal dimension Experiment V was to find out Whict. of the acoustic parameters contributes most to the perception of phrase stress, and experiment $V I$ was designed to test if Fo is perceived categorically or continuously.

1 Greek Prosodic Phonology

In this study, language is thought of as a complex entity of different. levels of representation Each leve! is associated with its corresponding prosodic category, i.e, the lexical level with lexical stress, the morphological level with word stress, the syntactic level with phrase stress, and the semantic and textua! leve! with sentence stress. The lexical stress is given by the lexicon and may appear on any one of the last three syllables. The word stress may coincide with the lexical stress although it usually moves to the right whenever the word boundary moves to the right by the addition of extra syllables through inflection and derivation or when some morphemes attracting word stress are added to the lexical word. The phrase stress appears two syllables to the right of word stress when the phrase boundary is more
than two syllables to the right of word stress. The sentence stress appears on the last lexical element bearing focus. However, phrase stress attracts sentence stress within the domatn of the phrase no matter which element is in focus.

The prosodic categories are organized into a hierarchical structure and have a classificatory function, either they exist or not, and every category has its own distribution rules which apply to the corresponding level. The freedom of the prosodic categories varies according to the level on which their rules are applied. The lower the level the less dependent the prosodic rules are upon the higher levels of representetion In other words, word stress needs information only about the position of lexical stress and the word boundary whereas pirase stress, apart from word stress information, needs information about phrase boundaries as well, i.e., a higher level is involved. Thus, prosody cannot be independent from the morpholexical, syntactic and semantic structure of the language; it is rather an abstract lingustic entity which the different prosodic categories create with concrete contributions from the corresponding levels of representation.

2 Acoustic Analysis

In acoustic experiment I the parameters of Fo, duration and intensity were found to contribute to pre-focal word stress, only duration and intensity to post-focal word stress and Fo, duration and intensity to sentence stress. Of the three acoustic parameters examined, duration and intensity run parallel to each other and are usually present for both word and sentence stress. The word stress acoustic parameters are not constant across the syntagm but their manifestation is organized in relation to the sentence stress position.

1r. Experiment ! phase stress is manifested by the rising of Fo at the pre- and focal position and the falling and flattening of Fo at the postfocal pocition combined with longer duration and higher peak intensity. At non- focal position the acoustic structure of phrase stress is the same as the word stress, the difference between the two categories being of perceptual as well as of functional mature Fo is not a strong enough Derceptual cue for the phrase stress distinction the way it is for the word stress, ori the other hand, word stress operates at the morpholexical level to distinguish contrastive words whereas phrase stress operates at the syntactic level to distinguish contrastive structures. Apart from phrase stress, the enclitic structure appears with the same acoustic manifestation as the proclitic one.

In experiment. II the influence that syntax may have on prosody has been corroborated. Two noun phrases with the same number of syllables, in the same context, one with a word and a phrase stress and the other with two word stresses may apparently have the same acoustic manirestation outside focus; but when focus is involved the noun phrases take completely different acoustic manifestations. The application of sentence stress on the lexical entity with a word stress is blocked when the iexical entity is in a phrase where there exists a phrase stress, whereas sentence stress may be applied to any one of the lexical entities. composing the phrase and have a word stress.

3 Physiological Analysis

In the physiological experiment the Ps was found to co-vary with intensity. It seems, then, that the larynx is mainly responsible for Fo variations and the subglottal system for intensity. Intensity was found
to correlate with Fo for sentence stress but with duration for post-foca: word stress, an implication that the acoustic parameters are independent of each other and not produced by the same mechanism.

4 Perceptual Analysis

In the perceptual experiment I duration was found to be the most important acoustic cue although a combination with intensity was necessary for the perception of word stress at post-focal position Listeners could perceive word stress distinctions after focus where the acoustic parameters are weakly manifested even with synthetic speech The context, Fo, and formant structure did not have any perceptual contribution at this position.

In experiment 1! Fo was found to be the all important perceptua! cue for the pre-focal word stress distinction. A hierarchy of the acoustic parameters is still questionable since Fo is the primary cue and overrides duration and intensity as conflicting cues.

In experiment III the question of whether Fo is perceived categorically or continuously in the vertical dimension for the pre-focal word stress distinction is still unanswered. However, the main finding of this experiment was that the prosodically contrastive words kept their original meaning even with a neutralized Fo-contour. It seems as if Fo functions as a distinctive feature with intensity and duration as redundant features and when the distinctive features are neutralized, the redundant ones take over. Thus, fo is not an absolute necessity for word stress perception; duration and intensity may equally effectively convey the word stress concept at pre-rocal position the same way they do at post-focal position.

In experiment I!11 in which Fo had been moved horizontally across the prosodic minimal pair under investigation at pre-focal position, word stress was perceived categorically. Fo had to be far away from the midpoint of the sy:lable to neutralize the influence of duration and intensity from the original word. This finding reflects the influence that duration and intensity may have on pre-focal word stress perception

In experiment V listeners could perceive phrase stress and associate it with the proper syntactic and semantic structure. The phrase stress Forise contributes most to phrase stress perception, but it has to be combined with duration and intensity to denote the concept of phrase stress in contrast to word stress in pre-focal position where Fo itself is the decisive factor. In the light of these findings it seems that the idea that a certain parameter does not contribute to stress perception should be reconsidered. A particular parameter may not contribute by itself at a!!; however it may be decisive when combined with the other acoustic parameters.

In experiment V ! the question of whether fo is perceived categoricaly or continuously for the phrase stress distinction is still unanswered However, the present experiment corroborates the results of experiment \checkmark where fo was not enough to convey phrase stress by itself, and experiment II! where intensity and duration became distinctive features when Fo was neutralized.

Notes on some particle and prepositional

constructions in Swedish and English

Helen Goodluck

This paper concerns mainly the constituent analysis for particle verb constructions. In sections $A-D$, a complex verb analysis for particle verb constructions in Swedish is proposed, and particle constructions are distinguished from prepositional constructions with the same stress pattern. In section E, a complex verb analysis for particle constructions in English is defended against arguments by Kayne 1985 against such an analysis. A difference in the distribution of double object constructions in the two languages can be made to follow from the existence of a particle movement rule in English.
A. THREE SWEDTSH SENTENCE TYPES

It is widely accepted that the 'particle' in particle verb constructions in English and Swedish should be analyzed as a member of the category preposition, or possibly adverb in some instances (Emonds 1972; Ejerhed 1979, n.d.). In what follows we will use the term 'preposition' to refer to a preposition that is head of a PP and the term 'particle' for a preposition that is part of a complex verb construction. The following three sentence types will be distinguished in Swedish:
i. Particle verb constructions, where the meaning of the verb plus particle is non-compositional in many cases and where there is compound stress (destressing to the left), resulting in primary stress on the particle, 1

1. Flickan tơg ãv plåstret $\quad{ }^{-}=$stress degree n
'the girl took off the bandaid' $v=$ stress degree $\langle n$)
ii. Prepositional constructions that have a stress pattern similar or identical to that of the particle constructions and a fairly predictable semantic interpretation. In
2. Katten hơppade bákom elefanten
'the cat jumped behind the elephant'
the object NP is interpreted as the location towards which the cat jumps (i.e. the interpretation is 'jump to behind').
iii. Prepositional constructions without stress on the pre. position, where ihe object of the preposition is interpreted as the location at which the action takes place. The sentence
3. Katten hóppade băkom elefanten
is interpreted to mean that the cat jumped up and down behind the elephant. ${ }^{2}$

B. SYNTAX

The operation of gapping provides evidence that sentences such as (2) are to be grouped with sentences such as (3), rather than sentences such as (1), despite the shared stress pattern of (1) and (2). The paradigms for gapping of the verb vs. verb plus particle/preposition for sentences of the types (1), (2) and (3) are given in (4), (5) and (6), respectively. As the judgements there show, the p must gap with the verb in sentences of type
(1) and may not gap with the verb in sentence types (2) or (3).
4.a Per tog av sin hatt och Kalle tog av sin halsduk
'P. took off his hat and K. took off his scarf'
b Per tog av sin hatt och Kalle $\emptyset \quad \emptyset$ sin halsduk
c *Per tog av sin hatt och Kalle \emptyset av sin halsduk ${ }^{3}$
5.a Katten hŏppade bákom elefanten och hunden hŏppade bákom kon

The cat jumped behind the elephant and the dog jumped b * Hop behind the cow' c ?Katten hoppade bákom elefanten och hunden $\quad \emptyset \quad \emptyset \quad \emptyset \quad$ ban 6.a Katten hóppade băkom elefanten och hunden hóppade băkom kon b *Katten hóppade băkom elefanten och hunden $\emptyset \quad \emptyset \quad$ kon c Katten hóppade bakom elefanten och hunden \emptyset băjrom kon

Some, but not all speakers, accept gapped sentences of type (2) where the verb only is removed in the second sentence and the preposition is stressed (and assign the object in the gapped sentence the towards-location interpretation); the question maik on (5c) is returned to below.

From the gapping test it can be inferred that the P in sentences of type (2) is head of a PP, as it is in (3). Less can be said about the exact constitutent structure of (1).

In Stillings' (1975) analysis based on English, gapping is constrained to delete a sequence of one or more identical verbs in the second conjunct, requiring also that the material to the right of the gap sjte(s) be a single constitutent. On this ana-
lysis, we can infer both that the $P--N P$ sequence to the right of the gap site in (5c) and (6c) is a PP (single constituent) and that the $V--P$ sequence that is gapped in (4b) is a complex verb [V tog[av]], since only members of the category verb gap in Stillings' analysis. (The relevance of gapping to complex verb status on Stillings' analysis is pointed out by Selkirk 1982, p.28). However, the facts are not more than consistent with a complex verb structure. Stillings herself must admit cases of 'reanalysis', where, for example, an NP is reanalyzed as part of the V (to allow 'John writes poems in the bathroom and sue
 is the sequence to be gapped; parallel examples exist in Swedish). Moreover, the facts in $(4-6)$ could all be accounted for by a tighter restriction on the material to the right cf the gap site, to the effect that it is not only a constitutent, but an immediate constituent of a projection of V (cf. Neijt 1979, Cht 3) ; that will exclude deleting the head of a $P P(5 b / 6 b)$ and will permit a direct object to be left (4b), without any inference about the syntax of the material that is deleted. ${ }^{4}$

We have then three logical possibilities for the syntax of the $V--P--N$ sequence in (1): a complex verb structre, a hierarchical structure where P is attached to a phrasal projection of V at a lower level than the object, and a flat structure analysis,

Ejerhed (1979, n. d.) opts for the third, flat structure, analsis, as opposed to a complex V analysis, on the ground that a complex V analysis assumes rules that incorrectly predict recursion of the internal V, with complexes of P on the right; such particle constructions do not occur. 5 She notes also that this potential problem would not arise if some other symbol than plain V wereexpanded by the rule for forming the complex verb. Recent studies of morphology suggest that such a restriction may be accommodated within general constraints on word-formation. Thus, following Selkirk's (1982) application of X-bar theory to word-structure, we can propose that verb particle constructions are the result of a rule where the category V at bar level 0 (the level WORD) is expanded to V at level -1 (the level STEM) and P at 0 . The structure for the verb phrase is (1) will thus more precisely be,

and the possibility of recursion will be excluded. This analysis is consistent with Selkirk's general constraint on word structure rules ($p .8$) that a word category can only be rewritten with categories at the same or lower bar level, but is at odds with Selkirk's (tentative) analysis of verb-particle constructions as compounds, which on her theory must be composed of categories that bear the same bar level specification as the dominating category (see pp. 47-52). However, the analysis does away with the recursion problem (a problem that Selkirk fails to note for her treatment of English verb particle constructions as compounds); moreover, the removal of particle verb constructions from the inventory of compound types eliminates the one counterexample in Selkirk's analysis to the generalization that English compounds are right-headed.

It is difficult to find any clear cut ground for choosjng between the two hierarchical versions of the structure for particle constructions (complex verb and phrasal projection of V). On the side of the complex verb analysis (and against both the hierarchical and flat structure phrasal analysis), the complex verb structure is consistent with a theory of X-bar word and phrase syntax where all complement positions at the phrasal level axe maximal projections, with the expectation that they will show the full range of complementation for the category type (i.e. it eliminates the need for a constraint to ensure only intransitive prepositions occur between the V and object, a problem Selkirk (p. 28) notes for the flat structure analysis of particle verbs in English). A potential problem for the complex V analysis in Swedish is that the particle does not move with the verb (e.g. in subject-verb inversion, 'Tog flickan av plåstret?', *'Tog av flickan plåstret?'), this can be handled at least mechanically in the X-bar analysis above by requiring rules that move V to affect Vmin (or the finite verb, leaving aside any problems with feature percolation). In Section E assuming some kind of hierarchical analysis in the base for both Swedish and English will contribute to
an account of a difference in distribution of double object constructions in the two languages. We will simply adopt the complex V analysis as a working hypothesis.

It might be argued that a flat structure analysis is needed, and is the correct analysis for sentences of type (2). That analysis would account for the fact that some speakers reject sentences such as (5c), on the assumption that the material to the right of the gap site must be a constituent. Additionally, when the preposition and object are preposed to initial position, the interpretation given to the object is almost invariably that of 'in location' (the reading corresponding to (3)), with stress on the preposition in the preposed phrase being rejected or interpreted as contrastive stress of some type.
7. Bakom elefanten hoppade katten.

The absence of preposition stressing and the towards-location reading would follow on the flat analysis, given the standard assumption that only constituents can be preposed.

However, I do not think a flat structure analysis is necessary for sentences of type (2). With respect to gapping, the rejection by some speakers of sentences such as (5c) may reflect an additional constraint in their dialects, that requires the eliminated materials to be a complete semantic unit. Such a constraint cannot be met in (5c) consistent with the syntactic conditions on gapping (whichever version of the conditions sketched above is adopted).

With respect to the interpretation of preposed PPs, it is worth noting that constituenthood is not a necessary condition for unifications by stress, which is the cue for the toward location reading for sentences such as (2). ${ }^{6}$ But linear continguity may be. A simple solution to the absence of the 'toward location' reading for sentences such as (7) would be that the prosodic pattern of stress on the preposition is assigned at level 'after preposing'. However, given the evidence that the results of such stressing operations are frequently preserved in the outputs of reordering (see Rischel 1983 and references therein), something more sophisticated (or at least different) will need to be said about why the towards location reading is absent for (7) for most speakers. One possibility is that the stylistic function of preposing gives priority to a contrastive interpretation of stress
on the preposition, and thus indirectily promotes the inwlocation reading. ${ }^{7}$

C. SEMANTICS

Ejerhed ($n . d$.) describes several regularities characterizing the meaning of verb particle constructions that do not have lexicalized (completely non-compositional) meaning. The particle may perfectivize and may transitivize the verb to which it is added; it may also imperfectivize and intransitivize and it may add various completative nuances of meaning. The following are among the examples given in her paper (p. 21-22),
8.a Perfectivization

Vattnet rann	'the water was running'
Vattnet rann	

b Transitivization and perfectivization
Hon satt 'she was sitting' Hon satt av föreläsningen 'she sat through the lecture'
c Intransitivization

Han såg matchen Han såg på
d Completive meanings
Han at kakan
Han åt upp kakan
Huset brann
Huset brann upp
Han sköt tva soldater

Han sköt ned två soldater
'he saw the fight'
'he watched'
'he ate the cake'
'he finished the cake'
'the house was on fire'
'the house burned down'
'he shot two soldiers (accidentally or intentionally) 'he hit and killed two soldiers'

We can add the observation that where the meaning of the particle remains fairly transparent, the interpretation is frequently causative or resultative. Thus in 'Jan tog pa hatten' (Jan put on the hat), the hat is on as a result of the action.

The alternation in meaning between the prepositional examples in (2) and (3) is different from any of these functions, and can be expressed in terms of a change in the thematic role assigned to the object NP. Following Gruber (1976) and others, we can desigm nate the role of the object in the towards location interpretation in (2) as GOAL and the role of the object in the in-location interpretation of (3) as LOCATION. We assume that individual prepositions that permit the stress alternation are lexically speci-
fied for either a GOAL or LOC object (cf. the English prepositional equivalents, such as the gloss for (2), which are ambiguous between the two readings) ; preposition stressing in Swedish must then be associated for this construction with a semantic rule that selects GOAL as the thematic role of the object. In tuitively, this association of goal (rather than LOC) with the stressed preposition is non-arbitrary, in that the stress unifies the verb and the preposition, and LOC is not (canonically) assigned to non-prepositional arguments in Swedish; but since I have argued in section B that the object remains syntactically a prepositional object in sentences such as (2), such a generalization cannot be cashed out at the level of surface syntax.
D. SUMMARY: COMPOUNDING VS. MODIFICATION IN WORD STRUCTURE

On the analysis given above, swedish $V-\cdots-M P$ sequences conform to current (X-bar) conceptions of word structure and phrase structure. At the word level, words are composed of categories at the same or lower bar-level than the category of the word itself $\left(V^{\circ} \rightarrow V^{1} P^{\circ}\right)$ 。 At the phrasal level complements are maximal projections $\left(V^{n>0} \rightarrow \ldots P^{m a x}\right)$. Unification by stress is not a sufficient condition for inferring particle verb syntax.

There are other facts concerning particle constructions to be examined in the context of the type of word-syntax used here, which may throw light on the relation between the structure of words and their semantic interpretation. For example, there is an alternation in some cases between a verb with particle in final vs. initial position. The initial position variant will tend to be less colloquial or to have a more abstract meaning. Thus Ejerhed (p. 23) gives the following examples:

```
    transportera ut = uttransportera
```

 'transport out'; synonymous, transporera ut more colloquial
    ```
bryta av f avbryta
    'break off' 'interrupt'
```

If we adopt the analysis above for verb plus particle sequences and a compound analysis for particle plus verb (the latter along the lines of Selkirk's analysis of English $P--V$ verbs), the contrast will be one of difference vs. sameness of bar levels of the constituents of the verb,

Intuitively, this difference in syntax can be made to fit with the concrete-abstract contrast in meaning in the following way. In the $V-\cdots$ construction the P is a modifier of the head whereas in the $P--V$ construction it is a subconstituent of equal rank as the head (where headedness is determined by shared category features and modifier defined as a constituent of the word with bar level distinct from the head). Modifiers may be expected to add to the meanjing of the head, but not to change its basic meaning; by contrast, the meaning of compounds may be determined by rules in which each constituent of the compound contributes to the basic meaning, with the possibility of a shift away from a concrete meaning of the verbal head.

E. KAYNE'S ARGUMENTS AGAINST COMPLEX V IN ENGLISH

The observations made above with respect to the syntax and interpretation of swedish particle constructions largely apply to English particle constructions also. English particle constructions show the same pattern of gapping,
9.a Sue took off the bandaid and Fred took off the cast
b Sue took off the bandaid and Fred $\varnothing \varnothing$ the cast
and similar semantic patterns in both preverbal and post verbal position. English differs from Swedish in permitting particles to follow as well as precede the direct object,
10.a Fred took off the cast
b Fred took the cast off
and in permitting double object particle sentences with a predicative or dative interpretation, as in (11) and (12) respectively,
11. John made Bill out a liar
12. John handed Bill down the tools. ${ }^{8}$

Both the alternation between sentence pairs such as (10a, b) and the derivation of double NP particle sentences are dealt with by Kayne (1985), who analyses particle constructions in English as instances of small clause constructions, within a GovernmentBinding framework. Here I will outline Kayne's analysis and evaluate the arguments he makes against a complex verb analysis.

In Kayne's analysis, the D-structure for particle constructions has the particle in final position, as head of a small clause, of which the post-verbal NP is subject. Thus the D-structure of the VP for both $10 a$ and 10 b will be 13 , 13.

$(\mathrm{SC}=$ small clause)
The S-structure for loa will be derived by rightwards movement of NP, to yield 14 ,
14.

Kayne's analysis covers predicative and dative double NP constructions, in a manner that accounts for the fact that for many speakers the middle position is the only acceptable position for the particle (for all speakers it is the preferced position, cf. Emonds 1972, for discussion with respect to datives),
15.a John made Bill out a liar $\quad(=11)$
b *?John made out Bill a liar
c *John made Bill a liar out
16.a John handed Bill down the tools (=12)
b *?John handed down Bill the tools
c *John handed Bill the tools down
In Kayne's analysis, both constructions involve a D-structure with a double small clause, as shown in the structures in (17)
 NP, as in the case of (10b),
17.

18.

($P_{e}=$ empty preposition, source of theta-role for both NPs in Kayne's analysis).

Under Kayne's analysis, rightwards movement of the NP, as shown in (17) and (18), is necessary if the s-structures are to be such that case can be assigned to the NPs (the movement ensures that no more than one maximal projection containing lexical material intervenes between the verb and each NP, allowing case to be assigned in a way not possible in the unmoved structure; see Kayne 1985 , sections 3.3 and 4.1 for details). In this manner, Kayne accounts for the fact that only the (a) version of (15) and (16) is grammatical for most speakers.

Kayne gives six points against a complex V analysis for particle verb constructions with the particle in post-verbal position; he argues that the facts that present potential problems for a complex verb analysis will follow from the alternative small-clause and NP movement analysis sketched above.

Kayne's arguments against a complex verb analysis are as follows:
[1] A complex verb analysis does not explain why inflectional morphemes cannot occur on the complex word, ${ }^{9}$
19. *John look up-ed the information 128

This will follow on Kayne's analysis, since the verb and particle are not a unit of category verb.
[2] A complex verb analysis does not account for why comm plex verbs cannot be followed by a pronominal object; thus (20) is ungrammatical on the reading where it is taken as a direct object of look up, rather than as the object of the preposition up,
20. *John looked up it.

In Kayne's analysis, (20) would be derived by rightwards movement of the pronoun from within a small clause headed by up; Kayne argues that the ungrammaticality of (20) is a reflex of a general filter on the output of rightwards movement, which requires that the moved NP be "heavier" than material it moves over (see Kayne, p. 127); particles will have a weighting higher than pronouns, and (20) will thus violate this filter.
[3] A complex verb analysis, Kayne argues, does not account for the fact that for a majority of speakers complex verbs have to be excluded from predicative small clause constructions or dative constructions, such as (15b) and (16b). Under the complex verb analysis and normal assumptions about subcategorization, we would on the face of it expect such constructions to be possible. As noted above, the ungrammaticality of such sentences, and the mandatory middle position for the particle (15/16a) follow on Kayne's analysis from conditions on the assignment of case.
[4] Similarly, Kayne argues that complex verbs would have to be excluded form cooccurring with infinitives having idiomatic subjects or there as subject. While the sentences in (21) are grammatical, those in (22) are ungrammatical,
21. a (?)They are trying to make out John to be a liar 59
b They are trying to make John out to be a liar 60
22.a *They are trying to make out advantage to have been taken
b *They are trying to make advantage out to have been taken of them 67

```
c *They are trying to make out there to be no solution to
                                    this problem }6
d *They are trying to make there out to be no solution to
    this problem }6
```

Kayne's analysis for (21-22) is as follows. Sentences such as those in (21a) will be derived by rightwards movement of the sentential subject of the small clause headed by out, followed by movement of the infinitival VP, with insertion of a subject that is effectively a $P R O$, creating a control structure. The s-structure of a sentence such as (21a) will thus be,
23.

Sentences such as (21b) can be derived with movement of the infinitival VP only. The sentences in (22) will be ruled out by a general prohibition on idiom chunks and there as controllers (cf. from Kayne, p. 115, *'There were reptiles before being mammals'; *'Advantage was taken of John's inattention before being taken of his stupidity')
[5] Kayne's fifth argument concerns wh-movement. With plain (non-particle) verbs, the second object in a double NP construction can be questioned,
24.a We handed John the tools.
b Which tools should we hand John first? 133

Kayne observes that even for speakers who accept sentences such as (16b) (=25a), (25b) is ungrammatical, in contrast to (24b), 25.a We handed down John the tools
b *Which tools should we hand down John first?
Kayne's argument is that if (24a) and (25a) have essentially the same structure, as the complex verb analysis claims, there should be no contrast between (24b) and (25b). On Kayne's analysis, the
ungrammaticality of (25b) follows from movement of the wh-phrase from its derived structure position, adjoined to the small clause projection of down; (cf. the structure in (18) above). That position is an \AA position, which may not be a variable site.
[6] Kayne's final argument concerns the intensifier right, which can occur before P in particle constructions, but not before P in compounds,
26. ?John looked right up the information 135
27. *John right upended the rocking chair 136

The argument is that the distinction is to be expected if right cannot modify constituents of complex words, and $V--P$ sequences are not complex verbs.

The following alternatives to Kayne's points can be proposed, under a complex verb analysis of particle constructions. ${ }^{10}$

Kayne's point [1] loses some of its force if we adopt the modificational structure for verb particle constructions sketched above (section D), where the head V is at a bar level lower than that of the particle that modifies it. Inflectional endings will be placed on the head of the word (V^{-1} for particle verbs), excluding look up-ed. The right argument (point [6]) might be handled in a similar manner. The correct distribution for right could be obtained if right is a specifier to words at category level n, and particles in particle verb constructions are at the requisite level and prepositions/particles in compounds are below it. However, this would require some change in the proposal above that particles in particle verb constructions and compounds are both constituents at level 0 (word), with a concomitant change in the assumption that constituents of words are always at bar level 0 or lower (if P level l is admitted into particle constructions). 11

Kayne's argument [2], concerning the ungrammaticality of 'John looked up it', loses force in view of sentences such as (28),
28. *John gave Bill it.

In Kayne's analysis of datives (cf. the structures for (16a) above and Kayne 1984, Chts 7 and 9), it should be possible to base-generate such sentences, and their ungrammaticality cannot beattributed to a "weight" filter on the output of rightwards
movement. Examples such as (28) suggest that the filter may apply more generally to block a pronoun object occurring to the right of a heavier constituent in a manner that potentially will cover both (28) and (22), with a complex verb analysis for the latter.

Kayne's third argument is that there is an absence of constructions such as (15b) and (16b) ('John made out Bill a liar'; 'John handed down Bill the tools'), contrary to expectations under a complex verb analysis and normal assumptions about subcategorization. In response to this argument, we can propose a different analysis, which will both permit particle verb structure and require the particle to follow the first object in such constructions. We will assume the base structure to be one in which at least the first $N P$ is sister to V°. We will take the dative case as the paradigm case, since there the meaning of the particle verb is maximally compositional, and make the following assumptions. In the internal structure of complex verbs, each constituent can separately specify the thematic role of an argument. For hand down, hand will specify THEME and down will specify GOAL. The following condition will apply: if an argument is syntactically realized, it must be c-commanded in sstructure by the element that determines its thematic role. ${ }^{12}$ If the NP-P order in English particle constructions is derived from a complex V D-structure by virtue of a rule of particle movement that raises the P to a position under Vl, then that rule will make legitimate double object constructions with verbs such as hand down. The contrast between (16a) and (16b) is thus accounted for by the c-command condition on theta-role assignment, plus the existence of a particle movement rule that raises the particle into a position where it c-commands the first object. This analysis predicts that if a language had complex (particle) verb constructions, but did not have a particle movement rule, then there would be no sentences such as (15b) and (16b), since there would be no way to make the s -structure conform to the c-command condition. Swedish appears to fit this prediction. It does not have particle movement, and, as far as I can tell from questioning my informants, it does not have double object constructions with particle verbs. ${ }^{13}$

The analysis of the middle placement of the particle in double NP constructions given here is intuitively most plausible where
the relation between the particle and the NP to which it putatively assigns a thematic role is fairly transparent (so, for example, (16b) has the paraphrase 'John handed the tools down to Bill', where 'down to Bill' can have PP status ('It was down to Bill John handed the tools')). It can be counted as a mark in favor of this approach that the middle position preference may be relaxed where the meaning of the verb plus particle is relatively non-compositional, and it is less plausible that the particle assigns a thematic role independently of the verb. This relationship between how close-knit the verb and particle are and placement of the particle was noted by Bolinger (1971, p. 179), who finds the following sentences equally acceptable,
29.a Pack your brother up a nice lunch
b Pack up your brother a nice lunch. 14
Kayne's fourth argument concerns idiom chunks and there in sentences such as those in (22). His account is that rightwards movement of the infinitive from within a small clause creates a control structure, which is illegitimate for sentences with idioms and there, since idiom chunks and there are in general barred from being controllers. An alternative account under a complex V analysis is to posit a tell-type control structure in the base for particle verb constructions with infinitival complements; the D-structure for (2la) and (22a) will then be,
30. They are trying to make out [John] [PRO to be a liar] 31. They are trying to make out [advantage] [PRO to have ...]

The sentences in (22) can then be ruled out on the same ground that Kayne excludes them (the bar on idiom chunks and there as controllers), but with an analysis that allows complex verbs.

Kayne notes that idioms and there are better in infinitival comlements to particle verbs when the particle construction is passive,
32. ?Advantage was made out to have been taken of them 72
(?) There was made out to be no solution to this problem
a fact that Kayne atrributes to passive having placed the idiom chunk/there in a position where it c-commands the subject of the infinitive, which can then be interpreted as a trace bound by the subject. rather than as PRO (cf. the structure 22). An alternative is to treat sentences such as those in (32) as raising constructions (cf. the non-particle be said) separate from the

Argument [5] concerned whwovement. To be accounted for is the fact that (24b), with extraction of second object in a non-particle double NP construction is good, but the seemingly same extraction in (25b), with a particle construction, is ungrammatical. In the spirit of Fodor (1978), there may be an explanation of this contrast that is based in processing, rather than in principles of grammar per se, and which is consistent with a complex verb analysis of particle verbs. It is well-attested that the sentence processor fills a wh-phrase into available positions in the incoming string, on occasion erroneously anticipating the structure of the VP (see, for example, Fodor 1978; Stowe 1984). The distinction between (24b) and (25b) can be accounted for in the following wayr under a complex verb and particle movement analysis. In $(24 b)$, the word following the verb hand is the indirect object John, which will alert the processor to the correct analysis, with the wh-phrase in final position; by contrast, in (25b) the verb hand plus down can be integrated into an incorrect analysis ('handed which tools down'). The difference between (24b) and (25b) can thus be accounted for as a difference in whether the correct analysis can be arrived at with only one word after the verb in hand. The erroneous analysis for (25b) may be promoted additionally by the fact that the particle down can be taken (incorrectly in the case of (25b)) as signal for closure of the verb phrase.

To summarize this section, for almost all of Kayne's arguments against a complex verb analysis, it is possible to propose an alternative analysis of the facts that is consistent with a complex verb account that conforms to the X-bar theory of word structure sketched above. In the case of the distribution of inflectional morphemes, the analysis depended on the head-modifier account of complex V structure suggested in section D. In the case of the order of constituents in dative particle constructions, our analysis depended on the existence of a particle movement rule, and makes the prediction that languages that differ in the presence vs. absence of such a rule will differ in the possibility of particle constructions with double objects; the facts of English vs. Swedish appear to support this prediction. Positing different structures to those of Kayne for infinitival complements to particle verbs allowed the control facts with
respect to idioms and there to be accounted for. Wh-extraction facts were given a processing account. The right argument was not neatly dealt with, in that allowing particles to have specifier structure in verb particle constructions but not compounds requires some relaxing of the condition that constituents of words are categories at bar level 0 or lower. ${ }^{15}$
F. CONCLUSION

Having gone to some pains to reply to the arguments of detractors of a complex verb analysis for particle constructions in both Swedish and English, I should add that that is all that I have done. The fact that objections to a compler verb analysis can be answered does not mean that the complex verb analysis is at present strongly motivated in comparison with its competitors. For example, an apparent virtue of the analysis above, where English and Swedish differ in the existence of a pariticle movement rule that raises the particle to a position where it c-commands the first object is that it allows an account of why Swedish lacks particle double object constructions. However, it appears that this lack is common to Norwegian and Danish also, languages which, like English, have particles following the object (obligatorily in the case of Danish). ${ }^{16}$ Possibly particles that follow the object in languages that do not have double NP particle constructions are restricted in their meaning and/or by interpretive rules in such a way that they cannot legitimize the double object construction. 17 Whether this is in fact the case, or whether the absence of double object particle constructions in Scandinavian languages is merely a linguistic happenstance, seems an interesting question to pursue.

FOOTNOTES

1. Ejerhed (n.d.) uses the term compound stress to refer to the pattern of stressing on the particle. The rule that assigns stress to the particle may not in fact be part of the system of rules for stressing compound words in Swedish (below it is suggested that verb plus particle constructions are complex words but not compounds, as defined in a recent study of compounding). The stressing operation involved is more plausibly one that unifies a syntactic and/or semantic unit with endstress, and which is responsible also for the stressing of the preposition in constructions such as (2), below (see Anward and Linell 1976, Ejerhed 1979, n.d. for discussion of a range of pertinent data; Rischel 1983 discusses similar phenomena in Danish).
2. The following spatial prepositions permit the type of semantic alternation illustrated in (2-3): bakom (behind); under (under); över (over); på (on); framför (in front of); emellan (between).
3. The speaker I have questioned in most detail in some cases finds gapping of the verb alone acceptable to some degree, in addition to gapping of both the verb and the particle. For example, her judgements were as indicated on the following sentences:
ia Per bröt av grenen och Kalle bröt av kvisten
'Per broke off the branch and Kalle broke off the twig'
b OK Per bröt av grenen och Kalle $\varnothing \quad \varnothing$ kvisten
c ? /* Per bröt av grenen och Kalle \varnothing av kvisten
It is not clear what status should be assigned to examples such as (c). One possibility is that in some cases a speaker may compute (permit) a prepositional analysis as well as a particle analysis for the string, resulting in a degree of acceptability for the (c) type sentences.
4. Passivization is also a potential test of the distinction between (1) and (2-3) on the assumption that direct but not prepositional objects in Swedish may passivize (cf. Maling and Zaenen 1985, section 4). I have not checked many examples, but it appears particle constructions (defined as such by
the gapping test) allow passivization and sentences of type
(2), like sentences of type (3), do not freely passivize, except
with the preposition pa in passives with the verb bliva,
ia. Katten spráng pà elefanten
'The cat ran on top of the elephant'
b. Katten sprăng pá elefanten
'The cat bumped into the elephant'
c. Elefanten blev pasprungen av katten

The elephant was bumped into by the cat'
(Gapping of the preposition for conjoined sentences with
springa pa is rejected by everyone I have queried, with as well as without stress on the preposition).
5. Ejerhed (1979, n.d.) mentions some other points that potentially bear on the syntactic analysis of particle constructions, none of which is conclusive, as she notes. She argues against a richer analysis of the internal structure of particle constructions (in which the verb contains a VP in its internal structure, as suggested by Anward and Linell 1976) on the ground that verb particle constructions show no examples of alternation between compound stress (destressing to the left) and stress on both constitutents, parallel to contrasts found for lexicalized vs. non-lexicalized noun phrases,

Víta Húset 'the White House' vs.
det víta húset 'the white house'
6. Ejerhed (1979, n.d.) makes this point with examples such as få se ('catch sight of'). The sentence 'Per fick se flickan', with stress on se, has the structure [Per fick [se flickan]].
7. Another alternative is that the in-location reading is associated with a PP at a higher V-bar level than that of a PP with the towards location reading, with a correspondingly greater freedom to prepose in the in-location case. That would allow a structural basis for the assignment of stress and thematic role (section C, below).
8. A further difference not discussed here is incorporation of the particle to the left of the verb in participial forms in Swedish.
9. Numbers to the right are numbers from Kayne's article.
10. This discussion covers only the points Kayne makes against a complex V analysis (p. 125-127), and is not a complete alternative to his account of particle constructions (see footnote 15 for some discussion of points not covered in this section).
11. A different tack would be to derive examples such as (26) with right plus particle in end-position, extraposition of $N P$ accounting for the surface order of (26). Kayne notes such examples are improved with a more complex object (Kayne's example, p. 127, 'John looked right up the information I had asked for'), consistent with the general ease of extraposition of 'heavy' NPs. This suggests a general variant on the analysis below (where particle movement raises a particle to the right of the object), in terms of intraposition and incorporation of the particle as part of the complex verb.
12. The approach here is similar to that in Lieber's 1983 analysis of compound formation in English. Possibly c-command as a condition on thematic role assignment for syntactically realized arguments will generalize constraints on compounds and particle constructions (Lieber (p. 255, fn. 6) leaves the latter out of her analysis), but I have not worked this through in detail.
13. The verbs ta pa ('put on') and ta av ('take off) are exceptions to this statement,
i. Jan tog på henne skorna
'Jan put on her the shoes'
14. Kayne (p. 126) emphasizes that he is concerned with syntactic deviance of the $V P N P N P$ sequence: "The claim is that there are no such combinations, even idiomatic, that would make [such sentences] acceptable to all, or even most, speakers". My approach differs somewhat in taking the semantically transparent cases as at the root of the ordering restriction, with the implication that the deviance of idiomatic V P NP NP sequences for many speakers is due to some kind of influence of the clear cases on judgements of the idiomatic cases.
15. The general aim of Kayne's analysis is to demonstrate that the grammar of particles will follow from the small clause analysis in interaction with general principles of grammar, and the viability of a complex $V / p a r t i c l e ~ m o v e m e n t ~ a n a l y s i s ~ w i l l ~ d e p e n d ~$ not just on whether Kayne's arguments against a complex V analysis can be answered, but on how the total data covered by Kayne's analysis can be accounted for. There is not space here to detail all of Kayne's arguments. Among the arguments he gives in favor of a small clause approach to particles is that it allows a principled account of the similar behavior of $V N P$ Adj and V NP P sequences in nominalizations (*'John's consideration of Fred honest'; *'John's calling of Bill up') and of extraction facts not dealt with in section E (particularly, the ungrammaticality of extraction of the object of a prepositional complement to NP before a particle (*'Who has the cold weather worn the sister of out?') and of the first object in double NP constructions (*?"Who should we hand (down) the tools'), both of which involve extraction from within a left-branch on Kayne's analysis (pp. 103 and 117-118). One drawback of Kayne's analysis is that verb-like aspects of the behavior of $V--P$ sequences (the possibility of being followed by an NP and other complement types (p. 107-8 and 128)) and the possibility of nominalization with the particle in immediate postwverbal position ('John's calling up of Bill') require introduction of a special mechanism of theta role-percolation to distinguish particle and adjectival small clauses (p. 128-130). Gapping is not discussed in Kayne's article, and it is a point in favor of a non-small clause analysis that Kayne's analysis, in which the particle and NP comprise an immediate constituent of a projection of V, incorrectly predicts gapping of a verb plus particle (example $9 b$ in the text) to be ungrammatical.
16. I have not checked this for predicative constructions in Danish. Herslund (n.d.) notes the absence of double NP particle datives in Danish, with the exception (fn. 8) of give tilbage ('give back'),
i. De gav ham hans penge tilbage
' They gave him his money back'
observing that this use of tilbage does not freely extend to other aouble-object taking verbs. From my informants' judgements ge (NP) (NP) tillbaka is a similarly restricted exceptional construction in Swedish. (See also Kayne 1985, p. 120 on the fact that back in English is acceptable in final position after two objects, unlike particles such as down).
17. The same structural position may be more restricted in interpretation in one language than another. $\AA f a r l i$ (1985) argues end. placed particles in Norwegian participate in a causative rule system. The following examples illustrate that end-placed particles in English also occupy a position associated with result or cause. In (ia) sweaty may have a result interpretation; in (ib, c) sweaty may only have a predicative interpretation (with respect to either John or the pigs),
ia. John drove the pigs sweaty
b. ?John drove in the pigs sweaty
c. John drove the pigs in sweaty

It is not plain to me whether the preference for middle position of the particle in adjectival constructions (noted by Jackendoff 1977, p. 67) has the same source as the preference for middle position in double NP constructions. One possibility concerning the deviance of semantically transparent examples such as (ib) is that there is a tendency to misconstrue the final adjective as a result, which will be inadmissible since result is preempted by the particle.

ACKNOWLEDGEMENTS

This work was supported by funds from the Swedish Institute and the Graduate School of the University of Wisconsin-Madison (project no 170668 to Helen Goodluck). Elisabet Engdahl and Christer platzack among others provided helpful references and comments and Anne-Christine Bredvad-Jensen was a particularly patient informant.

REFERENCES

Anward, J. and P. Linell. 1976. Om lexikaliserade fraser i svenskan, Nysvenska Studier, Arg 55-56, 77-119.
Bolinger, D. 1971. The Phrasal Verb in English, Cambridge, MA: Harvard University Press.
Ejerhed, E. 1979. Verb-partikel-konstruktionen i svenska: syntaktiska och semantiska problem. O. Josephson, H. Strand, N. Westman (eds). Förhandlingar vid sammankomst for att dryfta frågor rörande svenskans beskrivning ll, stockholm.
Ejerhed, E. n.d. Swedish verb-particle constructions: semantic and syntactic problems. Ms.
Emonds, J. 1972. Evidence that indirect object movement is a structure preserving rule. Foundations of language, 8, 54661.

Fodor, J. 1978. Parsing strategies and constraints on transformations. Linguistic Inquiry, 9, 427-453.
Gruber, J. 1976. Studies in Lexical Relations. In Lexical Structures in Syntax and Semantics. North Holland Publishing Company, Amsterdam.
Herslund, M. n. d. The double object construction in Danish. Ms. University of Copenhagen.
Jackendoff, R. 1977. \bar{x} Syntax: A Study of Phrase structure, Cambridge, MA: The MIT Press.

Kayne, R. 1984. Connectedness and Binary Branching. Foris Publications, Dordrecht.
Kayne, R. 1985. Principles of particle constructions. In Grammatical Representations, edited by J. Guéron, H.-G. Obenauer and J.-Y. Pollack. Foris Publications, Dordrecht.

Lieber, R. 1983. Argument linking and compounds in English. Linguistic Inquiry, 14, 151-85.
Maling, J. and A. Zaenen. Preposition stranding and passive. Nordic Journal of Linguistics, 8, 197-209.

Neijt, A. 1979. Gapping: A Contribution to Sentence Grammar. Foris Publications, Dordrecht.

Rischel, J. 1983. On unit accentuation in Danish - and the distinction between deep and surface phonology. Folia Linguistica, XVII/l-2, Special Issue "Prosody".
Selkirk, L. 1982. The Syntax of Words. Cambridge, MA: MIT Press.
Stillings, J. 1975. The formulation of gapping English as evidence for variable types in syntactic transformations. Linguistic Analysis, 1, 247-74.
Stowe, L. 1984. Models of Gap Location in Human Parser. University of Wisconsin dissertation, distributed by the Indiana University Linguistics Club.
Afarli, T. 1985. Norwegian verb particle constructions as causative constructions. Nordic Journal of Linguistics, 8, 75-98.

A visit to China 29.4. $=7.6 .1986$

Eva Gàrding

In the fall of 1985 I was invited to lecture and do research at the Institute of Acoustics of Academia Sinica, Beijing. IVA, the Swedish Academy of Engineering Science, actepted me in their exchange program with China. Lund University gave me a travel grant from Elisabeth Rausing's foundation. What follows is a translation of my report to IVA and Lund University.

The Ifstitute of Acoustics, which was founded in 1964 , has about 200 employed researchers and comprises 13 laboratories with activities renging from signel processing, underwater acoustics, room acoustics, geo acoustics etc. to the acoustics of speech. The activities include basic research with applications as well as supervision of master's dissertations and doctoral dissertations. The head of the speech acoustics laboratory is Professor Jialu Zhang.

My invitation to China was motivated by a collaboration between the Institute of Acousticg and the Phonetics department in Lund which Etarted during the spring of 1983 wher Professor Zhang was a guest researcher at a project dealing with some non-European languages, among those Chinese; and sponsored by the Research Council. The interest in intonation among speech engineers has to do with the present development of text-to-speech and speech-to-text systems. Zhang had become interested in the model for analysis and synthesis of swedish intonation which had seemed applicable also to Chinese.

In the traditional view of intonations words with their tones or accents are regarded as basic primary units and the sentence intonation expressing statement; question, etc. as secondary. The difficulty will then be to explaim the varying manifestations of accents and tones that occur in practice. In our model this order is reversed. Accents and tones are superimposed on a larger movement determined by sentence intonation. In this way the different manifestations of accents and tones in the sentence can be derived by rather simple rules. The model is more ecoromical than the traditional one and has a natural relation to speech psychology.

At the Acoustics Institute I gave a series of lectures, entitled "Intonation across several languanges". They were organized according to the communicative functions of intonation, ine. to mark lexical units, to partition speech into phrases, to show the foeus and syntactic kype of the sentence and the emotionad attitude of the speaker. The examples, taken from Swedishs Frenchs Erglish and Chinese, were intended to show that if lexical markings are factored out, the intonation expressing the other functions of communication is remarkably similar.-- Some days were spent on sketching an outline for future collaboration on intonation.

I also gave two dectures at the spring institute of modern phonetics in Tianjin for university teachers from all over China. The titles were "The structure and manifestations of intonation" and "Learning and teaching problems in the light of a model for prosody". The first of these lectures was later giver, at Beijing University. There I could also test, with the aid of professor Zhang, stimuli which hade been prepared in our laboratory by shi Bo, a research student from the Acoustics Institute who has a grant from the Swedish Institute. The work is part of her research project whose aim is to quantify our qualitative model.

I Iived in comfortable quarters at the Friendship Hotel where Acedemia Sirice houses her guests and provides them with a car and driver. Sightseeing and evening entertainment were part of the program. In the restaurant of the hotel I met scientists from many countries invited by Academia Sinica. The concensus was that China's efforts to improve research and higher education were promising. These efforts were a standing theme in the English language newspaper "China Daily" and it was emphasized there that exchange prograns for research are essential for the economic development of the country.

Together with my husband Lars Garding, who had been a guest lecturer at Nankai University in Tianjin, I was invited by its mathematical institute to a two week tour of southwest China with visits to the universities of kunming, chengdu, Qufrgqing arid Wuhan.

I was impressed by the kindness and care shown to me and the interest in my scientific work. Professor Zhang emphasized more than once the importance of contact between speech technology and speech science.

I should like to thark in particular my hosts professor Zhang, and his collaborators at the speech acoustics laboratorys Mr Qi and Mr Lu as well as the present and former director of the Acoustics Institute, Professor Guan and Professor Max for all favours rendered to me. I am also grateful to Professor King and Mr Shi of the Department of Chimese Linguisties at Nankai University for their kird reception and hospitality.

Production and perception of phrases in some

Nordic dialects

Eva Garding and David House

Abstract

Paper presented at the sixth International Conference of Nordic and General Linguistics. August 18-22; 1986s Helsinki.

Introduction

Intonation helpa us group words into phrases and phrases into sentences. This grouping is achieved with the aid of both connective and demarcative features. I have listed mome of them here.

Connective signals may be:
(1) similarity of the elements of the group
(2) recurrent special patternss rhythmic or melodic /i/
(3) tonal links between the elements (junctures)

Demarcative signals may be:
(1) breaks of similarity, for instance by the introduction of new elements dike pauses, internal juncturess etc.
(2) special markers used to denote the besinning or end of a group.
(3) boundaries between recurrent patterns

Phrasing occurs not ondy in speech but in all sorts of
time-ordered sequences, in bird song and music to give you two examples. Even here it is meaningful to speak of connective and demarcative signals /2/.

Take the song of the chaffinch for instance. It repeats the same pattern over and over again. As you can see in the spectrogram (Fig.1), the pattern has different groups connected by similarity of the elements, an introductory ti, ti, ti followed by a trill which changes to a slower trill which ends with a special marker, the concluding tiuiu. Note that the entire pattern is falling. The part of the song that you can see in the spectrogram is called a strophe by ornithologists (e.g. Bergmann \& Helb 1982, from which the spectrogram is borrowed) and the groupings of similar elements are called phrases.

The next example is from Beethoven's bagatelle opus 33 No. 6 (Fig. 1). In this line, up to the point which has been marked by an arrows there are two groups of equal duration. The first group is falling with two markers, an introductory onset and a final strong long note. Beethoven marks this group with a slur. The second group starts with an onset and ends with a final marker consisting of three notes. This group is marked by three slurs, indicating three subgroups, one over the rising part and two over the final falling parts. The similarity with the intonation and rhythm of spoken sentences may be the reason why Beethoven added Con una certa espressione parlante to this piece. The grouping of music by melodic and rhythmic means is commonly referred to as phrasing. It is a very essential part of music and all important in its execution.

After this general iftroduction, I will only talk about phrasing in speech. Our talk is a report on work in

Fringilla ceolebs

Fig. 1 Examples of phrasing in bird song and music
progress. It aims at studying the production and perception of phrases in different prosodic systems. For today's talk we have chosen Swedimhs Danish and Finnish /3/. I will talk about the production of phrases in a simple grouping experiment and make a summary comparison with real speech and David House will talk about some perception experiments.

Let me start with a rough definition of a prosodic phrase. A prosodic phrase is part of an utterance in which accents or tones are coordinated in anifying intonation pattern.

A grouping experiment

I will first describe a simple experiment in which speakere of different Swedish dialects and of Danish and Finnish were asked to say a series of fives, we called it a telephone number, as an ungrouped sequence and in groups of two and three and three and two, all in declaretive intonation. The speakers used their respective languages and the finns the colloquial monosyllabic form viis. With a sequence of numbers we meant to have stable experimental conditions with controlled influence from semantics and syntax.

You will now hear recordings of some of our informants and at the same time we will show you the corresponding pitch curves. The figures are practically self-explanatory. Just a few comments are needed. Look at Figure 2; for instance. The thick lines mark the intonation over the vocalic part of the syllable, the thin lines mark the voiced consonants and the dotted lines the vaiceless ones. These dotted lines indicate the intonation movement masked by the voiceless segments. The parallel broken lines which enclose the curves are

HELSINKI

Fig. 2 Pitch curves from groupings of fives
auxiliary lines. de call them grids. They make it easy to sex the general direction of the intonation and the point in time where there is a chenge of directione This point is Eabled a pivot and it is marked by an arrow. The width of the grid is correlated to stress. The wider the grid, the stronger the stress. A grid is convenient because it gives a combined measure of stress and pitch /4/.
(Here followed a demonstration of speakers from Helsinki, Stockholmg Gothenburg, Malmö and Copenhagen, accompanied by Figures $2,3,4,5$ and 6.)

It is obvious from what you have just heard and seen that the speakers use both general and language-specific prosodic features to perform the required groupings. Let us look more closely at Figure 7 where I have combined the groupings performed by speakers from Helsinki and stowkholm.

The Finnish speaker has a wide, rather level grid for the first phrase and a narrow falling grid for the second. In the wide grid we see a special pattern in the group of three, which we can label High-Low-High. This gives it a trough-like tonal shape. The second group has a similarity pattern with three individual falls.

The stockholm speaker has rising-falling grids to mark the two phrases. Like the Finn, she has a trough-like pattern in the first group but unlike hims she has a special markers the rising movement to the high phrawe accent for the non-terminal phrase and the same high phrase accent combined with a terminal fall to mark the end of the final group. The high phrase accent is typical of Central Swedish dialects (Bruce 1977). All in alls this is the tonal manifestation of an iambic or anapestic rhythmic group compared to the finn's evenly spaced viises forming spondaic groups.
300

STOCKHOLM

Fig. 3
Pitch curves from groupings of fives

GOTHENBURG

Fig 4

Pitch curves from groupings of fives

MALMÖ

Fig. 5
Pitch curves from groupings of fives

COPENHAGEN

Fig. 6 Pitch curves from groupings of fives
Pitch curves derived from groupings

These two speakers gave an example of a language-specific difference in grouping habits.

The Stockholm and Malmo speakers are examples of dialect-dependent variation (Fig. 8). The high phrase-final accent of stockholm is in skane manifested as a low accent. Whith is one of the reasons why these two dialects sound so different. Another reason is the Skane speaker's spondaic phythm which, not surprisingly, makes it more like Danish.

There are also examples of free variation in our material with some speakers using different strategies in their repeated renderings of the groups. Figure 4 gives an example of a Gothenburg speaker who wavers between two consecutive falls and a rise-fall for the groupings of the number.

Now let us look for some general principles present in all of the investigated dialects.

As demarcative signals all the speakers use pivots, manifested as pauses or a change of the grid range or grid direction. As connective signals all the speakers, irrespective of language and dialect, use falling similarity patterns in the second groups carrying declarative intonation, and speciad patterns in the firet group fig. 7). The shape of the special pattern is determined by the terminal part of the group, a rise tends to be preceded by a fall and vice versa. The shape of the terminal part is dialect dependent. In groups of three, the mid accent is weakened and lowered which is a stable contribution to the pattern.

On the whole, this material reveals a very strict preplanning. When the last group is falling, the first group is level or rising. When the last accent of a group is
Pitch curves derived from groupings

\rightarrow

MALMÖ

| | GROUP 1 | GROUP 2 |
| :---: | :---: | :---: |
| HELSINKI | | |
| STOCKMOLM | | S. |
| GOTHENBURG | | 10 |
| MALMÖ | | $\begin{aligned} & 1 . . .1 \end{aligned}$ |
| COPENHAGEN | | |

Special patterns and similarity patterns
in groups of 55-555 and 555-55

Fig. 9
Special patterns and similarity patterns in groups of 55-555 and 555-55
rising, the preceding ones are falling, etc.

Phrasing in read speech

For this short talk we have decided to give preliminary answers to two questions. One has to do with connective signals, more precisely, the order-bound use of similarity patterns and special patterns. Is there any correspondence to this im real naturad speech?

To find an answer to this question, we used a recording of a spontaneous conversation between stockholm peoples moderated by Bengt Loman in Malmö in 1966. (Garding 1967a is an analysis of this materiall.

The answer is Yes. Similar things do occur. Factors that determine the choice between special patterns and similarity patterns seem to be semantic importance and semantic coherence. In fluent narrative style the great majority of sentences seem to contain a focussed part, the rhemes which often comes early in the sentence. It is phonetically marked by a wide grid and itselements are closely connected in a special pattern. The rest of the sentence is backgrounded with similarity patterns in more or less compressed grids.

The other question that we asked of the material has to do with demarcation. What about phrase boundaries in real speech? Here one has to distinguish between precise boundaries and boundary regions. Precise boundaries are possibie to detect in the acoustic record only when two accented myllables meet with an internad juncture between them /5/. In other cases, precise boundaries are replaced by boundary zones monsisting of consonants or unaccented syllables of which some may be enclitic and others
proclitic. Their intonation forms a bridge between the adjoining accented syllables and this bridge is constructed according to the principle of the shortest way (Garding and House 1985).

The implication is that in this case the precise boundaries cannot be detected by acoustic criteria, quite simply because they are not there. What issteners do, then, if they are asked to segment such a sentence into phonetic phrases, is to let syntactic and semantic criteria guide their segmentation (Garding 1967a p. $51 \mathrm{ff}$.).

With this comment we have approached the perceptual part of our talk and David House will take over.

Perception of grouping

I am going to talk about some perception experiments which tested the relevance of the features we have observed. In particular we are interested in tha relevance of the grid and the pivot as wonnective and demarcative signals/6/. For the tests 34 different synthetic stimuli consisting of sequences of fives were randomized and presented to 20 Swedish listeners according to standard procedure. Each stimulus received 100 responses. Listeners were asked to judge if the stimuli were grouped $2+3$ or $3+2$. As test stimuli we used manipulated variations of a natural Scanian fem 'five'. Note that pause is not one of the variables and that only tonal patterns are represented in the material.

Figure 10 shows a few examples of the stylized tonal contours used as stimuli. The results are given as percent "correct" response where "correct" means "expected" or "anticipated" For example, we expected stimulus 1 , designed
\% Correct

N

\% Correct
responses

Stimulus

Fig. 10
Examples of stylized tonal contours used as stimuli
to test a hat-like pattern as a connective signal to be grouped as $3+2$ and, indeed, 74% of the responses were $3+2 n$ Each stimulus has a countarparty in this case stimulus 2 With the expected grouping $2+3$. Here 72% of the respanses were $2+3$.

The next set of stimuli were designed to test the combination of a hat-like pattern and a large tonal movement as a demarcetive signal. When both the connective and demarcative signals were used, the results improved considerably. Stimulus 3 now received 82% and stimulus 492% of the votes.

The following set shows the power of the special marker alone. Here we get 94% and 86% More Examples are rising and falling patterns and a trough-like pattern as connective signals. Finally, the trough-like pattern is combined with a special marker which again improves responses.
(Here the 12 sample stimuli were played.)
Our test shows that similarity of consecutive elements is * good connective signal. So are recurrent patterns 1,2 hats, 9,10 troughs, and 7 a rise and fall).

The special markers, the large-size tonal movements sem to be the best demarcative signals. It is interesting that these markers, both the falling and rising ones; are judged to be final elements. One possible explanation is that in Swedish a large final tonal movement is a characteristic feature of phrase stress or juncture. A break of direction or resetting of a grid is also a good demarcative signal. One exception is number 8 where this demarcative signal seems to be in conflict with a connective signal consisting of three very similar elements across the intended border.

The prosodic phrase in our model of intonation

Let me now come back to the definition of prosodic phrase. It is natural to apply the term prosodic phrase to each group of our two-group sentences. Our originel definition of prosodic phrase in this talk is: a part of an utterance where accents and tones are coordinated in a unifying intonation pattern. We can now make the definition more precise: a prosodic phrase is a part of an utterance which is connected by a special pattern and bounded by pivots. A pivot can be s mpecial marker or a change of direction or range of the grid. This is the definition used in our model of intonation/7/. It provides a useful tool for analyzirg the aspects of intonation which help us group words into phrases and phrases into sentences, both in a Nordic and a general 戸erispective.

SUMMARY

The grouping of time-ordered sequences uses both connective and demarcative features. Connective signals are similarity of the elements of the group and recurrent special patterns. Demarcative signals are e.g. breaks of similarity and special markers at the beginning or end of a group. The relevance of such signals for speech was first tested in a grouping experiment with numbers: 55555 contrasted with 55.555 and 555.55. The experiment was carried out with speakere representing Finnish (Helsinki), Swedish (Stockholm, Gothenburg and Malmö) and Danish (Copenhagen).

A common feature for all these dialects is that groups (phrases) are coordinated in a common unifying intonational (pivoss) correspond to phrase boundaries.

Another comon feature in our material is the ordermbound use of similerity patterns toneisting of individual falls in the final group carrying declarative intonationg and the preference for a special pattern in the initial group. In initial groups of three, the mid accent is generally reduced.

The shape of the special pattern is dependent on the phrase-final accent which varies with dialect.

The number material suggests that there is a high degree of preplanning at two levels. At the sentence level the intonation of the last phrase seems to determine that of the first, and at the phrase level the shape of the last accent of the group determines the movements of the preceding ones. The governing principle seems to be one of contrast. A communication-carrying fall, as in a declarative sentence, is sharpened by preceding rise and vice versa.

There is a certain amount of free variation for some of the speakers.

Features comparable to those found in the number material are observed in a recording of spontaneous swedish speech. In a narrative style most sentences contain a focussed part marked by a wide grid and with its elements connected in a special pattern. The rest of the sentence is backgrounded with similarity patterns in compressed grids. As a rule, syntactic boundaries in a series of unaccented syllables are phonetically unmarked.

A complementary investigation of the perceptual relevance of connective and demarcative signalm demonstrated that Iisteners can use the corresponding acoustic correlates,
grids and pivotss as cues to divide a series of numbers into two groups. Duration was not a variable in these experiments as the duration of each synthesized stimulus and the interval between them were always the game. The most powerful cue was a large tonal rise or fall which was judged to be a final element in a group.

NOTES

/1/. The special patterns are determined by phonological rules. In function and partly in form they are comparable to the results of chinese sandhi rules.
/2/. In him classification of phonetic phenomena, Elert notes the importance of distinguishing connective features from demarcative ones (Elert 1970 p. 20).

13/. Earlier reports are Garding and House 1985 and House and Garding 1986.

14/. The notions of tonal grid and pivot with examples from several prosodic systems are explained in Garding 1984 and Garding 1985.

15/. In Garding's doctoral dissertations internal juncture is defined as a marked syllable boundary in a phrase (Garding 1967 b . 33). Acoustic correlates are glottal stops or lengthening of the segments at the boundary.
The first comprehensive analysis of internal juncture had been made by Lehiste for English (1960).
f6/. That intonation by itself is a cue to grouping is already known from results reported in the literature (Collier \& t'Hart 1975, Lehiste 1973).

17/. There are at present different versions of this model. See e.g. Bennert 1984, Bruce 1977, 1982; Bruce \& Garding 1978, GArding 1979, 1981, 1983.
An early presentation of the generative part of the model was given at the Second Conference of Nordic Languages and Modern Linguistics (Garding 1973).

REFERENCES

Bannert R. 1984. Towards a model for German prosody. Working Papers 27, Department of Linguistcs, Lund University: 1-36

Bergmann $H_{0}-H_{8} \& H_{0}-W_{0}$ Helb. 19g2. Stimmen der Vogel Europas. BLV Verlagmgesellschatt mb H. Munchen

Bruce 6. 1977. Swedish word accents in sentence perspective. Travaux de ${ }^{\text {s }}$ Institut de Linguistique de Lund XII. Gleerups, Lund

Bruce ©. 1982. Experiment with the Suedigh intonation model. In Preprints of Working group of intonationg Int. Congress of Linguistics, eds. He Fujisski \& E. Garding, Tokyo: 35-45 and Working Papers 22, Department of Linguistics, Lund Univereity: 51-116

Bruce G. 1964. Aspects of Fo deelinetion in Swedish. Working Papers 27, Department of Linguistices Lund University: 51-64

Bruce ©.\& E. Garding. A prosodic typology for Swedish dialects. In Nordic Prosody I, eds. E. Garding, G. Bruce \& R. Bannert. Travaux de 1'Institut de Lund XITI: 219-228

Elert C.-C. 1970. Ljud och ord i svenskan. Almquist a Wiksell. Stockholm

GádingE. 1967a. Prosodiska drag i spontant och uppläst tal. In Svenskt talsprak, ed. G. Holm. Almquist \& Wiksell. Stockholm: 40-85

Garding E. 1967b. Internal Juncture in Swedish. Travaux de $1^{\prime 2}$ Institut de Phonetique de Lund VI. Gleerup, Lund.

Garding E. 1975. Toward a prosodic typology for Swedish dialects. In Proc. Nordic and Modern Linguistics II, ed. K, -H. Dahlstedt. Almquist $\&$ Wikseli International, Stockholm: 466-475

Garding E. 1978. Sentence intonation in Swedish. Phonetica 36: 207-215

Gárding E. 1981. Contrastive Prosody: A model and its applitation. Studia Linguistica 35: 146-166

Garding E. 1903. A generative model of intonation. In Prosody: Models and measurements, eds. A. Cutler \& R. Ladd, Springer: 11-25

Garding E. 1984. Comparing intonation. Working Papers 27, Department of Linguistics, Lund University: 75-100

GArding Ex 1985. In defence of a phrase-based model of intonation. Working Papers 28, Department of Linguistics, Lund University: 1-18

Garding E.s A. Botinis \& P. Touti. 1982. A comparative study of Swedish, Greek, and French intonation. Working Papers 22, Department of Linguistics, Lund University" 137-152

Garding E. \& D. House, 1985. Frasintonation, särskilt i svenska. In Svenskans beskrivning 15 , eds. S. Allen et al. Göeborgs universitet, Goteborg: 205-221

House D. 19gs. sentence prosody and syntax in speech perception. Working Papers 28, Department of Linguistics, Lund University: 91-107

House D. \& E. Garding. 1986. Phrasing in some Scandinavian Dialects. Paper presented at the fourth Nordic prosody

Conference in Middelfart, Demmark. In preparation.

Lehiste I. 1960. An acousticmphonetic study of internal open juncture. Phonetica 5. Suppl.

Lehiste I. 1973. Fhonetic disambiguation of syntactic ambiguity. Glossa 7: 107-122

Loman B. 1966. A recording of a sportaneous conversation between Stockholm speakers. 2.5 hours on tape, in care of E. GArding.

Final report: Phonetic analyses of some

non-European languages (LUCLA)

Eva Gårding, Mona Lindau, Kjell Norlin

and Jan-Olof Svantesson

The acronym stands for a phonetic collaboration between Lund University and UCLA on a project sponsored by the Swedish Council for Research in the Humanities and the Social sciencos. The aim of the project was to provide phonetic data and analyses of Egyptian Arabic, Hausa, and Standard Chinese. Mona Lindau was responsible for Hausa, Kjell Norlin for Arabic, and Jan-Olof Svantesson and Eva Gårding (not paid) were responsible for the Chinese part. The Research Council granted additional financial support for Jialu Zhang (Acoustics institute, Academia Sinica, Beijing) who spent three months at the phonetics department in Lund. We have also enjoyed the collaboration of Paul Kratochvil (Faculty of Oriental Languages, Cambridge) and Kristina Lindell and Magnus Nordenhake (Department of East Asian Languages, Lund University). Peter Ladefoged (Phonetics Laboratory, UCLA) provided much technical support, computer programs, and encouragement. Taghrid Anbar (Cairo University) spent three months at Lund with a scholarship from the Swedish Institute, working on the pedagogical application of Arabic.

The goals of the project in the grant proposal were stated as follows:

1. Analysis of speech sounds and prosody.
2. Cross-linguistic comparisons.
3. Pedagogical applications

A major principle of the project was to collect data of the selected languages in a uniform manner, so that valid cross-linguistic comparisons can be made. The data collection consists of tape recordings of several speakers for each language so that the results are representative of the language, not just of a single speaker. Ten speakers of Kano Hausa were recorded in Nigeria, eight speakers of Cairo Arabic were recorded in Lund, and six speakers of Standard Chinese were recorded in Lund, Stockholm, and Beijing. These data were then subjected to acoustic analyses which have been presented as papers in journals (see Bibliography). The major results of the cross-linguistic studies are summarized below.

Stops

(The consonant systems of the three languages are shown in the appendix.)
All three languages have labial, dental/alveolar, and velar stops that are common in the languages of the world. Chinese has two series of stops, voiceless unaspirated and voicelesss aspirated. Hausa and Arabic have voiced and voiceless stops and in addition they have a third, more unusual, stop series. In Hausa this third series is described as "glottalized", in Arabic the third series is pharyngealized.

The durations of the closure and the aspiration in the stops were measured for all three languages. Data for closure duration and aspiration for Swedish from Lofquist. (1976) was used for comparison. Figure I shows a diagram of the mean values of these durations. The duration of the aspiration in Hausa, Arabic and Swedish are $30-60 \mathrm{milliseconds}$. These values are typical of languages with a voiced/voiceless contrast. In Chinese both series are voiceless and the burden of contrast lies in the aspiration. The duration of the aspiration in the socalled unaspirated stops is $5-30 \mathrm{~ms}$. The aspirated stops have a very long aspiration (about 100 ms). The closure durations are significantly different in the three languages, being the longest in Swedish, and the shortest in Hausa. The Hausa stops are thus generally shorter than Swedish stops. There was not a good correlation between closure duration and aspiration, so the relationship between closure duration and aspiration appears to be language specific.

The "glottalized" stops in Hausa are usually written $/ 6 /, / \mathrm{d} /$ and $/ \mathrm{k} / /$. The main characteristic of these stops in Hausa is a laryngealized phonation lasting throughout the stop and well into the following vowel for the voiced /6/ and $/ d /$, and following the release of the voiceless $/ \mathrm{K}^{\prime} /$. In addition, the voiced $/ \mathrm{\sigma} /$ and $/ d /$ are either implosive or weakened to $[\mathrm{w}]$ and $[\mathrm{z}]$, respectively, and $/ \mathrm{k} /$ is ejective. Just as the regular stops, these laryngealized stops are relatively short compared to implosives and ejectives in other languages, Mainly due to their laryngealized phonation, the implosive Hausa stops differ considerably from implosives and ejectives in neighbouring, unrelated Niger-Congo languages. This supports the notion that the glottalized consonants in Hausa are indigenous rather than borrowed (Lindau 1984).

Arabic plain and pharyngealized voiced stops show no significant difference in duration or waveform, and the voiceless plain and pharyngealized stops do not differ in the duration of the aspiration.

Fricatives

A method was developed to describe fricatives acoustically by measuring the spectral center of gravity and the dispersion of spectral energy on the frequency scale from critical band spectra. The fricatives were then plotted in this "space". In addition spectral intensity was considered. See Norlin (1983) and Svantesson (1983). Figure 2 shows the Chinese and Arabic fricatives

Hausa, Arabic, Chinese, Swedish
Figure 1. Aspiration and closure duration.
plotted with the spectral dispersion against the center of gravity. The fricatives are distributed in two classes, one front and one back. The front fricatives are separated from each other by a combination of these two parameters. The back fricatives of Arabic all have a relatively even distribution of energy with a low center of gravity. It is clear that these two parameters will not separate the back fricatives from each other. An additional parameter of spectral intensity is needed to separate all the fricatives from each other in Arabic.

Comparing the fricatives in the two languages we see, not surprisingly, that the seven voiceless fricatives of Arabic take up a larger part of the avallable fricative space than the five voiceless fricatives of Chinese. The /]/ fricatives

Figure 2a. Arabic fricatives.

Figure 2b. Chinese fricatives.
in the two languages are very similar, while the $/ 5 /$ iricatives differ. The Chinese /s/ has a lower center of gravity than the Arabic /s/

Vowels

Hausa and Arabic are examples of languages with the most common vowel system of all, a five vowel system with the vowels distributed more or less along the periphery of the acoustic vowel space. Both languages have five long and three short vowels. But in spite of their common phonological system and their genetic relationship the vowel systems of Hausa and Arabic do not behave in the same way.

Acoustic properties of Hausa vowels and diphthongs were investigated. The results show that Hausa is best described as having a five vowel system, where these five basic vowels have the qualities of the long voweis. Long vowels are derived as double basic vowels. Phonetically the long vowels are about twice as long as the short ones. The qualities of the short vowels are significantly different from those of the long vowels, but these quality differences can be accounted for by an undershoot mechanism in the speech production.

The results also indicate that the vowel system is currently undergoing changes. Figure 3 shows a formant chart of the long vowels in Hausa from the same environment of between alveolar consonants. The long /00/ has merged with long/uu/. The formant frequencies of these two vowels are not significantly different. In other environments, the /00/ is still somewhat lower than /uu/, so the merging of /uu/ and /oo/ is not complete. The basic vowel system may also be additionally modified by the fact that the diphthong /ai/ in most environments has lost its diphthongal quality and monophthongized to long [ee]. However, this monophthongized long [ee] is not the same as the basic long /ee/. Figure 4 shows a formant chart of the monophthongized long [ee] in comparison with the basic long/ii/ and /ee/. Although there is some overlap between the two long [ee] vowels, these two vowels are nonetheless significantly different (paired t-test: p<0.005).

Thus the long vowels in Hausa seem to be in the process of transition from a common type of symmetric five-vowel system to an asymmetric system of /ii/, [ee]>/ai/, /aa/, /uu/.

Figure 5 is a formant chart of the three short vowels in Hausa. Both charts show variation between speakers for each vowel, but the back vowels vary considerably more than the front vowels. The tendency for more variation in the back vowels has also been demonstrated for other languages (Keating and Huffman1984).

In Arabic, long plain vowels form well separated clusters with some overlapping for $/ \mathrm{ii} /$ and $/ \mathrm{ee} /$. Short plain vowels are central compared with the long ones, except short /a/ which occupies approximately the same place as long /aa/. Pharyngealized long and short vowels show the same relationships as the plain ones, except for some overlapping of /uu/ and /00/. Comparison of the

Figure 3. Long vowels in Hausa.

Figure 4. Hausa [ee].

Figure 5. Short vowels in Hausa.
vowels in plain and pharyngealized contexts shows differences related to the features high-low and front-back. The difference between plain and pharyngealized allophones is highly significant for long /aa/, is less prominent. for /ii/ and /ee/, whereas there is only a small difference or no difference at all for /uu/ and /00/ (Figure 6). On the other hand, short pharyngealized vowels are more back than short plain ones (Figure 7).

The Chinese vowel system is an example of an unusual distribution of vowels. Chinese has the peripheral $/ \mathrm{i} /, / \mathrm{L} /, /$ a/ and $/ \mathrm{y} /$, as well as a middle vowel $/ \mathrm{r} /$ with the allophones $[\mathrm{r}],[0]$ and $[\mathrm{e}]$. Figure 8 shows the formant chart of Chinese. All the vowels show about the same amount of variation between speakers. The vowels/i/ and /y/ overlap on the F1-F2 chart, but when the third formant is considered, there is a significant difference in $F 3$ between these two vowels.

Diphthongs

The diphthongs /ai/ and /au/ were studied for Hausa, Arabic, Chinese, and English (Lindau-Webb et al. 1985). Data from American English (Gay 1968) was also used for comparison. A model was devised where the diphthongs are described in terms of formant frequencies of steady state vowels linked by a transition. The interpolation is described using a trinomial equation.

Figure 6a. Long plain vowels in Arabic.

Figure 6b. Long pharyngealized vowels in Arabic.

Figure 7a. Short plain vowels in Arabic.

Figure 7b. Short pharyngealized vowels in Arabic.

Figure 8. Chinese vowels.

The results show that not only do these diphthongs behave differently in different languages, but the two diphtongs may behave differently from each other within one language, thus supporting language-specific, and even diphthong-specific treatment of diphthongs. In Hausa and Arabic the transition takes up a small percentage of the whole diphthong, while in chinese and English the tendency is for the transition to take up a large part of the diphthong. Thus the timing of the diphthongal transition is not constant for the "same" diphthong in different languages. The different timing relationships can be predicted from a principle of "the further to go, the longer it takes" (Fischer-Jorgensen 1964) for the /ai/ diphthong, but not for /au/. Thus the transitional rate and duration may be language specific, and even diphthong specific. Also the strategy of the transition taking longer time, if it has a longer time to go is not universal. Later research at UCLA demonstrated that in California English and in Japanese, speakers tend to follow the opposite strategy of "the further the faster".

Prosody

A similar material consisting of statements and questions in focus-free sentences and statements with focus in one of three possible positions was collected for all three languages (examples of pitch curves from the three languages are given in Figure 9). The descriptive framework developed at the Phonetics Department of Lund University over a number of years was used in the analysis.

The assumptions behind this model have recently been summed up in the following way (Gårding 1985):

1. Global intonation stretching over a phrase or a sentence can be separated from local intonation bearing on lexical accents and tones by regarding the accents and tones as superimposed on the global intonation.
2. Any undulating curve (e.g. an intonation curve) can be efficiently described by interpolation between local maxima and minima that we call turning-points.
3. Some of the turning-points for an intonation curve have a rather fixed position relative to the acoustic segments.
4. Giving the positions of these fixed turning-points in time and frequency is an economic way of describing an intonation curve.
5. The local up-and-down structure of an intonation curve usually repeats itself in a global up-and-down structure. This larger pattern is expressed by the tonal grid which in the ideal case is obtained by joining consecutive maxima and minima separately.
6. That part of the grid where the direction or width of the grid is changed or where the grid takes a jump is called a pivot. It marks focus or boundaries of prosodic phrases.

question
\downarrow

100-
400-

400^{-}
statement out of focus

100

400-

100-

statement, first part in focus

SÒNG YÁN MÀI NIÚRÒU

Figure 9a. Intonation curves for Chinese.

Figure 9b. Intonation curves for Arabic.

Statement

Figure 9c. Intonation curves for Hausa.

The acoustic correlates behind the concepts of the model and their communicative functions are summarized in Figure 10.

This model of intonation was successfully applied to all three languages, which represent different prosodic systems. Chinese is a tone language with four tones, Hausa is a tone language with two tones, and Arabic is a stress language.

The main result is that once the lexical tones and accents have been factored out, the intonational patterns associated with the global functions of intonation (see Figure 10) are similar.

A generative scheme had been suggested for Swedish dialects, in which the global features were to be generated first as a frame of auxiliary lines (later called the tonal grid). The slope of these lines was dependent on speech act type and the length of the utterance. Later the accents were inserted in relation to the grid and the segments according to lexical assignment rules typical of a particular dialect. After some context adjustments the final curve could be obtained by interpolation between the points (Bruce and Gårding 1978).

This scheme had also been applied to syntactically marked and unmarked questions which had been analyzed as having a dialect-independent frame of more or less straightened out and narrowed auxiliary lines expressing question intonation with the same dialect-independent timing of the accentual turningpoints as in the statement (Gårding 1979, p. 213):

The difference between the intonation types is thus a difference in the grid, whereas the rules that generate the highs and lows pertaining to the accents remain the same, except for an optional local rule producing a terminal rise in questions (Gårding 1983, p. 21).

This model was applied to Chinese in a qualitative way by Gårding, Zhang and Svantesson (1983). Interspeaker and intraspeaker variability in the tonal (F_{0}) signal was studied in the Chinese material. The results show the usefuiness of the acoustic parameters of the model, turning-point, tonal grid and pivot, which permit rather precise statements. The main observations are that the four speakers use the same lexical and intonational patterns with turning-points very much fixed relative to the segments. From this follows that certain falls and rises are also fixed. Pivots (correlated with phrases) differ from speaker
falling grid

level grid pivot 1

global fall

expanded grid

compressed grid

one-line grid

| Intonation
 parameters | Sunction | Syntactic |
| :--- | :--- | :--- |
| turning points | words, morphemes | d:0 |
| pivots | constituents
 (theme/rheme) | d:o
 (subject/predicate) |
| grid:direction | speech act type | sentence type |
| grid width,
 position | information weight
 (focus) | clause type |

Figure 10. Concepts of the model and their communicative functions.
to speaker, showing their dependence on tempo and style. When pivots do occur, they are in the same location correlated to the syntactic/semantic structure. There is also variability in the manifestation of sandhi rules, which can be regarded as signals of semantic/syntactic coherence. Individual variation was found in the voice range, which varied from one speaker's declamatory style of two octaves to one octave used by the others (Gårding 1985).

Lindau (1986) developed an algorithm that generates schematic F_{0} curves of simple statements of two different lengths and questions in Hausa following the general principles of the intonation model above: Rules for intonation and tones are separated and intonation is represented as grids of (near) parallel lines, inside which tones are placed. The direction of the grid lines is associated with sentence type, with a downward slope for statement and straightened out lines for question. The tones are associated with turningpoints of the F_{0}-contour. These turning-points tend to have fixed locations at the end of the syllable with the associated tone. A high tone has a high turningpoint in the grid and a low tone has a low one.

Local rules may also modify the exact vertical placement of a tone within the grid. The continuous F_{0} contour is modeled by concatenating the tonal points using polynomial equations. Thus the final pitch contour is modeled as an interaction between global and local factors. As for Swedish and many other languages the slope of the intonational grid was found to depend on the type of sentence (statement or question), and the length of the sentence. In addition, the slope of the grid in Hausa is also affected by the tone pattern of the sentence.

The data demonstrate clearly the independence of global and local factors. An observation strengthening this view is that the intonation of sentences consisting of high tones only exhibits a downwards slope. This kind of slope cannot be explained by reference to local rules of downstepping but is best described as a manifestation of global intonation.

As in the other languages studied in the project, the different speakers made use of very different pitch ranges in sentences on alternating High and Low tones. This was attributed to non-linguistic factors of attitude and personality of the speaker. As has been shown for the other languages, more involvement and interest results in a larger pitch-range (see also Bruce 1982).

In addition to the straightened out grid lines in questions, the last High tone of the sentence is locally raised, sometimes followed by a fall. An interesting feature is that this raised High also tends to have a delayed turning-point. This delay is in Hausa related to the height of the peak, conforming to the same principle that we found for the diphthongal transitions: the further to go, the longer it takes.

Question-word questions are characterized by a slight downward slope, where the amount of slope is something in between that of statements and yes-no
questions. These results are similar to those of Gårding (1979) and Thorsen (1978). Thorsen concluded that the more morphosyntactic cues there were in the questions, the more the slope looked liked that of statements. Question intonation in Arabic and Chinese also follows this pattern. In other words, the less morphosyntactic cues to its type the sentence carries, the more work will the intonation have to do.

Perception

Chinese, with its four tones, is a suitable testing ground for an intonation model. While in Sweden, zhang, using the ILS program, explored the importance of the timing of turning-points in relation to the grid for the recognition of specific tones. This work was continued by Gårding, Kratochvil and Svantesson, who could list features which appeared to be invariant for a particular tone as a result of perceptual tests of synthetic stimuli which had configurations intermediary between Tone 3 and Tone 4 . One invariant feature was that the first half of the tone (including the fall) seemed to be important for Tone 4 and the second part for Tone 3. It seemed, then, that the significant parts of the tones both included changes from one mode to another mode (i.e. turningpoints). The result may not be without general perceptual significance.

Effects of the project

For Chinese scholars, our intonation model is attractive because it offers a simple way of handling the interaction between tone and intonation. Collaboration has continued and is continuing between Lund and the Acoustics Institute of the Academia Sinica, Beijing. Shi Bo, a graduate student from that institute, who is studying in Lund with a scholarship from the Swedish Institute, is concerned with the perception and identification of global features, as part of her intention of making the model more quantitative. Her stimuli were tested during Gårding's 1986 visit to the Academia Sinica. The perception of tonal movements is also interesting to David House who is trying to give the model a perceptual orientation (see also Gårding and House 1985). Our work on diphthongs is now being continued at UCLA.

Pedagogical applications

The pedagogical applications of our project have not been completed. A manual with pronunciation drills for Chinese with phonetic illustrations is now being completed by Magnus Nordenhake. This book is a Swedish translation and adaptation of a manual for English students by Paul Kratochvil. Taghrid Anbar and Kjell Norlin are collaborating on a contrastive study of Arabic and Swedish.

Summary

The project has resulted in new material from languages which are given preferential treatment by Lund University. The segmental systems, in particular stops, fricatives and vowels have been thoroughly investigated. The same methods, some of them developed within the project, were used for all
three languages, thus enabling direct comparison between them and laying a foundation for future research on other languages and for pedagogical applications.

Prosodic features have been successfully analyzed in all three languages by means of the intonation model developed here. The model has been implemented in an algorithm producing statements and questions in Hausa. Apart from this technical achievement, the model serves as a convenient frame for further explorations of the interaction of tone (accent) and intonation. At the same time we have strengthened our claim that the model gives a general frame for any prosodic system and that it sheds light on the structure of intonation in general.

References

(Publications from the LUCLA Project are given in the Bibliography, below)
Bruce, G. 1982. "Developing the Swedish intonation model". Working Papers (Dept. of Linguistics, Lund) 22, 51-116.
Bruce, G. and E. Garding. 1978. "A prosodic typology for Swedish dialects". In E. Gärding, G. Bruce and R. Bannert, eds. Nordic Prosody, Papers from a Symposium, 219-28. Lund, Dept. of Linguistics.
Fischer-Jorgensen, E. 1964. "Sound duration and place of articulation" Zeitschrlft fur Phonetik und allgemeine Sprachwissenschaft 17, 175-207.
Gårding, E. 1979. "Sentence intonation in Swedish". Phonetica 36, 207-15.
Gårding, E. 1983. "A generative model of intonation". In Cutler and Ladd, eds. Prosody: Models and measurements, 11-25. Springer.
Gårding, E. and D. House. 1985. "Frasintonation, särskilt i svenska". In Svenskans beskrivning 15, 205-21.
Gay, T. 1968 . "Effect of speaking rate on diphthong formant". The Journal of the Acoustical Society of America 44:6, 1570-75.
Keating, P. and M. Huffman. 1984 . "Vowel variation in Japanese". Phonetica 41, 191-207.
Lofqvist, A. 1976. "Closure duration and aspiration for Swedish stops". Working Papers (Dept. of Linguistics, Lund) 13, 1-40.
Thorsen, N. 1978. "Aspects of Danish intonation", In E. Gårding, G. Bruce and R. Bannert, eds. Nordic Prosody, Papers from a Symposium, 23-32. Lund, Dept. of Linguistics.

Appendix

Consonant systems:
Hausa:

Φ
$\begin{array}{lll}s & z & 1 \\ s & & \end{array}$
1
n
$\begin{array}{lll}m & n & \\ & 1 & \\ & & r \\ & & \\ & & \\ & & j \\ & & j\end{array}$

Arabic:

| b | t | d | | | g | q | | $?$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\underline{\square}$ | | | | | | |
| f | s | z | 1 | χ | B | \dagger | ξ | n |
| | Ş | ? | | | | | | |
| m | | n | | | | | | |
| | | 1 | | | | | | |
| | | r | | | | | | |
| w | | | | | | | | |

Chinese:

| p^{h} | t^{h} | | | | k^{h} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| p | | t | | | k |
| | | $t s^{h}$ | $t s^{h}$ | $t 6^{h}$ | |
| | | $t s$ | $t s$ | $t 6$ | |
| f | | s | s | z | 6 |
| | m | | n | η | |
| | | | 1 | | |

Bibllography of the LUCLA project

Gårding, Eva. 1984. "Comparing intonation". Working Papers (Dept. of Linguistics, Lund) 27, 75-99.
Gådding, Eva. 1984. "Chinese and Swedish in a generative model of intonation". In C.-C. Elert, I. Johansson, and E. Strangert, eds. Nordic Prosody III, 79-91.
Gărding, Eva. 1985. "In defence of a phrase-based model of intonation". Working Papers (Dept. of Linguistics, Lund) 28, 1-18.
Gårding, Eva. 1985. "Constancy and variation in Standard Chinese tonal patterns". Working Papers (Dept. of Linguistics, Lund) 28, 19-51.
Gårding, Eva. 1985. "En intonationsmodell och dess förankringar". In: E Ahlsén, J Allwood and E. Hjelmquist, ed. Tal-Ljud-Hörsel 2 (Guling 13), 86-102. Göteborg.
Gårding, Eva. 1985. "Superposition as an invariant principle of intonation". In J. Perkell and D.H. Klatt, eds. Invariance and variability in speech, Hillsdale, NJ: L Erlbaum Assoc. Publ.
Gårding, Eva, Paul Kratochvil, Jan-Olof Svantesson and Zhang Jialu. 1985, "Tone 4 and Tone 3 discrimination in Modern Standard Chinese". Working Papers (Dept. of Linguistics, Lund) 28, 53-67.
Gårding, Eva, Zhang Jialu and Jan-Olof Svantesson. 1983. "A generative model for tone and intonation in Standard Chinese". Working Papers (Dept. of Linguistics, Lund) 25, 53-65.
Lindau, Mona. 1983. "Glottalic consonants in Hausa and some other languages". Working Papers (Dept. of Linguistics, Lund) 25, 85-98.
Lindau, Mona. 1984. "Testing a model for Hausa intonation". Working Papers (Dept. of Linguistics, Lund) 27, 145-63.
Lindau, Mona. 1984. "Phonetic differences in glottalic consonants". Journal of Phonetics 12:2, 147-57.
Lindau, Mona. 1985. "The story of $/ \mathrm{r} /$ ". Ch. $1 /$ in Victoria Fromk in, ed., Linguistic phonetics. Essays in honor of Peter Ladefoged, 157-68. Orlando: Academic Press.
Lindau, Mona. 1985. "Hausa vowels and diphthongs". UCLA Working papers in phonetics 60, 40-54.
Lindau. Mona. 1985. "Testing a model of intonation in a tone language". UCLA Working papers in phonetics 61, 26-39.
Lindau, Mona. 1985. "Hausa vowels and diphthongs". Studies in Arrican Linguistics $16: 2,161-182$.
Lindau. Mona. 1986. "Testing a model of intonation in a tone language". The Journal of the Acoustical Society of America. In press.
Lindau, Mona and Peter Ladefoged. 1985. "Variability of feature specifications". Ch. 21 in J. Perkell and D.H. Klatt, eds. Invariance and varlability in speech, 464-79. Hillsdale, NJ: L Erlbaum Assoc. Publ.
Lindau, Mona, Kjell Norlin and Jan-Olof Svantesson. 1985. "Cross-linguistic differences in diphthongs". UCLA Working papers in phonetics 61, 40-44.
Nordenhake, Magnus and Jan-Olof Svantesson. 1983. "Duration of Standard Chinese word tones in different sentence environments". Working Papers (Dept. of Linguistics, Lund) 25, 105-111.

Norlin, Kjell. 1983. "Acoustic analysis of iricatives in Cairo Arablc". Working Papers (Dept. of Lingulstics, Lund) 25, 113-137.
Norlin, Kjell. 1984. "Acoustic analysis of vowels and diphthongs in Cairo Arabic". Working Papers (Dept. of Linguistics, Lund) 27, 185-208.
Norlin, Kjell. 1985. "Acoustic analysis of vowels and diphthongs in Cairo Arabic". In R Schuh, ed. Precis from the 15 th Conference on African Linguistics (Studies in African Linguistics, Supplement 9), 238-44. Los Angeles: UCLA.
Norlin, Kjell. 1985. "Pharyngealization in Cairo Arabic". Working Papers (Dept. of Linguistics, Lund) 28, 139-50.
Svantesson, Jan-Olof. 1983. "Acoustic analysis of Chinese fricatives and affricates". Working Papers (Dept. of Linguistics, Lund) 25, 195-211.
Svantesson, Jan-Olof. 1984. "Vowels and diphthongs in Standard Chinese". Working Papers (Dept. of Linguistics, Lund) 27 (1984), 209-35.
Svantesson, Jan-Olof. 1986. "Acoustic analysis of Chinese fricatives and affricates". Journal of Chinese Linguistics (Berkeley) 14, 53-70.
Znang Jialu. 1984 . "Perceptual studies in Chinese intonation using foreign Iisteners". Working Papers (Dept. of Linguistics, Lund) 27, 237-45.

Presentations

Gårding, Eva, Zhang Jialu and Jan-Olof Svantesson: Tone and intonation in Standard Chinese. Prosody, normal and abnormal, Association psycholinguistique de l'Europe, Zürich, March 1983.
Norlin, Kjell: Fricatives in Cairo Arabic. Finska orientsällskapet, Helsingfors, March 1983.
Lindau, Mona: Question intonation in Hausa. 14th Conference on African Linguistics, Madison, April 1983.
Gårding, Eva: Chinese and Swedish in a generative model of intonation. Nordic Prosody III, Umeå, June 1983.
Gärding, Eva: A generative model for tone and intonation in Standard Chinese. Institut für Phonetik und sprachliche Kommunikation, München, June 1983.
Zhang Jialu: Chinese tones and intonation according to a Swedish model. Academia Sinica, Beijing, July 1983.
Gårding, Eva: Intonation units and pivots, syntax and semantics. Contribution to symposium, IOth International Conference on Phonetic Sciences, Utrecht, August 1983.
Gårding Eva, Jan-Olof Svantesson and Zhang Jialu: Tone and intonation in Standard Chinese. Tenth International Congress of Phonetic Sciences, Utrecht, August 1983. Abstract in: A. Cohen and M.P.R. van den Broecke, ed. Abstracts of the Tenth International Congress of Phonetic Sciences, p. 605. Dordrecht: Foris, 1983.
Lindau, Mona: Intonation in Hausa. Tenth International Congress of Phonetic Sciences, Utrecht, August 1983. Abstract in: A. Cohen and M.P.R. van den Broecke, ed. Abstracts of the Tenth International Congress of Phonetic Sciences, p. 611. Dordrecht: Foris, 1983.
Gårding, Eva: Superposition as an invariant feature of intonation. Symposium on Invariance and Variability, MIT, October 1983.

Gårding, Eva: Superposition är en invariant princip i intonation. Institute of Lingulstics, Stockholm, November 1983.
Lindau, Mona: Vowels and diphthongs in Hausa. 15th Conference on African Linguistics, Los Angeles, March 1984.
Norlin, Kjell: Acoustic analysis of fricatives and voweis in Cairo Arabic. 15th Conference on African Linguistics, Los Angeles, March 1984.
Svantesson, Jan-Olof: Some results from the LUCLA project. Institute of Acoustics, Academia Sinica, Beijing, Sept 1984.
Norlin, Kjell: Arabisk fonologi. Humanistdagarna i Lund, March 1985.
Gårding, Eva: En intonationsmodell och dess förankringar. Tal-Ljud-Hörsel, Göteborg, March 1985.
Lindau, Mona, Kjell Norlin and Jan-Olof Svantesson: Resultat från projektet LUCLA. Tal-Ljud-Hörsel, Göteborg, March 1985.
Norlin, Kjell: Faryngalisering i arabiska. Tal-Ljud-Hörsel, Göteborg, March 1985. Abstract in: E Ahlsén, JAllwood and E. Hjelmquist, ed. Tal-Ljud-Hörsel 2 (Guling 13), p. 177. Gotteborg.
Lindau, Mona, Kjell Norlin and Jan-Olof Svantesson; Cross-linguistic differences in diphthongs. 109th Meeting of the Acoustical Society of America, Austin, Texas, April 1985. Abstract in: The Journal of the Acoustical Society of America, 77, Supplement 1, p. 100.
Gårding, Eva: Prosodic constancy and variation across languages. Miniconference on phonology and phonetics, Institute of Linguistics, Stockholm, May 1985.
Norlin, Kjell: Pharyngealization in Arabic. Miniconference on phonology and phonetics, Institute of Linguistics, Stocknolm, May 1985.
Gărding, Eva: En intonationsmodell och dess forankringar. Helsingfors and Abo, May 1985.
Gårding, Eva: An intonation model and its anchors. Aix en Provence, July 1985.
Gårding, Eva: A phrase based model of intonation. München, July 1985.

A simple qualitative model for the vibration of the vocal folds

Lars Gårding

Abstract

The purpose of this short note is to establish a simple qualitative model for the vibration of the vocal folds. Its basic assumptions are physically credible, its main aim is pedagogical and it can be explained with a minimum of mathematics. it is no real substitute for the more ambitious models of Flanagan and Landgraf (1975) and Tietze (1973) which take into coneideration that the closure of the vocal folds is not uniform. The lower part closes firsta Therefore these models represent the vocal folds by two masses on each side. Our model just uses one mass. Its assumptions are as follows.

A. The tensions and the masses of the muscles involved, mainly the vocalis and the cricothyroid muscles, determine a damped vibratory system 5 with a certain frequency $w / 2 \pi \mathrm{~Hz}$.
B. The duration of the closed phase is half of the period of 5.
C. The transglottal pressure P and a rebound B from S initiate the opening movement of the system with a certain force Q of very short duration.
D. When the movement initiated by Q has reached its maximum, a Bernoulli force R sets in which decreases proportionally
to the opening between the vocel cords.

The assumption A is an uncontroversial simplification. The basic frequency of is determined by the tension T of S and its mass M in such a way that it decreases as T decreases and M increases. The theoretical formula in the undamped case is $w^{2}=T / M$. The assumption B is motivated mainly by the observation that the closed and open phases of the glottal cycle are approximately equal. Since the modifications of the frequency w introduced by the Bernoulli force are mever very large (see below), it has seemed natural to tie the duration of the closed phase to the state of the system 5.

The assumptions C and D express a convenient way of circumventing the complicated interaction between the movements of the vocal cords and the flow through the glottis. D expresses the conventional view that the Bernoulli sucking force helps close the glottis but adds to it the assumption that the forge sets in when the opening is maximal. This is natural because the Bernoulli force is largest when the flow is stationary and the natural moment for this to happen is when the opening of the glotits is maximal. As the glottis closes, the flow becomes less and less stationary. The assumption thet the decrease of R follows the size of the opening is somewhat ad hoc but not unfeasonable.

Note that the assumption considers the force Q to be composed of subglottal pressure P and a rebound B. Under stable phonationg Q is of course constant. For a beginning phonationg the rebound vanishes for the first cycle but picks up to a stable value later. This fits with the increasing amplitudes of a beginning phonation.

The model seems to be able to explain a number of known facts about the vibration of the vocal folds.

Figure 1 shows the changing shape of the glottal cycle when S, P, Q are fixed and the Bernoulli force R increases /1/. When R is zero, the assumption A says that the open part of the glottis cycle follows a damped sine curve whose maximum is proportional to Q/M. The sine curve in the figure is only slightiy damped. We see that the closing of glottis becomes faster as R increases. In this way, the curve representing the open phase acquires its characteristic asymmetric form (see e.9. Fant 1979 and Anathapadmanabha and Fant 1982) at the same time as the period of the glottal cycle decreases i.e. as the frequency increases.

An increased Bernoulli force can be thought of as an efficient way of producing sound. Favourable conditions for this are regular movements of the vocal cords with no asymmetries or ipregularities. It is probable that trained singers realize these conditions. A certain support for this statement is the fact that the ratio of the duration of the open to the closed phase is smaller for trained singers than for untrained ones (Sundberg and Gauffin 1979).

It can be shown mathematically (see the formula (3) of the appendix) that if S is $f i x e d$ and Q and R are proportional to transglottal pressure P_{y} then the duration of the glottel cycle is independent of F (Fig. 2). But this im only approximately true. As a matter of fact, experiments have shown that when transglottal pressure increases, the duration of the glottal cycle decreases so that the frequncy increases. A reasonable explanation for this second order effect is that the opening force Q is not proportional to P for large values but subproportional, i.e. it increases less
than proportionally to P. Since the maximal glottis opening is proportional to a_{s} this means that it grows less than proportionally to P. Then the formula (3) of the appendix mhows that this has the same effect as an increase of the Bernoulli force R. Hence the duration of the glottis cycle decreases a little when P increases (Fig. 1).

Another thing that can be shown mathematically in the model is that the effect of the Bernoulli force R decreases when w increases as a result of increased tension and/or decreased mass of the system s. This means that if w is large, there is less asymmetry in the glotios curves an effect which has been observed in a striking way by the sine-like glattograme of falsetto voice Sundberg 1990 p. 64) 121.

Mathematical eppendix.

```
Mx"(t) +CMx'(t)+Tx(t)=0
```

during the open phase. The second term on the left accourts for the damping. For simplicity in this account, we put $\mathbb{C}=0$. This restricts our formulas to the undamped or slightly damped case, but no new effects will appear unless the damping is very large.

Shortly after the impact of transglottal pressure, the function $x(t)$ has the form

$$
x(t)=(Q / M w) \text { sinwt, } w^{2}=T / M,
$$

```
Which means that Mx"(t)+Tx(t) = Qb(t) (to approximate the
short-1ived force Q by an instantaneous one seems
legitimatel. The function x(t) reaches its maximum Q/M when
t=r= J/2W. Atter this, the equation of movement changes to
```

```
Mx"(t) +Tx(t) + (RM/Q)x(t) = 0.
```

Herce, the equation of the closing phase of the open part of the glottal cycle is

```
x(t)=(0/M) E05 W(t-\tau)
```

with t between r and $T+T / 2 W$ where W is given by

$$
\begin{equation*}
W^{2}=W^{ \pm}+(R / Q) \tag{3}
\end{equation*}
$$

The formula (3) shows how an increased Bernoulli force makes the closure of the glottal cycle steeper and also that the quotient W / H decreases as w increases and R/Q is fixed. It also shows that if R and Q are proportional to F_{i} then the period dength $(\pi / W)+(\pi / W) i s$ independent of P but that if Q increases less than a constant times P_{g} then R/Q increases with F so that W also increases and hence the period length decreases.

The computations above can only be taken in a qualitative sense, although the model contains enough parameters to permit close fits to very regular observed glottis cycles. In my view, the importance of the model lies in the fact

```
that the parameters have a very direct physical significance and that the model seems to permit direct and meaningful interpretations of many aspects of the glottal cycle.
```

/1/. The steep beginning of the curve is an artefact due to the assumption that the force Q is instantaneous.

12/. In falsetto voice, the vocal folds do mot close. The mathematical appendix covers this case too, if applied only to the open phases above a mean opening.

REFERENCES

Ananthapadmanabha T.U. and G. Fant (1982): Calculation of true glottal flow and its componerits. Speech Communication I 167-184, North-Holland.

Fant 6. (1979) :Speech production. A glottal source and excitation analysis. STL-QPSR 1/1979, 85-105

Flanagan J.L. and L. Landgraf (1968): Self-oscillating source for vocal tract synthesizers. IEEE Trans. Audio Electroacoust. Vol. Au-16, 1960, 57-64

Sundberg J. (1980) : Röstläa. Proprius, Stockholm.
Sundberg J. and J. Gauffin (1979): Waveform and Spectrum of the Glottal Vaoite Source. Frontiers of Speech Communication Research. Academic Fress, 301-320

Tietze I R (1973): The human vacal cords: A mathematical model. Part I, Phonetica 28, 129-170, Part II, Phonetica 29, 1-21

Fig. 1 Asymmetry and shortening of the length of the glottal pulse when the Bernoulli foree R increases. The length of the closed phase is constant, curves with the same number correspord.

Fig. 2 The length of the glottal pulse is constant when the subglottal pressure P varies and the initial force Q and the Bernoulli force R are proportional to P

Backness and roundness harmony in Hungarian

Magnus Olsson

1. INTRODUCTION

Ferdinand de Saussure said at one of his lectures: "The first thing that strikes us when we study the facts of language is that their succession in time does not exist insofar as the speaker is concerned. He is confronted with a state. That is why the linguist who wishes to understand a state must discard all knowledge of everything that produced it and ignore diachrony."; translation in1960, p. 81.

Alf Nyman-a Swedish phiiosopher - follows the same line of thought: "But the step of thought from the origin to the value [...] throws itself precipitately between two differing dimensions within the world of humen judgement: the two standpoints of genetic explanation and estimating reflection."; 1960, p. 81 (my translation).

These passages have been of some importance to me when writing this article, because it deals with Hungerian vowel harmony - both the front /back type (hereafter simply called harmony) and the roundness harmony - in synctiranic terms. Etymological assumptions about certain words and certain phonemes have in previous attempts obscured the real facts concerning vowel harmony. Although histarical linguistics is an interesting part of linguistics in its own right and may shed light upon the synchronic study, the two views should not be confused.

Section 2 is a description of the vowel system and the general vowel harmony types in Hungarian. in section 3 we will look at the three main problems concerning harmony. Section 4 consists of formalizations of relevant rules.

2. VOWEL SYSTEM AND VOWEL HARMONY

One way of dividing the Hungerian vowels in subsets is according to backness. Harmonic front and back vowels are normally kept apart word-
internally. Vowels that belong to the neutral group - a subclass of the front vowel class - may appear freely with vowels from any of the two harmonic sets. Harmonic vowels have a much greater influence on the backness of other vowels in the word. Neutral vowels are unchangeable in suffizes while harmonic suffix yowels typically conform to hermony.
(1)

| (1) | Front | | | Long | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | nt | Back | Front | Back |
| | -round | +round | +round | -round +round | -round +round |
| High | i | ü | u | u | ú |
| Mid | e | 0 | 0 | ¢ 0 | ó |
| Low | e | | ¢ | | $\dot{6}$ |

On the above chart are all the orthographic vowels as well as the phoneme \underline{e}, which is spelled 〈e>. In the seven-vowel dialects (with Budapest es center), ë has merged with e. The previous rule-writers have only been concerned with this dialect, but more than two thirds of the Hungarians in Hungary and neighbouring countries retain e. Henceforth 1 will sometimes use forms with ë for explanatory purpose and rules will be given for both standard dialect groups. The relation between pronunciation and spelling is otherwise much closer than e.g. in English, French or Swedish (the main exceptions being certain proper names).

Scholars have different opinions about which vowels are neutral. Vogo counts e, \underline{i} and 1 as neutral, while Ringen s opinion is that onty $\underline{i} 1$ and I should be termed neutral.

Suffix vowels usually agree in backness with the last root vowel. If that vowel is harmonic or there are only neutral and front harmonic vowels in the stem, this statement is always valid, eg:
(2)

| | | (adess.) | (delat.) | (instr./com.) | (allat.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| well | kút | kútnál | kutról | kuttal | kuthoz |
| hair | haj | hajnál | najrol | hajjal | hajhoz |
| ear | fül | fülnel | fülröl | fullel | fulhoz |
| rain | eső | esỗnél | esörō | esövel | esöhöz |
| thorn | tovis | töyisnel | touisrol | tovissel | tovishez |
| fairy | tündér | tündérnel | tünderröl | tündérrel | tündérhe |

If the last vowel is neutral and the first harmonic vowel to the left in the morpheme is back, there are three possibilities. Normally the suffix vowels become back, e.g.:

| | (delat.) | (instr./comicat.) |
| :--- | :---: | :---: |
| muri | murirôl | murival |
| radír | radírról | radírral |
| Kávé | kávéról | kávéval |

But after some roots the suffix yowels are always front ${ }^{3}$:
(4)
concert bronchitis

| (delative) | (instr./comitat.) |
| :--- | :--- |
| koncertrol | koncerttel |
| bronchitiszrol | bronchitissze! |

The last case is free variotion between front and back yocalism:
(5)
positive
fool, greenhorn belek

| (delative) | (instr./comital.) |
| :--- | :---: |
| pozitiurol/ | pozitível/ |
| pozitivrôl | pozitivual |
| balekrol/ | balekkal/ |
| balekrol | balekkel |

when there are no harmonic vowets in the root, front vowels are normally chosen for the suffixes:
(6)

| address | cim | cimnél | cimröl | cimmel | cimbez |
| :--- | :--- | :--- | :--- | :--- | :--- |
| hand | kéz | kéznél | kézrôl | kézzel | kézhez |
| film | film | filmnél | filmrôl | filmmel | filmhez |

But about fifty roots take the back varients of alternating suffices:

| (7) | | (as) | (pl.) | (ablat.) | (owner: 3 psg.) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| bridge | hid | hidul | hidak | hidtól | hidje |
| arrow | nyil | nyilut | nyilak | nyiltál | nyila |
| aim; target | cél | célul | célok | céltól | célja |

The question as to how these neutral roots (henceforth called the hid words) should be described is another big problem within this field of investigations. A third burning question is whether root harmony and suffix harmony ought to be described as a unitary process. In this article I will analyse and try to answer these problems. Furthermore the roundriess harmony will be touched upon - the very limited assimilation process that lies behind eg. one of the forms of the allative suffix: hez (cf. (2))

3. THE MAIN PROBLEMS

3.1. The neutral exceptional roots

Roots without any harmonic vowels usually take front variants in the suffixes, as the harmony rule predicts. But as we saw, some neutral rools have instead back vowels in their suffixes.

Kiparsky (1968) divides neutralization into absolute neutralization which is assumed to take place independently of context - and contextual neutralization, which shows up in a certain environment. He notes that only the existence of contextual neutralization has been proven.

A possible way of describing the place of the hid words in the harmony system is to accept absolute neutralization so that underlying back nonlow unround vowels block suffic fronting (kiparsky assumes that alternating suffixes have basic back vowels). Afterwards they merge everywhere with their front counter-parts

Another solution is to assume that a non-phonoiogical (diecritic) feature which is attached to the root conditions the hermony in suffixes

A third altemative, which Kiparsky defends, is to introduce rule features to take care of the troublesome items and let phonolagical rules handle the majority of the words. Thus both cim and hid contain an /i:/ in the lexicon but hid is marked [- Vowel Harmony] so the suffix vowels do not change.

The preference for the first solution in analyses of numerous smiar problems is said to depend on diachronic considerations only (for instance, there should have been - in Hungarian - umround back vovels that have merged with front vowels ${ }^{5}$).

If synchrony and diachrony could be described by the same rules. research in linguistics would no doubt have been easier. But children that acquire their native language "fo not have the interests of linguistics at heart". Kiparsky further notes that "contextual neutralizations are reversible, stable and productive whereas the alleged absolute neutralizations are irreversible unstable and unproductive".

Vago's (1973) main purpose is lo show that the neutral vowels which govern back harmony are best described as underluing back vowels ($i \rightarrow i$, $\underline{i} \rightarrow \mathbf{1}, \underline{\underline{0}} \boldsymbol{\theta}$). This view is referred to os the sbstract solution. The exceptions are said to be systematic - all hid roots have just neutral vowels. Diacritics should not apply to systematic exceptions and accordingly not to the neutral exceptionel roots.

Then Vago claims that he, Esztergar (1971) and Stong\& Jensen (1971)independently of each other - proved the rule feature analysis to be incorrect.

The evidence comes from the personal pronouns in other cases than the naminative and the accusstive. Passessive suffixes are in these cases attached to the case markers, which thus act like stems. (The personal pronoun in its basic form is generally not used here, since it conveys emphasis and otherwise gives the same information as the suffix.) The following examples are taken from Vago:

| | | (from) | (with) | (off) | (at) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | en | tôlem | velem | rólam | nálam |
| you | te | totled | veled | rólad | nálad |
| he, she, it | ö | tole | vele | rôla | nála |
| We | mi | toblünk | yelünk | rólunk | nálunk |
| you | ti | tôletek | veletek | rôlatok | nálatok |
| they | ök | tôlük. | velük | róluk | nâluk |

Vago concludes that the word-initial case forms display the underlying value for the feature back ${ }^{6}$. Some of the case morphemes moreover occur as verb prefises, which agree in backness with the corresponding case stems. Another piece of evidence is the underlying frontness of the conditional -ng/-ne - in the first person singular all verbs pick up the front variant.

So Kiparsky's assumption that all alternating suffix vowels are basically back must be rejected and with it his rule feature solution. (In the rule feature analysis hid+tôl would not change to hidtó - even if vowel harmony did not apply.)

Farkas (1979) presents some evidence against Vago's abstract solution. His informants are native speakers of Hungarian, living in Rumania. When they try to speak Rumamian, roots with harmony determining vowels that are similar to $\underline{\underline{j}} \underline{\underline{d}}$ do not behave like the hid words (but follow the general harmony pattern) and the vowels do not change as the absolute neutralization rule predicts.

Even more interesting is material from three speakers, showing thet cel (aim; target) and derék (honest; brave; waist) may take front vowel variants of less common suffixes and back vowel variants of more common suffixes. Derivational suffixes almost always have the back vowel variants. E.g.: céltalan (aimless), derekas? (well), célnak, céltöl, célbo/célbe, dereka, derektol. This is of course strong support for a non-
sbstract theory. Ferkes notes that no roots with i or 1 show such a yariation. I suppose the special behavtour of cel and derek depends on the altemation between and \underline{e} in suffixes. This relationship should strengthen the attraction towards true harmony as in the above examples.

We may now conclude this passage in the following way:
Absolute neutralization would constitute, as Kiparsky points out, a very small part of all neutralization processes. There is only disconfirming evidence - with the single exception of the deceptive simplicity of the solution. Farkas showed that there is a tendency - in words with a putative $\dot{\alpha}$ - towards true harmony in at least one Hungarian dialect.

The abstract solution is inferior for another reason: sounds that have not been heard in Hungerian for centuries are now treated as existing but letent, while the merger is repested on and on.

Evidently a synchronic solution is prefersble. The exact nature of the rules will be investigated in 4.2.

3.2. Neutral vowels

As we hove seen, Vago assumes that e, $\underline{e}, \underline{i}$ and i are the neutral vowels in Hungarian (the seven-vowel dialect'). The criterion that Vago makes use of is that neutral yowels may appear in ary morpheme together with front harmonic vowels - e.g.: süger (perch) - as well as back vowels -eg.: yirǵg (flower) - without it sounding odd to a Hungarian.

Ringen (1978) vindicates for various reasons the claim that e is a harmonic yowel.

For instance, none of the hid words contain an e and the same goes for all invaribbie suffixes. Some of the mined vocalic words with the neutral yowels 1,1 or \mathfrak{e} take only back suffikes - this is not true for those with e. She notes also that in certain native roots - like betyér (outlaw; scamp) - e co-occurs with back vowels. But all such co-occurrences are asid to depend on the merger $\mathrm{e} \rightarrow$, so thet the original form was bettyrs. Ringen saves a solution with harmony as a unitary process moving from the first hermonic vowel in the root by seying that g is obligetorfly exempted from harmony in roots.

Vago (1978) explains the reason e does not enter into any of the hid words (note, however, derék) is because those with is are secondary developments and only found in two roots. As e alternates with $\frac{1}{2}$ and
there is no independent motivation for an abstract A , e can never be invariable. The last objection is turned down because the list of focal exceptions would be too long.

Vago (1980) has even more criticism against Ringen's view. Against Ringen's assumption that no neutral, but in general all harmonic suffix vowels are sensitive to harmony, Vago counters with the fact that the suffix kor never alternates - though $\underline{0}$ is harmonic. But Vago himself (1978b) satisfactorily anelyzes the suffix as on exception (low vowel lengthening does not appear before kor either, so the objection is not valid.

That é elternates with of in some suffixes is not a good argument either. The suffix vowels 1 and 1 are always invariant (eg.: ni (infinitive ending) and if (causative verbal ending)), while é sometimes is invariant (e.g.: \underline{e} (a pussessive derivetionsl suffix, marking that the root is a possessor of something in the linguistic context) but may also vary with t (e.g.: nál/ nel (adessive). Examples (where the verb - unless atherwise stated - is given in its basic form, i.e.: 3 psg . in the indefinite conjugation of the present indicative): mosolyog (smile, i.e.: someone smiles) - mosolyogni (to smile); boldog (happy, delighted) - boldogit (make happy, favour); Kovács (family name) - Kouácsé (something that belongs to Kovács); 8 haz (the house) - g háznal (at the house). A ressonable interpretation of the facts is to regard \underline{g} as the source in case there is en alternation, otherwise .

But Yago has a reliable argument, namely that a number of roots govern back harmony but have an e in the last syllable (back vowels for the rest) - e.g.: maszek (self-employed), maszeknak (+dative/genitive), *maszeknek.

Let us summorize the results in the following manner:
Ringen's yiew that \underline{e} is harmonic in Standard Hungarian has both advantages and disadvantages. If only neutral vowels may be skipped over in roots - as in (3) - then the fact that words like maszek condition back harmony is unexplainable. Vago, on the other hand, proposed that cooccurrence within native roots is characteristic of neutral vowels - here e acts as if it was neutral. But if \underline{e} is regarded as neutral, it ought to be invariant in suffixes and then forms like *maszeknek would come up Thus:

```
a) e is harmonic
        maszek+nek }
        *maszeknek
Root-e gives front voca-
lism to suffixes = no change.
```

b) e is neutral
meszek + nek \rightarrow
*maszeknek
Root-e is skipped over but.
neutrai suffix wowels never
change.

Facts actually seem to be a bit more complicated, even if Kiefer (1984) only mentions back suffix vowels (acc.and pl.) after this root. Dne native informant would spontaneously say maszeknak, but adds that the root is likely to vacillate in the speech of many Hungarians maszek is furthermore considered a vacillating root in Popp (p. 167). Even so, one possible variant is underivable in both solutions - as shown in (9).

A neat way to solve the problem is to accept that e is ambivalent as regards neutrality. In roots it acts like a neutral vowel but in suffixes as a harmonic vowel. e is then typologically neither a neutral vowel nor a harmonic vowel.

In the dialects with e the situation is much simpler. Sima (1980) says that [œ] does not co-occur with back vowels in native Finnish roots and the same goes for the eight-uowel dialects. Here the low front vowel is truly harmonic.

3.3. The domain of progressive harmony

Now we may investigate our next problem - which deals with the range of progressive harmony: whether the process affects all vowels or whether only suffix vowels harmonize as a result of it.

Kiparsky (1968) suggests that stem harmony should be descrited by morpheme structure conditions, because its exception classes differ from those of affix harmony. His premiss is right: there are dishermonic loanwords like porfüm (perfume) or zsonglor (juggler) but suffixes on a line are never disharmonic in themselves, eg.: (j)eitekhez/(j)gitokhoz (the harmony rule with the concomitant exceptions determines what alternant the root should take; the endings mark that the root is a possessed noun in plural in the allative case and whose owner is 2 ppl .). Vago (1973) accepts this use of MSC's, primarily due to the fact that stems normally do not alternate.

Kiparsky (19738) refers to an input which arises from morpheme combination or by the application of a phonological rule as a derived input It is shown that there are phonological rules in Finnish, Estonian. Swedish and Sanskril which only apply to derived inputs. A new alternstion condition is now formulated as:
(10) Neutralization processes apply only to derived forms.

Then ten cases for absolute neutralization - among them Vogo (1973) are taken into account and the condition is accordingly altered to accept (preliminarily) such processes, iff they are automatic (applying to all occurrences):
(11) Non-automatic neutralization processes apply only to derived forms.

This is of interest here because Vago (1976) remarks an interesting difference between the forms of certain words: bokor (bush)/bokrok (k: pl.), tukor (mirror)/tukrök (pl). In these words epenthesis end later harmony probably affect the singular and other forms. A similar difference is displayed in words like falu (village)/falvak (pl) and tetu (louse)/ tetvek.

Vago concludes that harmony affects these singular forms because they are derived (in Kiparsky's sense). This is a good explanation, at least for the second group.

In an issue of Linguistic Inquiry, Jensen (1978), Phelps (1978) and Ringen (1978) criticize Vago's approach, while Vago (1978a) defends it.

Ringen's approach follows both from her assumption that e in roots is neutral - true, though not enough elaborated upon - and from rule (18), which I do not find explanatorily adequate.

Eoth Jensen and Phelps believe in abstract segments and place them even in roots like bika (bull) so that the harmony will be identical for roots and suffixes. To roots like Tibor - whose diminutive (with the derivative suffix -i) takes front suffixes (e.g.: Tibinel) - they add an exception feature.

But Vago points at iskola (school) - whose diminutive form isi acts like Tibi (it takes front suffixes). But isi is not used by all school children. It would be odd if both analyses were used in this case, so Vago rejects their solution. He also adds a stronger objection - some recent loanwords like sofor (chauffeur) are disharmonic according to native judgement while words like bike are felt to be quite regular.

Jensen (1984) is an attempt within lexical phonology to show that harmony is also at work in roots. But his arguments are far from convincing.

The treatment of zero feature marking has a definite affinity to what 1 regard as a weakness in (18) - two groups of morphemes that should have been kept apart are combined.

Rules thet ignore intervening neutral vowels are said to be unnatural, but such a rule makes - as we saw in the preceding section - a correct and important generalization (the want of which Jensen's solution does not compensate).

A vacillation was reported by Vago (1980) in the case of surfixes preceded by both a back-vocalic root and the suffix ne (wife of). Jensen solves this by marking né (-), which is intended to mean optional variation between negative and neutral value for backness.

One native informant reports however that ne is a truly neutral ending and that the morpheme-combinstion tenarne (wife of teacher) in careful speech takes back suffixes. Tanarne is actually rare, but the more usual papne (wife of priest) has only the possessive form papnéjo (not papneje) attested in ÉrtSz. The existence of occasional or possibly dialectal front suffixes might partly depend on the simultaneously semantic and phonetic similarity between ne and nö (woman) - cf. tanámö (female teacher). They are surely related, but né is not a free morpheme - which strongly suggests that it forms part of the suffixes. That the vowel is neutral allows on the other hand for both possibilities, since that property should prevent it from alternating (even if it were derived). The fact that its status as a suffix is comparatively vague presents itself as on explanation for e.g.: tanarmének. In the Standard dialects we should not expect to encounter such front forms to any extent. Hence it is possible to treat ne as the other suffixes with neutral roots.

In short, the separation of root harmony and progressive harmony seems well motivated.

4. FORMALIZATIONS

4.1 Hermony conditions

Except for some newer and unassimilated borrowings, vowels from the two harmonic classes do not co-occur in any morpheme. Let us therefore assume that backness in vowels is normally a suprasegmental feature that covers every morpheme, so that the same value for backness is inserted in the matrices for all non-neutral vowels that are included.

Vowels in disharmonic words must on the other hand be specified for backness on the underlying level and this is of course more costly.

Before the harmony condition we need a condition that assigns the value [-back] to neutral vowels, namely:

For the dialects which lack ë the neutral vowel condition has to be expressed like this:

Harmonic vowels may then be described by a condition ${ }^{9}$ that the two dialects have in common:
(14)

Notice that the opposite order (condition (14) before the condition that assigns frontness to neutral vowels) is possible but not desirable. The alternatives to the inputs in (12) and (13), respectively, demand more space and seem intricate in comparison. Evidently the former order is better off.

A mirror-image MSC which prohbits front round and back vowels from co-occurring would serve no purpose - we would have to insert separate values for every vowel in every morpheme and then the dishermonic ones must carry exception markings. One could naturally think of the first or the last vowel as trigger - but there is no evidence in either direction.

The vowels in kōland (adventure), lát (see), orca (cheek), ôz (deer, roe), görog (Greek) and rügy (bud, burgeon) are thus underlyingly unspecified for backness, while the neutral vowels in idf (time; weather; tense (n.)) and palacsinta (pancake) are fronted by the earlier condition.

4.2 Harmony rules

These hermony rules are presented in Vago (1976):
(15)

$$
(m) \text { VH: }[+ \text { syll }] \rightarrow[+ \text { back }] /\left[\begin{array}{c}
+ \text { syll } \\
+ \text { back }
\end{array} C_{0}\left(\left[\begin{array}{c}
+ \text { syll } \\
\text {-back } \\
- \text { round }
\end{array}\right] C_{0}\right)_{1}\right.
$$

(16)

If (m) VH applies, (u) VH is blocked. This disjunctive order is just what might be expected if we accepl Kiparsky's (1973b) Elsewhere Condition.

Ringen (1980) elso presents two rules:

(18)

Condition: obligatory when root contains only neutrel yowels. optional otherwise.

As starting-point we will use Ringen's first rule (slightly rovised), which is quite genergl and corresponds well to the normal circumstances in the dialects with eight short vowels.

In section 3.1 the abstract solution was rejected. Ringen's diacritic feature theory is not satisfactory either. Collapsing eg. gin pozitiv and i in hid under the designation 0 seems counter-intuitive. It is like denying the real reason for vacillating roots.

If both methods have to be refused - what expedient may then be chosen?
Because of examples like those in (B), Kiparsky's rule feature theory had to be given up in subsequent theories. But that its failure is only inusory will be shown on this chart:

So the fifty exceptional stems are treated as inducing [-Harmony] (disharmony) - [+Harmonyl is the unmarked case and not needed as specification in lexicon.

Chomsky and Helle (1968, p. 374) assumed that [-rule n] only meant nonapplication of rule n to a given so marked item. It is however clear that the motivation for their proposal is weak. Naturalness is not a conclusive argument, especially when it implies simplicity united with lack of counter-evidence.

We may assume that the extraordinary result - opposite to the expected - could be stored for the hid words in the lexicon as a negation on the rule. My hypothesis is that in a rule where a segment in the context has an a which determines in part the output, [- rule n] means a minus morking on the contextual α.

It is obvious that harmony fulfils the demands of the new Alternation Condition (11). Only the derived areas are affected.

Anderson (1980) notes that there are languages (Nez Perce, Luorawetlan, Diole Fogny and others) with two sets of yowels: dominant and recessive. Only if all underlying segments are recessive will the word contain recessive yowels. Otherwise all vowels will be dominant.

The typical harmony rule differs from (17) - but both imply that all vowels in the word will agree with regard to the relevant feature. Type (17) implies neither that harmony is non-automatic nor that it may only change derived forms. The limitation on harmony can be expressed by means of a marking on the changing segment:

$$
\left.V^{d} \rightarrow \text { [oback }\right] /\left[\begin{array}{c}
v \tag{20}\\
\text { oback }
\end{array}\right] \quad\left(c_{0}\left[\begin{array}{c}
v \\
\text {-low } \\
\text {-round }
\end{array}\right]_{N}\left[{ }_{0} c_{0}\left[\begin{array}{c}
\text { +round } \\
\text { +low }
\end{array}\right\}\right]\right.
$$

There is now no need for a marked hermony rule. A mechanism that counts the last neutral vowel in words like koncert (4) as determinant accounts for forms like koncertrol. The mechanism is optional for roots like poziti4. We may use "Nsd" - where s is inclusion. It is to be read. è, \dot{e}, \dot{I} and $\dot{1}$ in underived areas to the right of the last back vowel are not parts of N - instead they determine harmony.

Without this restriction a harmonic vowel is the determinant - ef. (3).
An example consisting of the same string with two derivations might be clarifying: pozitiv+jsi+k+rol \rightarrow pozitivjgikrol (about their positives). pozitiv+j $\Delta i+k+$ rol \rightarrow pozitivjeikrol (the symbol Δ designates a low short vowel which is unspecified for backness; functionally neutral vowels (i.e. parts of N) are printed in boldface). The root is unmarked in the first derivation - which works allright under the assumption that the scope of the rule (determinant with intervening and determined vowels) is maximal.

Earlier in this article we have seen that e in the seven-vowel dialects acts like a neutral vowel in roots but in suffives as a harmonic vowel. The state of affairs can be incorporated into the rule'c:

There is yet another problem. After the segment structure conditions have applied (vid. Stanley, 1967) á may change equally well into \underline{e} and E . a may become $\underline{0}$ or \underline{e}, while \underline{e} has two nearest back equivalents - \underline{a} and $\underline{\text { á }}$

Here Vago (1974) makes use of sdjustment rules, which Farkas (1979) gives in an informal manner.

Vage has a rule $[a] \rightarrow[0]$ which accounts for the fact that when suffixes with underlying [fe] alternate, the vowel not only becomes back but round as well.
a-adjustment may be stated as:

$$
\left[\begin{array}{c}
v \tag{22}\\
\text { +low } \\
\text { tback } \\
\text {-long }
\end{array}\right] \rightarrow[+ \text { round }]
$$

An $\underline{\underline{e}}$-adjustment rule is needed for the $\underline{\underline{\varepsilon}} / \underline{e}$ alternation: harmony applies $-[a] \rightarrow[æ]$ - and then [æ:] is raised to le:].

Vago collapses e-adjustment (a lowering needed for e.g. roundness harmony in the seven-vowel dialects) and é-adjustment into one rule, which will took like this:

(22) and (23) must however be replaced in this description because they are not synchronically motivated. In the next section alternative ways out will be described.

With the markings a on input and b on change vacuous rule application can be effectively hindered. This is achieved by a new condition:azb. Now the arrow always means change.

But this convention should rather be universal - a general property of every phonological rule, not necessary to mention on this low level. The alternative would be to accept vacuousity; the rules need anyhow no adjustment in themselves.
4.3 Roundness harmony and replacing the adjustment rules
 (to your ($p l$.) fruits) and kert +0 öm+höz \rightarrow kertemhëz (to my garden) - as epposed to gyümölcs-ö-tök + höz \rightarrow gyümölcsötökhöz (to your ($p l$.) fruit) and kert+unk+hoz \rightarrow kertunkhoz (to our garden) - the following rule will doll:
(24)

This rule is simpler than Vago's (1974) - adopted in Ringen (1980) and which mentions the feature lowness - and the fact that it applies vacuously ($\underline{e} \rightarrow \underline{\ddot{e}}$ and/or $\underline{e} \rightarrow \underline{e}$) does not motter, as we saw in the preceding section.

In the case of unrounding in the dialects without \underline{e}, there are actually three possible outputs: 1 , e and é of the nonlabial vowels, the three just mentioned are most close to $\underline{\ddot{0}}$ - that is, they have the greatest number of distinctive feetures in common with $\underline{\theta}$.

The eventual output - e-is low. This may be expressed in the rule by adding the feature [+low] immediately to the right of the arrow. Eut as the determinant may be non-low as well as low this expedient does not seem appealing.

If we consider two other rules with similar problems, the description will overall be better. The fules are harmony and low vowel lengthening (LVL).

The existence of the latter is defended in Vago (1976b). LVL is responsible for alternations like kefe (brush), kefé (accusative), keféje (poss. 3 psg), keféjét; alma (apple), almát, almája, almájád.

The rule looks like thisiz:

$$
\left[\begin{array}{l}
+ \text { syll } \tag{25}\\
+ \text { low }
\end{array}\right] \rightarrow\left[+ \text { longI } /{ }_{-}+[+ \text {segment }]\right.
$$

Here a may change to ǵ or ó and e may change to é or á A cioser look at the precedence for a certain feature over another in the rules might be revealing:
(26)

| Harmony: | $\begin{aligned} & \dot{\mathrm{g}} \rightarrow \mathrm{e} \\ & \text { long } \end{aligned}$ | $\begin{aligned} & e \rightarrow a \\ & \text { long } \end{aligned}$ | $\begin{aligned} & a \rightarrow e \\ & l o w \end{aligned}$ | Roundness:
 (dialects | $\begin{aligned} & a \rightarrow e \\ & (\text { not } i) \end{aligned}$ | $\begin{aligned} & \partial \rightarrow e \\ & (\text { not } e) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | low | round | round | without è) | nigh | long |
| LVL: $\mathrm{a} \rightarrow$ a | $\mathrm{e} \rightarrow$ é | | | | low | low |
| low | back | | | | | |
| round | low | | | | | |

For example: and $\underline{\theta}$ have another value for round than \underline{e}, while \underline{a} and \underline{e} in contrest to $\underline{0}$ share the same value for low. Because a becomes \underline{e} in the harmonic feature exchange we put it this way: low matters more than round.

It is easy to see that there is a general patterr: round is below low while the other features are on the top.

We may further assume that the precedence for a festure over another is indicated in the feature order on the Hungarian vowel matrix. As an example the harmonic change a \rightarrow is given below:

Now each segment which on a certain step agrees with the changing segment $\$$ may proceed, except when the output and s have different yalues. Then the reverse value is preferred so that any segment which exhibits it passes over to the next feature, the next link in the chain.

Instead of two diachronic rules we have an order between the features in the yowel matri\%.

Another solution consists of introducing a principle, that predicts what will happen:

If the value for feature if changes through a rule, then let us assume that the participants in that rule (or a possible extension of it) move towards symmetric pair relations (where two elements pair solely with each other).

Consider the following description:
(28) Harmony RH (seven-vowel LVL (eight-vowel LVL (seven-vowel dialects)
dialects)
dialects)

A dotted line marks total similarity except for f; a continuous line marks that the (wo segments are separated by two features.
$\underline{e} \rightarrow \underline{e}$ in LVL (eight-vowel dialects) does not seem predictable at first. Harmony surely plays a role here - it might by the way be ordered after LVL (two endings are sensitive only to the former rule, vic. Vago (1978b). We may also consider that á is back and so not neutral - a word like szöke (blond) would be disharmonic whenever a derived input followed it.
 (RH) and $\underline{\boldsymbol{\theta}} \rightarrow \underline{\underline{a}}$ (LVL) because primary pair relations block the alternatives. $\underline{e} \rightarrow \underline{a}$ makes the sufficient addition for the creation of a secondary pair relation e therefore repels $\underline{\text { g }}$, which consequently becomes é.
$\underline{e} \rightarrow \underline{e}$ in the seven-vowel dialects does not improve our conviction sbout the principle's reliability since the change is slready accounted for.

When it comes to deciding between the two devices, things are more uncertain. They are both rather simple but one may ask whether any one of them has an anchorage in reality. Yet they differ beneficiently from (22) and (23) by being based on the structure of present-day Hungarian speech only.

5. SUMMARY

Evidence has been given for a division of harmony - on the morpheme level it is determined by condition (14), while a rule makes the suffines harmonize uniformly.

Neutral vowels are as stated above invariable in suffixes. Together with some other pieces in the puzzle this leads us to the conclusion that in the seven vowel dialects e belongs to neither the harmonic nor the neutral group, but acts in roots as a neutral vawel and in suffixes as a harmonic vowel. $\dot{\underline{e}}, \underline{i}$ and $\underline{\underline{I}}$ are thus the proper neutral yowels, while front round and back vowels are harmonic. In the eight-vowel dialects, è is neutral and \underline{e} is harmonic everywhere

All affected (changing) vowels are automatically defined as derived inputs. This makes the nature of harmony more transparent and the marker d obviates the need for a second rule.

It has been shown that a rule feature analysis is possible for the hid words, if Chomsky and Helle's convention to account for lexically
determined rule non-application is given up and replaced by a new convention.

Instead of diachronic rules, two kinds of ways to derive correct surface forms have been suggested.

Though my aim with this article has been to give an alternative to the predominant historicistic view through functioning and unexpensive methode, it may well be that the main finding is how e in dialects without e reacts to harmony.

Footnotes

1. It may be noted that the vowels here designated $a s \underline{a}, \underline{e}$ and \underline{e} ore transcribed in IPA as [0], le] and [8e], respectively. In the seven-vowel dialects, \underline{e} is more close - something like $[\mathrm{e}$ but with a special timbre.
2. Harmony causes the following alternations: $\underline{\underline{a}} / \underline{e}, \underline{a} / \underline{e}, \underline{o} / \underline{0}, \underline{o} / \underline{\underline{u}}, \underline{u} / \underline{u}, \underline{u} / \underline{u}$.
3. The tendency to choose the front variants is positively related to the number of final neutral vowels but in individual cases the harmony is not predictable. Kombine (slip, undergown) thus takes back suffixes (or, more likely, vacillates), while oxigen (oxygen) takes the front verionts. The two words differ from each other with respect to harmony in spite of the fact that their vowel sequences are identical.
4. Harmony occurs between all sorts of roots and endings, thus: zold (green), zöldebb (greener), korrekt (correct), korrektebb/karrektabb (more correct), zsir (grease), zsiros (greasy), fold (earth), foldes (earthy), fúj (blow), fújtam (1 blow+preterite), nyit (open), nyilattam (1 opentpret.).
5. But kiparsky (1968) observes that Finnish vowel-initial suffixes are back after neutral monosyllabic roots. This rule may originate from the same source as the harmonic behaviour of the hid words.
6. Underlying forms of the case suffixes are: -nek (dative/genitive), -be (illative), -ben (inessive), -bill (elative), ra (sublative), -rol (delative), -hoz (allative), -nál (adessive), -toll (ablative), -vel (instrumental/comitative) and -ért (causal/final). All except the last one alternate. Some of the case stems are slightly different from the corresponding suffix forms, e.g.: belöl- \rightarrow-bŏl.
7. The form is derekas in the eight-vowel dialects - the basic form is derék. Derék is the only bisyllabic stem in the exceptional hid group.
8. This already mentioned merger is by all means quite natural; its existence is confirmed in Sima (1980).
9. Adopting the Elsewhere Condition - vid. Kiparsky (1973b) - we may state the changing segment simply as IV].
10. In a lexical phonology framework, d might be replaced by the number of that level (or stratum) where alternsting suffixes sre adjoined.
11. The marker d is needed for the root eszkoz (means; tool; instrument).
12. Low final vowels are never lengthened before a root morpheme, e.g.: kortefo (pear tree), faláp (wooden leg).
13. From now on until the beginning of (27) long, high etc. are to be taken as abbreviations for longness, highness etc.

References

Anderson, Steven R. (1980): "Problems and perspectives in the description of vowel harmony", in Robert M. Vago, ed. (1980).

Anderson, Steven R. and Paul Kiparsky, eds. (1973): A Festschrift for Morris Halle, Holt, Rinehart and Winston, New York.

Chomsky, Noam and Morris Halle (1968): The sound pattern of English, Harper and Row, New York.

CIFU $6=$ Congressus Internationalis Fenno-Ugristarum: 6 (1980), Turku.
ÉrtSz = A magyar nyely ételmezö szótára [Hungarian explanatory dictionaryl. 1-v11, Budapest, 1959-1962.

Esztergar, Marianne (1971): A generative phonology of nouns and vowel harmony in Hungarian, Dissertation, University of California, San Diego.

Farkas, Donka (1979): "How abstract is Hungerien phonology ?", in Papers from the 15 th Regional Meeting Chicago Linguistic Society.

Fujimurs, Osamu, ed. (1973): Three dimensions of linguistic theory, TEC, Tokyo.

Jensen, John T. (1978): "Reply to 'Theoretical implications of Hungarian vowel harmony", Linguistic Inquiry 9:1, 89-97.

Jensen, John T. (1984): "A lexical phonology treatment of Hungarian vowel harmony", Linguistic Analysis 14:2-3, 231-253.

Kiefer, Ferenc (1984): Magyar-Syéd szótár IHungarian-Swedish dictionaryl, Akadémiai Kiadó, Budapest.

Kiparsky, Paul (1968): "How abstract is phonology ?", in Osamu Fujimura, ed. (1973):

Kiparsky, Paul (1973a): "Abstraciness, opacity, and global rules", in Osamu Fujimura, ed. (1973).

Kiparsky, Paul (19736): "Elsewhere" in phonology", in Steven R. Anderson and Paul Kiparsky, eds. (1973).

Nyman, Alf (1960) Tankefel och tankefallor, Gleerup, Lund.

Papp, Ferenc (1975): A magyar fönev peradigmatikus rendszere [The paradigmatic system of the Hungarion noun], akademiai Kiadó, Budapest.

Phelps, Elaine (1978): "Exceptions and vowel harmony in Hungerian", Linguistic Inquiry 9:1, 98-105.

Ringen, Catherine 0. (1978): "Another view of the theoretical implications of Hungerian vowel harmony", Linguistic inquiry 9:1, 105-115.

Ringen, Catherine 0. (1980): "A concrete analysis of Hungarian vawei harmony", in Robert M. Vago, ed. (1980)

Saussure, Ferdinand de (1960): Course in general linguistics, Peter Bwen Limited, London.

Sima, Ferenc (1980): "Zur Characteristik der Ungarischen und der Finmischen Vokalharmonie", Pors V1, 258-266, in CIFU 6 (1960).

Stanley. Richard (1967): "Redundancy rules in phanology", Language 43. 393-436.

Stong, Margaret T. and John T. Jensen (1971): Two constreinte in phonology, Syracuse University and Mc Gill University, unput!1sned.

Vago, Robert M (1973): "Abstract vowel harmony systems in Uralic and Altaic languages", Language 49, 579-605.

Vago, Robert M. (1974): Hungerian generative phonology, unpublished Doctoral dissertation, Harvard University, Cambridge, Massachusetts

Vago, Robert M. (1976): "Theoretical implications of Hungarian vowel harmony", Linguistic inquiry 7:2, 243-263.

Vago, Robert M. (1978a): "Some controversial questions conceming the description of vowel harmony", Linguistic inquiry $5: 1,116-125$.

Vago, Robert M. (1975b): "The lengthering of final vowels in Hungarian", in Ural-Altaische Jahroücher 50, 144-148.

Vago, Robert M. (1980): "A critique of suprasegmental theories of vowel harmony", in Rabert M. Vago, ed. (1980).

Vago, Robert M., ed (1960): Issues in vowel harmony, Benjamin, Amsterdam

Vowel intrinsic pitch in Standard Chinese

Shi Bo and Zhang Jialu

Institute of acoustics, Academia Sinica

ABSTRACT

Abstract

We investigated whether an intrinsic pitch (IP) effect occurs in Standard Chinese (SC) and if it exists how IP and pitch level interact with each other. The fundamental frequencies (F0) of each 9 Chinese vowels at different tonal points were measured in three positions: (1) in a monosyllable, (2) in the word-initial and (3) the word-final position of a disyllabic word. The test items (400 monosyllables and 509 disyllabic words) were embedded in a frame sentence and uttered by 5 male and 5 female informants. The results show that the characteristics of IP are to be found in all different tones of $S C$ in spite of the fact that those tones have different tonal configurations. Further, the higher the relative pitch value, the larger the difference in $F 0$ among the vowels. The IP differences are reduced in word-final position. These results suggest a new hypothesis.

INTRODUCTION

Intrinsic pitch (intrinsic fo) describes the influence of tongue height of vowels on the Fo-value associated with them: high vowels have higher average F0-values than low vowels when other factors are kept constant.

A great deal of research has been devoted to the analysis and quantification of intrinsic pitch in several languages: English (Crandall, 1925; Taylor, 1933; House and Fairbanks, 1953;

Lehiste and Peterson, 1961). Italian (Ferrero et al., 1975), Danish (Petersen, 1978), Japanese (Nishinuma, 1977), French (Di Cristo, 1985). German (Neweklowsky, 1975), Greece (Samaras, 1972). Taiwanese Chinese (Zee, 1978), Yoruba (Hombert, 1977). Serbo-Croatian (Ivié and Lehiste, 1963), Itsekiri (Ladefoged, 1964), and Chinese (Conncl et al., 1983). IP has also been observed when vowels were sung at the same pitch (Ewan, 1979. Personal communication by C.K.Chang).

Various experimental conditions were applied in these studies. In the early experiments, isolated "real" words (such as in Peterson and Barney, 1952) as well as "nonsense" words (such as in House and Fairbanks, 1953) were used. The segmental environments (i.e. consonantal context) were carefully controlled. Later, the test words were embedded in a frame sentence (as in Lehiste and Peterson, 1961: "Say the word again."). The effects of prosodic environment on IP were also studied. Petersen (1976) reported that the magnitude of ip in stressed syllables is larger than in unstressed syllables. Similar results were obtained for Italian accent/nonaceent words (Ferrero and al., 1975). All of these studies generally showed similar results except Umeda's (1981) which reported that there were no consistent If effects in a 20 -min reading by two speakers. In order to investigate whether Ip effects occur in connected speach, Ladd and Silverman (1984) compared test vowels (in German) in comparable segmental and prosodic environments under two different experimental conditions: (1) a typical laboratory task in which a carrier sentence served as
a frame for test vowels; (2) a paragraph reading task in which test vowels occurred in a variety of prosodic environments. It was shown that the IP effect does occur in connected speech. but that the size of the IP differences is somewhat smaller than in carrier sentences. They pointed out that Umeda's finding was questionable because she apparently had not made any attempt to control for the prosodic environment of the vowels that were measured. In a recent study, Shadle (1985) investigated the interaction of IP and intonation in running speech. She examined the Fo of the vowels [i,a,u] in four sentence positions. The results showed a large main effect of IP that lessened in sentence final position. The study by zee (1978) on Taiwanese Chinese showed that the IP also appears in a tone language, and that its magnitude is less for lower tones. In his study only two contrasting tones, high tone and low tone were analyzed.

However, none of these studies were concerned with the roles of pitch level and the position in the word in affecting intrinsic pitch. The main goal of the present experiment was to get a general idea about the effect of intrinsic pitch in Standard Chinese. The effect was to be studied as a function of the following variables: (1) pitch level (in different tones); (2) position in disyllabic words (word-initial and word-final).

The material consists of two parts, 400 monosyllables and 509 disyllabic words. The monosyllables consist of all possible arrangements of consonants and vowels in chinese, each arrangement having all four tones. Among them there are 279 "real" monosyllabic words and 121 "nonsense" words. The disyllabic words consist of one test syllable (a vowel preceded by an initial consonant) and one matched syllable. The matched syllable was chosen in such a way that the test vowels could be compared in a similar segmental environment and the same tonal surroundings. Examples are fähuàfühuà; wëibä/we ibō/wëib̄$;$ tújing/tíxing, (The test syllables are underlined)。 of the test syllables 273 were in word-initial and 236 in word-final position. As many combinations of two tones as possible were involved in this part.

In order to make all test items occur in the same phonetic environment and approach the situation of connected speech, all the monosyllables and disyllabic words were embedded in the frame sentence / Wǒ dú _ zì./ "I utter the character _." and / Wo dú _ zhè gë cíi./ "I utter the word _ _." respectively.

10 speakers (5 males and 5 females) of Standard Chinese were recorded. Before the recordings each speaker was given a short training period. A natural style was aimed at. The test materials were read once by each speaker in an acoustically treated room.

The records were fed into a Visi-Pitch (model 6087) for the extraction of $F 0$. The counter provides a digital display of $F 0$ for sustained vowels while the cursor allows the user to determine the $F O$ of any point on the pitch curve shown on the screen with +1 Hz accuracy.

Fig. 1 shows the measuring points of $E 0$. They are: for high tone (T1) the middle point $T 1$ for rising tone (T2) the lowest point T2-1 and the highest point T2-2; for dipping tone (T3) the starting point T3-1 and the lowest point T3-2; for falling tone (T4) the highest point $T 4-1$ and the lowest point $T 4-2$.

As a first step in our analysis we only cared about average IP differences between vowels but ignored the differences between consonantal context and interspeaker variabilities. The statistical method was a one-way analysis of variance (with speakers and consonantal environments as a repeated measure).

Fig. 1 Measuring points of fundamental frequency

1. Vowel intrinsic pitch in four tones

The data which will be analyzed in this section were derived from 400 monosyllables. The intrinsic fo-values for each of 9 vowels at different tonal points are given in Table 1 in which the data are mean values averaged across consonants, for 5 males and 5 females respectively. The vowels were arranged in order of $F 0-v a l u e$ (based on the data in Table 1 averaged across 10 speakers) in Table 2. The relative mean Fo differences between low vowel [a] and the remaining vowels are shown in Table 3 (see 'monosy.' parts).

The data mentioned above permit us to make the following observations: 1). At points $T 1, T 2-2$, and $T 4-1$ the $F 0-v a l u e s$ of high, middle and low vowels go from high to low and the $F 0$ differences between $h i g h$ and low vowels are $10-30 \mathrm{~Hz}$; 2). At points T2-1 and T3-2 a high vowel also has a higher fo except that the $F 0-v a l u e$ of $[o]$ is a bit higher than that of [$\]$ and [i]. This is also shown graphically in Fig. 2 (see. . . The data at these rive points show that chinese also exhibits the influence of intrinsic pitch.

At points $T 3-1$ and $T 4-2$ the situation is more complex. In the measurements we found considerable inter and intra-speaker variability for FO-values at $T 3-1$. For point $T 4-2$, the main problem is that at the end of $T 4$ the energy is very low and the

Table 1. Mean intrinsic Fo-value for each of the 9 Chinese vowels at different tonal points, derived from 400 monosyllables, averaged across consonantal contexts, and for 5 males and 5 females respectively

| | $\begin{aligned} & \text { vowel } \\ & \text { (IPA) } \end{aligned}$ | number of occurrences (each tone) | F0-value (Hz) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | T1 | T 2-1 | T2-2 | T 3-1 | T 3-2 | T 4-1 | T4-2 |
| male | 1 | 12 | 175 | 118 | 167 | 113 | 89 | 197 | 97 |
| | 1 | 3 | 181 | 122 | 171 | 116 | 90 | 208 | 99 |
| | 2 | 4 | 179 | 116 | 169 | 115 | 90 | 195 | 101 |
| | y | 6 | 180 | 119 | 175 | 115 | 90 | 197 | 101 |
| | u | 19 | 181 | 117 | 168 | 112 | 90 | 206 | 105 |
| | e | 19 | 164 | 114 | 156 | 114 | 88 | 187 | 101 |
| | \bigcirc | 18 | 168 | 117 | 160 | 116 | 90 | 184 | 100 |
| | | 1 | 170 | 116 | 170 | 122 | 88 | 178 | 100 |
| | a | 18 | 154 | 111 | 151 | 108 | 83 | 175 | 97 |
| female | - | 12 | 291 | 205 | 265 | 219 | 169 | 312 | 180 |
| | 1 | 3 | 302 | 206 | 271 | 214 | 172 | 326 | 182 |
| | 2 | 4 | 295 | 200 | 264 | 216 | 168 | 319 | 192 |
| | y | 6 | 300 | 209 | 278 | 219 | 171 | 318 | 176 |
| | u | 19 | 307 | 209 | 289 | 218 | 172 | 335 | 184 |
| | e | 19 | 289 | 202 | 270 | 215 | 170 | 315 | 183 |
| | - | 18 | 278 | 200 | 270 | 213 | 170 | 310 | 183 |
| | θ | 1 | 302 | 200 | 274 | 209 | 161 | 314 | 182 |
| | a | 18 | 276 | 198 | 255 | 227 | 171 | 302 | 187 |

Table 2. Vowels ordered from high FO to low FO (derived from 400 monosyllables, averaged across 5 male and 5 female speakers and consonantal contexts)

| | T1 | T-2-1 | T2-2 | T 3-1 | T 3-2 | T 4-1 | T4-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F0 | | | | | | | |
| | u | u | u | y | u | u | 1 |
| high | 1 | y | 2 | 1 | 1 | a | u |
| | y | 1 | y | u | y | 1 | e |
| , | 2 | 1 | 1 | 1 | \bigcirc | 2 | a |
| | i | i | 1 | \bigcirc | 2 | 1 | \bigcirc |
| 1 | e | \bigcirc | e | 1 | i | u | 1 |
| low | \bigcirc | e | 0 | e | e | \bigcirc | y |
| | a | a | a | a | a | e | i |

Table 3. Relative F0 differences ($\Delta \mathrm{FO}$) between the vowel [a] and the remaining 7 vowels at different tonal points in three conditions: monosyllable, word-initial and word-final, (data were averaged across consonantal contexts and all speakers)

Male

Fig. 2 Mean Fo for the vowels, plotted as a function of tongue height, averaged across consonants and fox 5 males and 5 females respectively
periodicity is not good enough to permit precision in measurements. As a result there is no consistent influence of IP at these two points.
2. Effect of word-position on IP

When the test syllables were in the disyllabic words there are additional factors influencing Fo. There is some modification in FO caused by the adjacent tone. The data in Fig. 2 (and and table 3 (see 'word-i.' and 'word-f.' parts) show that, though meaning and tonal environment are not separated in the data, the effect of intrinsic pitch still occurs regardiess of whether the test vowels were in word-initial or word-final position. However the magnitude of $I P$ was reduced in word-final position. This reduction appears to be related to a lowering of Fo in this position (in Fig. 2 , the curves derived from the word-final position are the lowest ones in most cases).
3. Interaction of intrinsic pitch with pitch level

Fig. 2 shows fo-values of 9 simple vowels as a function of the tongue height associated with them. In each part of fig. 2 . from left to right, the tongue height of the vowel goes from high to low and it is accompanied by a drop in fo, whioh reflects the effect of $I P$. But the curves at different tonal points have different slopes. It indicates that although each
vowel appears to be associated with an intrinsic fo at a certain tonal point, the differences of intrinsic FO across the vowels vary from point to point. This variance can be seen more clearly in Table 3. in which from top to bottom, the mean relative Fo differences ($\triangle F O$) between the low vowel [a] and the remaining vowels become smaller and smaller as fo drops. The AFO at points $T 1$ and $T 4-1$ (high FO) are much larger than those of point $\mathrm{T} 3-2$ (lower FO).

Going a step further, there is little difference in AFO between the males and the females in spite of the fact that the fo of the females is higher than that of the males. It indicates that the magnitude of $\Delta F O$ is directly proportional to some kind of relative pitch value rather than to the absolute Fo-value. In tone languages, "tonal value" and "tonal register" are often used to discribe the relative relationships of pitch values. If we call the absolute FO-minimum as FO(min) and FO-maximum as FO(max), then the tonal value $T(p)(i n$ oct.) for $F O(p)(i n H z)$ is the binary logarithm of the quotient of $F O(p)$ and $F O(m i n)$. When $F O(p)$ is equal to $F O(\max)$, the $T(\max)$ is the tonal register.

Thus

| Tonal value: | $T(p)=\log _{2}(F O(p) / F O(\min))$ | Oct. |
| :--- | :--- | :--- |
| Tonal register: $T(m a x)=\log _{2}(F O(\max) / F O(m i n))$ | oct. | |

The $\Delta F 0$ between $i-a$ and between $u=a$ are plotted as a function of the normalized tonal value ($T(p)$ divided by $T(m a x)$) in

Fig. 3. The " represents the averages over i-a and u-a, across the males and the females. It is obvious that the higher the tonal value, the larger the $\Delta F 0$. In other words, the IP is more marked in the high frequency region of the tonal register than in the lower one. But the slopes of the two curves of the females turn negative when the normalized tonal value is bjgger than 0.8. It seems that when the fo-value goes beyond certain limits, the direct proportional relation between $\triangle F O$ and $F 0$ will no longer be tenable. This suggests that it might be worth while to study intrinsic pitch in a larger fo dynamic range such as in singing.

Table 4. Comparison of $F D$ for different languages

| FD of | | FD of chinese | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | male | | female | |
| Italian | 23.3 | 25.2 | (T1) | 23.5 | (T1) |
| | | 24.5 | (T 4-1) | 22.6 | (T2-2) |
| Danish | 16.5 | 14.5 | (T2-2) | 19.6 | (T4-1) |
| Greece | 11.9 | | | | |
| English | 10.5 | | | | |
| French | 9.8 | | | | |
| German | 9.6 | | | | |
| Italian* | 9.2 | 7.2 | (T2-1) | 9.1 | (T2-9) |
| Japanese | 9.0 | 7.2 | (T3-2) | | |

```
    * FD=FH-FL FH: mean Fo-value of high vowels [i,u,y]
    FL: mean Fo-value of low vowels [\mathcal{E,t,},\mp@code{a]}
    ~ accent
** unaccent
```

For the purpose of comparison, the term "FD" was defined as the difference between the mean Fo-value of high vowels [i.u.y] ($F H$) and the mean $F 0$-value of low vowels $[\varepsilon, \alpha, y, a]$) ($F L$), i.e. $F D=F H-F L$. The $F D-v a l u e s$ of some other languages (quoted from Di Cristo, were compared to the $F D-v a l u e s$ of $S C$ in Table 4. It seems that the magnitude of IP of $S C$ at different tonal points just varies between those of other languages. Italian and Chinese are similar with respect to the fact that for Italian the $F D-v a l u e$ of an accented syllable is larger than the FD-value of an unacented one, and for Chinese the FD-value for a higher tone is larger than the $F D-v a l u e$ for a lower tone.

The mean ratios of [i] and [u] to [a] as established in the present study and in a number of other investigations are given in Fig.4. It is clear that the data of the present study are in good agreement with the results of other studies.

DISCUSSION

There have been various hypotheses for the cause of IP. Taylor's "dynamogenetic irradiation hypothesis" (1933) appears to be the earliest attempt. He thought that "the most plausible explanation of the vowel pitch triangle appears to be that it results from dynamogenetic irradiation of the tongue tension to the vocal cord musculature." But it was obviously

Males: x Females: 4 (i): (u): -
Averages over males and females, (i) and (u):
Fig, 3 Mean FO differences between (i,u) and (a) are directly propoxtional to the normalized tonal value

Fig. 4 Mean ratios of (i) to (a) and (u) to (a), based on the data from the present and a number of other investigations
questionable.

There is a source/tract coupling hypothesis (See i.e. Flanagan and Landgraf. 1968; Atkinson. 1973) based on the assumption that the $I P$ could be caused by acoustic interaction between the first vowel formant and the vibration of the vocal folds. Since higher vowels have lower first formants than low vowels, the acoustic interaction should be greatest for high vowels whose first formant frequencies are closer in frequency to Fo. However, the results of the experiments made by Beil (1962) and Ewan (1979) contradict this hypothesis. And the relationship between [i] and [u] does not tally with what the hypothesis predicts either. We usually find that the first formant $F 1$ of [i] is lower than that of [u]. According to the hypothesis [i] should be expected to have a higher $F 0$ than [u]. Nevertheless. the present and a number of other investigations show the opposite relation, i.e. a nigher Fo in [u] than [i] (See Fig.4) 。

The [i]-[u] relation we just discussed also contradicts another hypothesis -- Mohr's "pressure hypothesis" (1971). Mohr assumes a pressure of air to be built up behind the supraglottal constriction, which reduces the airflow through the glottis and, consequently, the rate of vocal fold vibration. The greater the distance between the constriction and the glottis, the longer it takes for the air pressure to be established behind the constriction and hence for the Fo to drop. If this explanation were true, a higher fo should be
expected in [1] than in [u]. Thus, the results of the present study support neither source/tract coupling nor pressure hypotheses.

Of the various hypotheses, it seems that the tongue pull theory has received the greatest attention. The early tongue pull hypothesis (Ladedoged, 1964) supposed that the tongue, when raised to produce high vowels, pulls the hyoid bone and the larynx upwards, thus resulting in an increased vocal-fold tension which in turn leads to a higher fo. But this explanation is contradicted by the fact that the hyoid/larynx position always seems to be lower in [u] than in [a]. Ohala (1973) modified the tongue pull hypothesis. He thought that the increased tongue pull in high vowels gives rise to increased vertical tension in the vocal folds through the mucous membrane and other soft tissues without involving the hyoid bone and the hard tissues of the laryno. In support of this explanation, it appears that there is a positive correlation between ventricle size, which is assumed Lo reflect vertical tension in the vocal folds and tongue height and intrinsic fo of vowels. The tongue pull hypothesis has been expanded further by Ewan (1975). In addition to tongue pull-or rather, lack of tongue pullme Ewan proposes a "tongue retraction/pharyngeal constriction component" to account for the low intrinsic $F 0$ of low vowels. Ewan suggests that the low Fo of low vowels, which are also assumed to involve a tongue retraction or pharyngeal constriction component, is caused by the soft tissues being pressed downwards in the direction of
the larynx and thus increasing the vibrating mass of the vocal folds, which results in a decrease in $F 0$.

But few of these hypotheses attempt an explanation of the "nonlinearity" in IP. In Chinese the higher the tonal value. the larger the IP difference; in Italian, the accented syllables display greater IP than unaccented ones (Ferrero et al. 1975): deaf speakers often exhibit a larger than normal IP which may be related to a higher than normal average Fo (Bush. 1981). IP is reduced in final sentence position with a lowered F0 (Shadle, 1985). The common point is that a larger IP difference seems always correlated to a higher F0. Moreaver, the variation of tonal characteristics due to syntactic and semantic factors is much larger at the tonal roof than at the tonal floor (Bannert, 1984). So a larger variation of FO always corresponds to a higher Fo. And this sort of nonlinearity is relative to a within-subject variation (i。e. it does not mean the female should be expected to have a larger IP difference than the male because of a higher voice). There was a simpler explanation that general relaxation (as in an unaccented phrase-final position) may reduce intrinsic Fo. But it is contradicted by the evidence against vowel neutralization in that "relaxed" sentence position (Shadle, 1985).

Here, we try to give a probable interpretation from the point of inherent nonimearity of the vocalis muscle itself. According to Ohala's theory (1973) the tongue pull gives rise to increased vertical tension in the vocal folds through the
mucous membrane and other soft tissues. We could assume that
there must be a series of defrormations in the mucous membrane and the soft tissues, and finally in the vocalis muscle itself thus causing increased tension. The relationship between the tension T and the elongation x of the vocajis muscle can be approximately expressed as (Fujisaki et al. 1981):

$$
T=a \exp (b x)
$$

The incremental tension per unit elongation, as given by $\gamma^{T / \gamma x}$. is obviously greater at larger values of x which generally correspond to higher Fowvalues. In other words. the same incremental elongation due to the tongue pull could cause a larger inorease in tension T thus leading to a larger fo variance at high Fo than at low Fo. However, it must be emphasized that this is only a probable conjecture. The reliable evidence for the interpretation should be based on physiological data. Last. we think that if this kind of nonlinearity in the production of speech could be confirmed, it would be helpful for a better understanding of the similar nonlinearity found in the perception of speech.

ACKNOWLEDGMENTS

We would like to express our thanks to Prof. Eva Garding and Prof. Man Dahwyou for their valuable suggestions and oritical reading of the early versions. We are also greatly indebted to many colleagues for assistance, for encouragement and for guiding us to relevant literature: David House, Li Meng. Li

Zi-yin, Lü Shiman, Qi Shi-qian, Jan-Olof Svantesson, and Paul Touati.

REFERENCES

Appelman, D. R. 1967. The Science of vocal pedagogy (Indiana U. P. Bloomington).

Atkinson, J. E. 1973. Aspects of intonation in speech: Implications from an experimental study of fundamental frequency. PhD dissertation, Univ. of Connecticut, Storrs, CT (unpublished).

Bannert. R. 1984. Towards a model for German prosody. Working Papers 27: 1-36. Dept. of Linguistics and Phonetics, Lund Univ..

Beil. R.G. 1962. Frequency analysis of vowels produced in a helium-rich atmosphere. J. Acoust. Soc. Am. 34: 347-349.

Bush. M. 1981. Vowel articulation and laryngeal control in the speech of the deaf. PhD thesis, MIT (unpublished).

Conncl. B. A. et al. 1983. Experimental evidence of interaction between tone and intonation in Mandarin Chinese.
J. Phonetics 11: 337-351.

Crandall. J. B. 1925. The sounds of speech, Bell Syst. Tech. J. 4: 586-626.
Di. Cristo. A. 1985. De la mioroprosodie a lintonosyntaxe. Publications Université de Provence.

Ewan. W.G. 1975. Explaining the intrinsic pitch of vowels. Paper presented at the Fifth California Linguistics Association Conference, San Jose, May 4, 1975, 1-9.

Ewan, W. G. 1979. Can intrinsic vowel F0 be explained by source/tract coupling? J. Acoust. Soc. Am. 66: 358-326.

Ferrero, F. E. et al. 1975. Some acoustic and perceptual characteristics of the Italian vowels. Paper presented at the VIIIth Int. Congr. Phon. Sci. (Leeds), mimeographed.

Flanagan, J. and Landgraf. L. 1968. Self-oscillating source for vocal-tract synthesizers. IEEE Transactions on Audio and Electroacoustics $\mathrm{AU}-16,57-64$.

Fujisaki, H et al. 198i. Analysis of pitch control in singinge In K.N. Stevens and M.Hirano (eds.), Vocal fold physiology. Univ. of Tokyo press, 347-363.

Hombert. JwM. 1977. Consonant types, vowel height and cone in Yoruba. Stud. Afri. Linguistics 8: 173-190.

House, A. and Fairbanks, G. 1953. The influence of consonant environment upon the secondary acoustical characteristics of vowels. J. Acoust. Soc. Am. 35: 84-92.

Ivic. P. and Lehiste, I. 1963. Prilozi ispitivanju fonetske i fonoloske prirode akcenata u savremenom srpskohrvatskom
književnom jeziku. Zbornik za filologijy i lingvistiku 6: 33-73.

Ladd, D. R. and Silverman. K.E.A. 1984. Vowel intrinsic pitch in connected speech. Phonetica 41: 31-40.

Ladefoged, P. 1964. A phonetic study of West African languages. In West African Language Monograph, Series I (Cambridge U. P., Cambridge).

Lehiste, I. and Peterson, G. E. 1961. Some basic considerarions in the analysis of intonation. J. Acoust. Soc. Am. 33: 419-425.

Lubker, J. et al. 1977. Vowel fundamental frequency and congue height. J. Acoust. soc. Am. 62: S16-17(A).

Mohr, B. 1971. Intrinsic variations in the speech signal. Phonetica. 23: 65-93.

Neweklowsky, G. 1975. Spezifische dauer und spezifische tonhöhe der vokale. Phonetica. 32, 1: 38-60.

Nishinuma, Y. 1977. Contribution à l'étude prosodique du Japonais. Thèse de 3e Cycle. Univ. de Provence.

Ohala. J. 1973. Explanations for the intrinsic pitch of vowels. Monthly Internal Memorandum, Phonology Laboratory, Univ, of California, Berkeley (January), 9-26.

Petersen. N. R. 1976. Intrinsic fundamental frequency of Danish vowels. J. of Phonetics (1978) 6: 177-189.

Peterson, G. E., and Barney, H. L. 1952. Control methods used in a study of the vowels. J. Acoust. Soc. Am. 24: 118-127.

Samaras. M. 1972. Influence de lentourage consonantique sur les vartations de la fréquence laryngienne des voyelles du grec moderne, Bull. de l'Inst. de Phon. de Grenoble, I: $57-66$.

Shadle, C. H. 1985. Intrinsic fundamental frequency of vowels in sentence context. J. Acoust. Soc. Am. 78: 1562-1567.

Taylor, H. C. 1933. The fundamental pitch of English vowels. J. Exp. Psychol., 16: 565-582.

Umeda, N. 1981. Influence of segmental factors on fundamental frequency in fluent speech. J. Acoust. Soc. Am. 70: 350-355.

Zee, E. 1978. The interaction of tone and vowel quality. UCLA work. Pap. Phonet. 41: 53-67.

Understanding measure and comparative sentences

through Prolog

Bengt Sigurd

Measure sentences are e.g."Sven is 12 years old", Swedish: "Sven ${ }^{\text {a }} x 12$ ax gammal","The boat is 12 feet long", Swedish: "Baten ax 12 fot lang"; "The stone has a weight of 12 kilos", Swedish: "gtenen hax en vikt av 12 kilo", "How much is the cax?", Swedish:"Hux mycket kostax bilen?", Such sentences axe part of the core gxamax and play an important role in the use of natural language in communication. They have attracted the interest of linguists because they indicate how languages express funcamental cognitive dimensions and many linguists have noted that "old" in "How old is Sven?" does not presuppose that Sven is old, while "How young is Sven?" presupposes that Sven is young. It has also been noted that the sentence "Sven is old " means that Sven is old for mad and that even the absolute use of adjectives implies a comparison with a standard. Comparative constructions such as "Sven is five years older than Lisa " have added to the interest in measure adjectives. Thexe is a large body of Iiterature on adjectives and compaxatives (of, Rusieoki,1985). Theae woxks will not be reviewed in this paper, which aims at illustrating how such facts appear in a computex program which can "understand" measure and comparative sentenoes and ancwer coxresponding questions.

This papex will present the basic syntaotic and semantio features of Swedish measure and oomparative sentences. The Swedish expressions will be trenslated and comparison with the equivalent English expressions will thus be possible. The computer program, written in Prolog, is constructed with this backgxound. Various limitations have been intxoduced in order to get a program which can be used fox demonstration puxposes.

The progxam ean paxse a wide xaxge of measure and comparebive sentences. IE it ik asked to acoept a menterae it adds the fact to its data base mad xaturns "Jaha" (OK). If it is asked to mawer a question it retuxns an answex if one is available. The grogxam krows the equivalance ot semtances 5uch as "The boat is 30 faet long" "The boat has e length of 30 feet"; The length of the boet is 30 feet" and "The boat measures 30 feet" and is able to ume mecepted intowmbtien in answers to mevexal types of questions. it understands that it is reasonable to call a person who is over 60 old. The program undexstands that Bvan is older than Dill if it has learnt that Svers is older than Lisa and Lime is oldex than Bill. It underetands that Lisa is 5 years younger than Sven if it has learnt that Sven is 5 yeaxs olaex than Lisa. It understands that Sven is double amola as Lisa if it ham leaxnt that Lisa is half as old as Svan. In some vaxiants of bhe progxam explamations of the conclusions axe also added.

The pxogxam may be of interest to those who construct expert systems, where variants of meamure sentences often play an important role. The ixagment discussed can perhaps be embedded in a moxe comprehensive system. Some theoretical and psycholinguistic issues will be touched upon as the progxam forces the designex to decide where diffexent types of linguistic and enoyolopedic knowledge is to be put. The choioe of logical repxesentations is also an interesting theoxeticel issue. Sevexmy heve to be chosen in oxdex to handle the problems and pectsaxities discussed above. One might suggett that e.g. only the unmaxked representation is stored in the memory ("Sven is biggex than Lise" not "Lisa is smellex than Svex") and that infexences always, or pxaferably, axe dome on unmarked (positive) representations. This idec oan easily be implemented in a version of the pxogxam to get a model which can explain why subjects ean vexbalize the ummxked adjective faster than the maxked one(big befoxe small) as has been found (Sohrietexs,1985).

The difitexences between Swerish and English evoke some oomments and raise questions about measuye and comparative sentenoes in the languages of the woxld - typologioal questions which will not be treated in this papat.

The syntax of measure sentences

Four main types of measure sentences can be digtinguished: The adjectival type (Sven ar fem ar gammal), the nominal type (Sver hax en aldex av fem ar), the genitive type (Gvens Aldax ä fem ar) and the verbal type (Sven vagex trettio kiloilacking fox the dimension agel.

The syntactic structure of the fiyst type can be illustrated by the following xepresentation:
 where pf means predicative phrase, mf means measure phrase, a means (measure) adjective, and the othes abbxeviations should be evident. The charactexistic feature is the popula and the adjective and in the pxolog program only the present tense "är" (is) and some common adjactives are used. The sample subject mouns are chosen not to cxeate any vaxiation in agremment.If egg."barmet" (the child) is also inciuded the ending -b would have to be adied to the pradicative adjective as "barnet " has neutex gendex. ("Barnet ar txe ax gamalt"). It is quite possible to handie such problame in the Prolog definite clause grammax formalimm used, but for our purpose it is important not to clutter up the program by the additiomal machinexy.

One equivelent question is:
pfinf(hur), a(gammal)), cop(äx), np(sven)?(How old is Sven?), and an answex could be:"(Sven ar) fem ar (gammal):" It would also be possible to answex such a question without a measure phrase by saying:"Han äx myoket gammal." (He is very old.) This case is not covered by oux program. Another equivalent question is:
pf(mf(num(hur manga), unit(Ax)), e(gammad)), cop(芭r), np(5ven), but the only acceptable answer in that case is a numerical answex substituting for "hur_manga" (how many), e.g."(Sven ax) fem(ax gammal)". The usual way of putting this quesions is in fact only:"Hux mange ay ar Sven?" whexe "gammal" is teleted, pxobably as being redundant when " $\mathrm{Ax}^{\text {" (years) is mentioned. }}$

Sentences without measuxe phxases axe similax to this type. But as many linguists have noted the meaning of some measux majectives is quite diffexmat it used with a measuxe phrase. "Sven is five yeaxs old" does not mean that he is old, and thet is why it is not too stxange to continue: "He is not old". For bamic dimensione thera is an adjective which can be used in this neutxal way an excemtion is the dimension weight. AE in English one ammot say:"gven ax tem kilo tung nor "fem kilo lätt."(Sven is five kilos heavy/light). One has to say that: "Sven vägex mycket" (Svan weighe a lot) ox "Svene vikt är Kög" (Sven's weight is gxeat). "Sven ax fem kilo tung ${ }^{\circ}$ is strange, but it has an interpxetation, which we might want our progxam to be able to handle. (A version does).

The second type of measure sentences is the nominal type, which may be illustrated by:
np(Sven), vp(hax), np(en,mn(aldex), av, mf(fen, ar))
where the charaeteristic feature is "hax" plus the measure noun (mn) frolowed by a measure phxase.

The equivalent question iw "Vilken Alier hax Sven?"

The thirg bype of measure sentence is ohaxactexized by a subject whexe the beaxer of the property is in the genitive and the property is denoted by ameamure noun. It can be illustrated by:
 question is "Vilken ax guens alder?" It is not possible to sey "Vilken gldex mx svens?" which would xathex be an equivalent to the straxge English smntence "Which age belongs to Sven?". It is, howevex, also possible to gey (more informally) "Vad ax Svens alder?" A native is havaly aware of which kind of measure construction he uses.

There is a related nominal constxuction:"Svan hax nog Alder" (Sven has high age) and a related genitive construction: "Svens aldex ax hog" (Sven'sage is high). We note that hog(high), lag(low) can be used with mome aimensions e.g.aldex,kvalitet,kvantitet, hajd, hastighet(speed).

The fourth type of measure comstruction is chaxactexized by the fact that the verb denotes the dimension, but there axe only a few such verbs available. The construction can be illustzatad by:
np(Bilen), vp(kostax),mf(B000,kronox)
The vexb "kostex"(cost) denotes the price dimension, "vägex" denoteg the weight dimension (not "tyngex", which means press down)."Rymmer";"innehallex"(contains) demote the volume dimension, but othex measure vexbe are haxd to come by. Some that come to mind e.g."mäter" (measure), "räknar" (count) seem often to have less aoceptability and they axe not associated with only one dimencion. It sems possible to answex the question "Hux stox äx salen" (How big is the hall?) by "Den matex $1000 \mathrm{kvadxatmetex"} ,\mathrm{but} \mathrm{also} \mathrm{by} \mathrm{e.g}. \mathrm{"Den}$ ränax 1000 stolax"。 $I t$ im also possible to take "stor" to indicate volume and answer "Den rymmex 500 personer". (It can take 500 pexsons, It can seat 500 pexsons). The vexb "omfattax" would fit in a Eentance such as "Den omfattax 10 sektionex" (It includes 10 seotions). It is possible to answex the question "Hux lang ex bstan?" (How long is the boat?" by "Den äx 30 fot lang", but also by "Den mätex 30 fot". The question "Hur bred är baten?" (How wide is the boat?" can poasibly also be anmwered by a phrase oontaining the verb "mäter" e.g. "Den mäter tva metex" (It measures two meters). The English verb measure sems to carry similar stylistic values.

There is a related construction without a measure phrase: "Bilen kostar mycket" (The car costs much), where the word "myoket" is an squivalent of "a lot". It is sometimes possible to use the verb alone (in a pregnant senme):"Det kostar", meaning "That costs a lot". In the same way some dimensional nouns can be used in a pregnant sense, e.g."Sven hax tynga" (Sven has weight), but in that case the meaning is abstract: Sven is of impoxtance/caxries weight.

The price dimension oan also be denoted by "betingar". It may also combine with the aoun:"Bilen betingar ett hogt pxis /5000 kxonox" (The cax costs a lot/5000 kxonox)。

Supexlative sentencem cannot noxmely take meamure phxasme ae illustrated by the following sentemenem and ungrammatical expangions: "Sven ëx aldst av pojkaxae" (Sven is (the) oldest of the boys), *"5ven är s ay alcet av pojkavaa"(Sven is 5 years (the) oldest of the boys). It is, however, poseible to use a mon-mumexical modifiex as e.g in "Gven ar klaxt äldst av pojkaxna" (Sven is cleaxly/by far the olaest of the boys). Superlative sentences are aot included in the fragnent of Swaisish covexed by oux progxam, but it is intexesting to speculate about the xeasons why natuxal language(s) - at least not Swedish and English - do not offer superlatives fox numexical quantification of the difference between an object and the group of objects it is singled out from on the basis of a certain dimension. If Sven ig 5 years older than a cextain group of boys this fact is rendered by a comparative construotion where he is not considexed to be a membex of a group:"Sven ax 5 ar aldue an pojkarna" (Sven is 5 yeare oldex than the boys).

There are diffexpt types of compaxative construction. Sone types will be discussed below, but all are not covered by the Prolog progxam. We may distinguish between acjectivel types, where the compaxative foxms discussed by so many linguists appear, e.g. "Sven ax 5 kilo tyagre g̈n lisa" (Sven is 5 kilos heaviex than Lisa), verbal types, e.g. "Even vager 5 kilo mex än Liea" (Sven weighs 5 kilos moxe than Lisa), and nominal types e.g. "Svens vikt ax 5 kilo hëgxe an Lisas" (Sven's weight is 5 kilos gxeatex than Lisa's), "Sven hax en fem kilo hogre vikt en Lisa" (Sven has a 5 kilos greater weight than lisa).

Comparative sentences may also be divided into equality (comparative) sentences e.g. "Sven är lika tung som Per" (Sven is equally heavy ex Pex, Sven is as heavy as Pex) and difference (comparative) sentences. Difference sentences may be divided into additional (and subtraotional) sentences; e.g. "Gven áx 5 kilo tyngxe en Lisa" (Sven is 5 kilos heavier than Lisa) and multiplicational (divisional) sentences, 2.g. "Sven ax tva ganger sa gammal som Tim, Sven ax dubbelt sa gammal som Tim, Sven ax tva gangex (dubbelt) aldye än Tim" (5ven is two timen (twice) as old as Tim). The divisional compaxative type is illustrated by "Tim är halften sat gammal som Sven" (Tim is half as ola as Svan): It is also possible to combine these types and vexbalise an euqation as in "Gven ax dubbelt sa gammalsom Rut, minus 2 ax" (Sven is double as ola as Rut, minus 2 yeaxs), but such complex construotions will not be handled by our demonstration program.

The syntactic structure of an avaluative comparative constxuction without a measure phxase quantifying the difference oan be illustrated by the following sentence.
np(Sven), cop(är), compar(aldre),pp(prep(än), np(Lisa))
Sven is older than Lisa

Equivalent questions are e.g. "År Sven aldre än Lisa?"
 oldex than Lisa?).

The syntactic structuxe of a related construction where a measure phxase is included can be illustrated by the following sentence.

Theze axe several ways of asking equivalent guegtions depending on how many words axe moved to the front of the gentumoe: "Hux manga ax ax Sven aldxe an Lisa?" (How many years is Sven oldex than Lisa?) "Hux manga ax aldxe ex Sven an Lisu?" (How many yeaxs older is Sven than Lisa?), "Hus manga Ay aldxe än Lisa ax Sven?" (How many years older than Lisa is Sven?). English seems to have the wame mbylistic options. The unit(Ax) has to go with the question woxd (hur manga), which suppoxts the measuxe phrase (mf) as a constituent. The prepoeition(än) has to go with the noun(Lisa), which supports the prespoitional phrase as a constituent. But the comparative(ädre) an be moved with the measure phrase or be strancea with the prepositional phrase and this sact speake against aseuming a constituent including the comparative form and the prepositional phraee.

Multiplioational comparative constructions can be givan a syntactic repxesemtation as illustrated by the following sentence.

```
np (Sven), cop (ax), gf(num (5), gangex), adj(aldxe)
Soen is 5 times older
    \(p p(p x e p(\ddot{n}) \quad n p(T i m))\)
    than Tim
```

With dubbelt (double) the construction illustrated by "Sven ar dubbelt sa gammal som Tim" is genexally used, but in othex cases both the construction with the comparative form and the construction "sa adj som" are gxammatical. This paper does not attempt to pimpoint all suoh idiosynoratio Eacts \quad however.

Equivalent questions suppoxt the constituent mnelyeim suggested above. One may am:"Hux manga gangex ax Sven äldxa enn Tim?" (How many times is Sven older than mim?), "Hur manga gangex $\ddot{\text { aldre }} \mathbf{a} x$ Sven an Tim?" (How many times oldex is Sven than Tim?), "Hux mánga gangex alaxe an Tim axy Sven?" (How many times oldex than Tim is Sven?). An answex could bes"Dubbelt sa gammal" (Double as old), "Tre ganger sa gammal" (Three times as old) ox "Txe gangex eldxe" (Three times oldex) The woyding of the answex is not dependent on the woxding of the question, only on the meaning of the question.

As noted above there are often (almost) equivalent adjectival, nominal and verbal expressions. The following table lists the most important cases, where there are at least two woxd classes to choose from when a dimension is to be denoted together with a measure phrase.

Verb

| - | gammal(old) | alder(age) |
| :--- | :--- | :--- |
| mater(measures) | lang(long) | langd(length) |
| rymmer(contains) | stor(big) | volym(volume) |
| raknar(counts) | stor(big) | storlek(size) |
| väger(weighs) | - | vikt(weight) |
| - | hög(high) | hajd(height) |
| - | djup(deep) | ajup(depth) |
| - | bxed(wide) | bxedd(depth) |
| - | tjook(thick) | tjocklek(thickness) |
| - | varm(warm) | temperatur |
| kostar(costs) | - | kostnad,pris(cost) |
| betingar(costs) | - | kostnad,pris(cost) |

There axe very few verbs which have a dimensional meaning and oan be combined with a measure phrase. And some are ambiguous as noted. There exist only a few adjectives which can occur with a measure phrase and have a dimenmional meaning in ordinary language. Dimensional nouns can always be formed, especially in moxe specific or scientific language. We might say that an object has flexibility 5 , the colour resistence 3 etc. This is cone in consumers tests. But even if scalar dimensions are thus devised one oan only use the noun, not the equivalent adjective. One may say that something has a flexibility of 5 flex units, but hardly that it is 5 (flex) units flexible or that it flexes 5 units.

The logical representation of measure sentenoes with measure phrases is $1(\mathrm{X}, \mathrm{D}, \mathrm{N}, \mathrm{U})$ or $\mathrm{I}(\mathrm{X}, \mathrm{D}, \mathrm{E})$, whexe $\mathrm{X}, \mathrm{D}, \mathrm{E}, \mathrm{N}, \mathrm{U}$ axe vaxiables. X is the objegt having the pxoperty. Dis eg.gge, the name of the property (dimension). E indicates an evaluation and takes on the value moxe(t), indioating moxe than the standaxd for such objects ox less (-), indicatimg less than the standara for such objects. The vaxiable N covexs numbers and the variable U oovers units of different type: E.g. year, meter: A typical sentence with a measure phrase e.g. Sven is 5 years old would be represented by l(sven, age, 5,years). Time is disxegarded.

The sentence Sven is ola would be representea by the foxmula I(sven, age, more), where the evaluation vaxiable is set at moxe meaning that Sven has a high age (but the numbex and unit variablea axe unknown) : Different foxmats are thus used for the two typas of sentences, and noxmally evaluation is incompatible with a specification of number and units. It is sometimes possible, although a bit strange, to give both an evaluation and a number of units and say e.g. Sven is fifty years young, indicating that Sven is young for his age and such cases ean be handied if two facts are adiad to the data base, which can be done in various ways. But if this way of construction is pexmitted and considered as grammetical the gxammex will be overgenerating.

The following table indicates how some common sentences will be represented in our logical format.

| Sentences | Logical form |
| :---: | :---: |
| Svan ${ }^{\text {ax }} 2$ metex lang. | 1 (svenpheight, 2 ,metex) |
| Sven ax 50 ax gammal. | 2(sven, 玉ge, 50, mx) |
| Sven väger 70 kilo. | 1 (sven, weight, 70,kilo) |
| Bilen kostar 5000 kronor . | 1 (bilen, cost, $5000, \mathrm{kronor})$ |
| Lisa har en Alder av 40 ax | 1(1isa, age, 40, ax |
| Biden ïr hög. | 1(bilen, height, moxe) |
| ilen är lät. | J (bilen,weight,less) |
| er ax 70 ax ung. | 1 (per, age, $70,4 x$), 1 (per,age, less) (in some versions of program) |
| Pers alder ax 70 dx . | 1 (per, age, 70, ar) |
| Cextain questions ask fox (gammal) ar Sven?" and onger logical foxm and gi axiables. Even the quest answered by giving the val ypical cases when the eva ox axe yes/no quastions nswer could be "Ja" and the answer could be expand lone in this program). Oth ilen dyx?" (Is the car ex (Is the car expensive?). | merical details, e.g."Hur manga y have to answexed by calling the ing the values of the last two on "Hux gammal ax Sven?" has to be es of the last two variables. The uation variable is to be looked ch as "Ay Svan gammal?". An numerical values axe available into "Ja, han ${ }^{(2 x} 75 \mathrm{dx}$ ". (Not questions of this type are:"Ax ensive?), "Kostax bilen mycket?" |

Logioal representations of compaxative sentences axe established similarly. We will represent "Sven äx aldre an Lisa" by 1 (sven, age,more, lisa) or moxe genexally $1(X, D, E, Y)$, whexe X and Y axe the two objects compared (X is in focus), D is the dimension of comparison, E is the evaluative variable, which may be moxe(with age xepxesenting oldex) ox less (with age representing youngey). This representation coula, in fact, also be used fox absolute cases, such as "Sven äx gamal"(Sven is old), if we assign a standaxd to Y.

For the sentence " X ax lika gammal som Y" (X is as old as Y) the representation $1(X$, age, more, like, Y) is used and fox the sentence "X är lika ung som Y " (X is as young as Y) the
 between those two sentences is that with "ung" (young) the persons axe pressupposed to be young, while with "gammal" (old) no evaluation is implied (gammal being the neutxal unmarked term). Maybe this presupposition should rather be represented as a separate fact, however.

The quantified comparative santencem need moxe complex xepresentations. For the additional case illustrated by "Sven ä 5 ax aldre än Lisa" (Sven is 5 yeaxs older than Lisa) we write 1 (sven, age, more, $5, y e a r s, 1 i s a)$, where the forth and fifth arguments are the numbers and the units, respectively. Changing more into less allows us to represent the antonyms (older:youngex, heaviex:lighter, eto.). The case whexe the difference is given in multiplicational terms is illustrated by the following case: 1 (sven, age, more, 5,times, lisa), whioh is the logical txanslation of "Sven ax 5 gangex ss gammal som/alare än Tim" (Sven is 5 times as old as/oldex than Tim).

The logical repxesentations used axe ad how and it is not clear how the should be integrated in a full semantices.

Speakers of English draw the conclusion that Gven weighs 50 kilos, that his weight is 50 kilos and that he has a weight of 50 kilos if they have learnt that he weighs 50 kilos. They do not, in fact, considex these conclusions as consclumions rathex as symonymy xelations. This is a xeamon for treating them in the way it is cone in our program, whexe all these expressions axe repxesented by (translated into) the same logieal representation. Once one of the expressions has been mentioned the others are automatioally true and questions based on the othex formulations are answered in the afinimative. The choice between adjectival, nominal ox verbal expression does not involve any logical inferences in our pxogram. The boxderline between verbal synonymy and logical inferences is of theoretical interest, but it will not be discussed in this paper.

A genuine infexence may be illustrated by dexiving "Lisa is younger then Sven" from "Sven is older than Lisa". We may call this inference the "antonym comparative inference". In our frolog program such infexences are handled by variants of the following rules:
$I(X, D$, more, Y) :- $I(Y, D, l e s s, X)$
$1(X, D, 1 e s s, Y):-1(Y, D$, moxe, $X)$

Similaxly the inference Lisa is 5 years younger
than Sven can be dxawn from the fact that Sven is 5 years older than Lisa, if the following xules are included in the program.
1 (X, D, more, $\mathrm{N}, \mathrm{U}, \mathrm{Y}$) : $-1(\mathrm{Y}, \mathrm{D}, \mathrm{leg} \mathrm{E}, \mathrm{N}, \mathrm{U}, \mathrm{X})$
$1(X, D, \mathcal{L e s s}, N, U, Y):-I(Y, D$, more, $N, U, X)$

These implications and inferences are handied in a special section of the progxam which can be extended furthex. Presently this section also includes an equivalence inference I(X, D, more, like, Y) :- 1 (Y, D, more, like, X)

This rule states that Sven is as tall as rim if Tim is as tall as Sven. If we want to covex that Sven is as small as Tim if it is known that $T i m$ is as big as Sven we could add a rule with less instead of more. A speaial variable ranging OVEx mOYE, lesc could also be uned.

Multiplicational inferances can be handled by the following xule. 1 (X, D, more, $1 / \mathrm{N}$, times, Y) : $-1(\mathrm{Y}, \mathrm{D}$, moxe, $\mathrm{N}, \mathrm{times}, \mathrm{X})$.

This inference is illustrated by:Tim is $1 / 5$ as old as Sven if Sven is 5 times as old as Tim. It is to be noted that only the numbers (N) are inverted in such gases, not the antonyms. It is not corxect to conclude that Tim is $1 / 5$ as young as Sven as that would imply that Sven was known to be young.

An inference based on the transitivity of the dimensions involved may be expressed in the following way. $1(X, D$, moxe, $Z)$:- $1(X, D$, more, Y), $1(Y, D$, more, $Z)$

This simply means that if X has the dimension in a higher degree than Y and Y has it in a highex degree than Z than X (also) has it in a higher degree(more) than Z. The case where numerical values axe included is a bit moxe complicated. The following rules covexs e.g. the following caseiff X is 5 years oldex than Y and Y is 5 years oldex than Z than X is 10 years older than Z. $l(X, D$, more, $N, U, Z)$:$1(X, D$, more $, M, U, Y), 1(Y, D$, more $, P, U, Z), N=M+P$

We are now entering algebraic operations and further elaborations could imply eolving equations, which would definitely take us inte the world of Artificial Intelligence. The age of Sven may fox instance be computed if it is known that he is twice as old as Per, who is 6 years older than Bo, who is half as old as Bill, who is 60. But we do not want to pxepare our program fox such computations. They can hardy be included in the set of "natural implioations".

Cextain inferences dealing with evaluative sentences may be established although they axe "fuzzy". If a person is over 60 he may be called old, and if he is under 20 he may be called young, but this varies with cultures and times. Similaxly a price may be called high and the object expensive if it is above a certain figure, but this figure also varies with cultures, times - and, of course, with the type of object.

The program is designed to be short and imple. It is meant to demonstrate one way of treating the scalar and comparative constructions commented on by so many linguigtg. The program runs on a VAX/VMS Vexsion VA. 2 and uses a prolog version which the Department of Linguisties Lund has obtained by courtesy of the depaxtment of Cognitive Sciences Sussex (Sussex POPLOG Prolog (Version 10), 1985). I am indebted to Robin Cooper for teaching me basio Prolog and to Mats Andexseon for improving my program.

The fixst part of the program handles the parsing of deciarative and intexxogative sentences of the types discussed above. The pxedicate gent takes four arguments: a variable which is d for declaxative and a fox questions, a syntactic tree mbructuxe, the sentence(list) to be parsed and the empty list. The xules show whioh types of declayative and intexrogative clauses the program ean handle. The rules are written in the definite clause grammar foxmalimm(DCG). The syntactic representation is simplified and many of the usual categoxial labels have been left out in this xestrieted grammax.

The lexicon rules allow the insextion of certain definite nouns, which arm non-neuter not to complicate inflexion by agreement (neutex and plural). The genitive form of nouns is constructed by adding an -5 ('s) and that is handled by some rules below nps. Certain dimensional nouns are allowed, and some dimensional verbs. Some numerals and all integers are allowed 3 num in the measure phrases and a number of soalar units illumtrate what can be accepted by the grammar.

The meaning of the words axe given by the predicate b (for betydelse, meaning). The meaning is given by English words. We distinguish the dimensional meaning of e.g. gammal, which is age , b(gammal, age), from the evaluative meaning of gammal, which is b(gammal, age, moxe). Note that absolute and comparative forms are assigned the same meaning hexe.

The syatactio stxuctuxe dexived thxough the paxsing is translated into logical xapxesembationspeg. fox comparative $1(X, D, E, N, U, Y)$ where \mathcal{H} is the object which has the property Dis the name of the property, f is the evaluation variable, N is the numeral value and U is the unit. Y is the compaxed object. The values of D and E axe dexived by the meaning relations (b).

The progran cannot mecept strange sentences such ms "Sven ar 10 meter gammai" (Sven is 10 meters old). The knowledge that certain units axe associatad with cextain dimensions is consisexed to be encyolopedic and not to be included in the grammax xulem. The natuxal place for these constraints sem to be in the translation into logical form, thus prohibiting suryealistic sentences as the one above.

Various implications are ineluted in special section. The program handies the fact that a person who is ovex 60 years old may be called old. The predicate exp inserts the value moxe as the E if the dimension is age and the numbex of yeaxs exceeds 60 (an approximation).

The interactive predicates allow adding of information to the ciata base. The predicate accept(X) paxses the sentence, dexives the equivalent logical clause and stores it. It zeturns the woxd "Jaha"(OK) as a signal. The lexioal and myntactic details of the sentences axe thus not stoxed, which is possibly a feature of psycholinguistic reality. The facts axe stored without checking inconsisistences. The infexence rules are used only in answering quewtions.

Thexe axe many diffexent ways of asking, which can be sem in the diffexent dexinitions of answex(X). A typical question is "Hur gammal ar Sven?" and this is handlea if answar([hux, gammal, aex, sven,?]) is typed to the computax. The program will then parse the sentence accoraing to the syntactic rules and derive the value q, and the tree structure s(sven $[$ [ex],mif([hux]), gamal). The logicad Eorm 1 (sven, age, N, U) will be called, and at last the values of N and U will be printed. In some cases a longex answex is generated on the basis of the logical representation. If there is no information available, if nothing has been sajd which allows any conclusions, the answer will be "vet inte". If there is a contradictory fact the anewer will be "nej".

The intexactive module of the program inclucies a function TEXT(X) which prints a text (sexies of sentences) telling about \mathcal{K}° It will give all possible, even synonymous, verbalisations (with adjective, noun, verb) of the facts stored in the data base. The text often gets a bit vexbose, but the function TEXT allows checking the progxam and what is stoxed cuxrently in the date base. The command LOGIC(X) prints the logical (5emantic) representation of the sentence X. Questions do not have logical representations in the present system (See Engảal, 1986, Zor ©uggemtiong).

The command ANSWER(X) parses the sentence and gives an answer. The command SAY generates a sentence according to the grammax, pxints it and adde the coxresponding fact to the data base. This command simulates the situation where a speakex says something and a listenex stoxes it. The command ACCEPY(X) is Eomewhat moxe complex as the storing is followed by a backchannel item, which is "Jahe" (OK) if the fact is new and "Jag vet" (I know) if the fact is known already. The command ASK genexates a question which is also pxinted. These commands can be combined in different ways in ordex to simulate conversation. One way of doing this is shown by the command DIAL. This command calles the other commands in order to get new declarative sentences, questions, backohannel items and answers. These commands can be used in more advacnced simulations of communication, where two parts really exchange infoxmation.

Conclusion. A 7 -modulax model of the language user

The programing language Prolog offexs a fairly convenient means fox writing progxams which parse and "undexstand" sentences. It is also very suitable for inverting the process and genexating sentences on the basis of the same rules.It forces the linguist to make his ideas about syntax, lexicon, moxphology, semantics, pragmaties and logic more precise. The working of the progyam is a proof that the analysis is correct, but not that the solution is the only possible, that it is the best, that it refleots the psycholinguistic processes of a speakex/hearex ox that it would be suitable for the rest of the language. As can be seen from our program even such a small fraction as the measure and comparative sentences requires a big program.

The construction of this program handing measure and comparative sentences has lead to the establishment of seven integrated modules. The whole model may be called Integrative grammar, because the grammar is integrated among the 7 modules needed in a full model of a language usex. 1.Categorial combination rules. These rules tell which categoxies or individual words can combine. They have to be expanded with agreement conditions in order to hande concoxd phenomena, which the rules in the program do not. These rules and the handing of transforms of sentenoes, gaps etc have been the focus of much linguistic diseussion during the last decades. The categorial rules of combinetion alse buida trees in which the structure may be made more regular ("deep structures") and they give information about sentences mode (declarative and question) in a special variable. These rules can be parsed by an builein mechanism in frolog, which is not discussed at all here. This module is traditionally called Syntax.

2. Word category rules.

These rules tell which words fit into the categories mentioned in the categorial combination rules. This module is traditionally called lexicon and is mainly a list in the program.

In adaition to the lists there are xules which may be called cetegory dexivation rules. These rules state that if a certain word belongs to a aextein category, a cextain variant of it belongs to a certain othex category. Thus the addition of an - makes a noun which belongs to the category genitive, and the addition of an -are to an adjective makes a word which belongs to the category comparative. These general rules do not cover all cases and a number of words have therefoxe to be listed separately, e.g. the ixregular comparativer tyngre, mindre etc.). The contents of this module has traditionaliy been treated undex the title Woxd formation or (Dexivational) morphology. They get a natural place in integrative grammar.
3. Woxd meaning xules. These rules state that a cextain word (form) has a certain meaning, may decomposed as in the dimenional adjectives undex discussion. Our program gives statements such as for gammal b(gamal,age,more), where b is short for betydelse/bedeutung. A traditional entry in a dictionary would give the information about an entry (a form) at one place. These pieces of information axe separated in our progxam.

Just as word category rules are supplemented with word categoxy dexivational rules, the word meaning rules are supplemented with meaning derivational rules. The meaning of a comparative form is thus dexived from the meaning of the corresponding adjectival form by special rules.
4. Natural language-to-Logic rules (NLL rules) One rationale for translating the gyntactic and lexical information into logic representation is that inferring can be expressed much more economioally, if it is done with logical repxesentations instead of natural language (surface) sentences. We will not discuss all the problems of semantic repxesentations hexe.
5. Infexence xules

Infexence xules ean be divided into encyclopedio xules and (purely) logical rules. The encyclopedic rules state that a person who is above 60 may be called old, that a town (generally) has streets, that a car (genexally) has wheels etc. Logical rules axe illustrated by the tronsitivity rules in the program, rules telling that X has moxe of something than Z, if X has moxe than Y, and Y has more than Z, ox that X has moxe than Z if X has moxe than Y and Y the same as Z.

It seams the inference rules can be elaboreted much if the convexse terms are taken into account fully. The relations between parent and ohild, sell and buy are often mentioned, but thexe are many other predicates of this type in languages and they can also be used in infexerce xules (See further Sigurd. 1976), e.g. teacher-student, dootor-patient, lawyer-olient, like-please, know-familar. 6. Data base (memory) All linguistic intexaction presupposes that the speaker has a data base (memory) in which he stores what he learns and which is being consulted when he answers questions. In the present system facts mxe stored by means of the built-in predicate assert. How the memory is structured and accessed is a well-known psyoholinguistic problem. Some reaction time experiments (Schriefers, 1985) indicate that unmarked adjeotives can be produced fastex than maxked (negative) ones, and this interesting facts can easily be reflected in the design of the data base. Another problem is whether negative facts also should be stored, as indicated by ideas in sibuation semantios (Cooper, 1984). 7. Intexactive (pragmatic) rules The intexaotive commands of the last section of the program simulates interactive actions, which axe triggexed by the mode signals in speech. A declarative mentence txiggex: a back-ohannel item (OK eto.) and a question triggers an answex. The structure of this section is elaborated in Sigura(1986) and has been the object of much research under the heading speech act theory. The present mystem has a place for thesa linguistio features as well.

The conclusion to be drawn from the present Prolog program for a fragment of natuxal language is that all the 7 modules and their interaction have to be elaborated and studied taking into account theoxetical, typological and psycholinguistics facts. Sample interaction with the program is illustrated in an appendix. Extracts of the program is also given in an appendix. (The whole program is available on request.)

Biexwisch,M.1976. Some semantic univexsals of Gaxman adjeotives. Foundations of Language 3

Bolingex, D. 1972. Degree words. The Hague:Mouton
Coopex, R.1984. Sentence negation in situation memantics. Proc. 20th annual meating of the Chicago 1inguistic socifty

Engdahl, E. 1985. The syntax and semantios of questions with special refexence to Swedish. Doxdxecht:Reidel

Gnutaman, C.1974. Zur Graduiexbarkeit von Adjektiven im Englischen. Linguistische Berichte 31
Lafrenz, P.G.1983. Zu den semantischen Stxuktux den Dimensionsedjektive in dex Deutechen Gegenwartssprache. Acta Universitatis Gothoburgensis. Göteborg
Quixk, R, S,Gxeenbaum, G.Leech and J. Svartvik.1985. A Comprehensive Grammar of the English Language: London:Longman
Rusiecki, J.1985. Adjeotives and oomparison in English. A semantio study. London:Longman
Schxiefers,H.J.i985. On semantic maxkeoness in language production and verification. Diss.Nijmegen
Sigura, B.1967. Adjektivkompaxationens moxfologi. Arkiv far Noxdisk Filologi 82:1-4 (1967)
Siguxd, B. 1976. Converse terms in Swedish.In: N. E.Enkvist and V.Kohonen (eds), Meddelanden fxan stiftelsen दöx Abo Akademi foxskningsinstitut nx 8.
Siguxd, B.1986. Computar simulation of dialogue and communication, In: Kaxlson (eci), Proc. of the 3xa conf. of Soand. comptational 1inguisties. HElsinki:Dept of Linguisties.

Appendix I
SAMPLE DIALOG (STMPLIFIED,IDEALIZED)

U(ser): SVEN HAR EN Ålder aV 70 År. (SVEN HAS AN AGE OF 70 YEARS)
C(omputer): JAHA (OK)
U: ÄR SVEN GAMMAL? (IS SVEN OLD?)
C: JA. (YES)
U: HUR GAMMAL ÄR SVEN? (HOW OLD IS SVEN?)
C: 70 AR. (70 YEARS)
U: VAD Är SVENS Alder? (What is sVEn's Age?)
C: 70 AR. (70 YEARS)
U: SVEN ÄR ÄLDre Än LisA. (SVEN IS OLDER THAN LISA)
C: JAHA. (OK)
U: LISA ÄR ÄLDRE ÄN PER. (LISA IS OLDER THAN PER)
C: JAHA. (OK)
U: LISA Är LIRA GAMMAL SOM HANS. (LISA IS AS OLD AS HANS)
C: JAHA. (OK)
U: ÄR SVEN ÄLdRE ÄN PER? (IS SVEN OLDER THAN PER?)
C: JA. (yES)
U: Är SVEN ÄLdre ÄN HANS? (IS SVEN OLDER THAN HANS?)
C: JA. (YES)
U: ÄR PER YNGRE ÄN HANS? (IS SVEN YONGER THAN HANS?)
C: JA. (YES)
U: $̈$ AR HANS LIKA GAMMAL SOM PER? (IS HANS AS OLD AS PER?)
C: NEJ. (NO)
U: HUR MYCKET VÄGER HANS? (HOW MUCH WEIGHS HANS?)
C: VET INTE. (DON'T KNOW)
U: LISA ÄR 35 ÅR GAMMAL. (LISA IS 35 YEARs OLD)
C: JAHA. (OK)
U: HUR MÅNGA ÅR ÄR SVEN ÄLDRE ÄN LISA? (HOW MANY YEARS IS SVEN
C: 35 år. (35 YEARS) OLDER THAN LISA?)
U: HUR MÅNGA GÅNGER ÄLDRE ÄR LISA ÄN SVEN? (HOW MANY TIMES IS LISA
C: $1 / 2$ GANGER. ($1 / 2$ TIMES) OLDER THAN SVEN?)
U: PER ÄR HÄLFTEN SA GAMMAL SOM HANS. (PER IS HALF AS OLD AS HANS)
C: JAHA. (OK)
U: HUR GAMMAL ÄR PER? (HOW OLD IS PER?)
C: 17,5 AR. (17.5 YEARS)
U: $̈ \mathrm{AR}$ PER GAMMAL? (IS PER OLD?)
C: NEJ. (NO)

U: HANS VÄGER MER ÄN LISA. (HANS WEIGHS MORE THAN LISA)
C: JAHA. (OK)
U: VILKEN VIKT HAR LISA? (WhAT WEIGHT HAS LISA?)
C: VET INTE. (DON'T KNOW)
U: Är LISA TYNGRE ÄN HANS? (IS LISA HEAVIER THAN HANS?)
C: NEJ. (NO)

U: TEXT(SVEN).
C: SVEN Är 70 AR GAMMAL. SVEN HAR EN ALDER AV 70 AR. SVENS ÁLDER ÄR 70 År. SVEN Är Äldre ÄN LISA. SVEN HAR EN HÖGRE ÅLDER Än LISA. SVENS ÅLDER ÄR HÖGRE ÄN LISAS.

U: SAY.
C: SVEN ÄR STARK。 (SVEN IS STRONG)
U: MSAY.
C: SVEN ÄR FEM ÅR GAMMAL. (SVEN IS FIVE yEARS OLD)
U: CSAY.
C: SVEN ÄR FEM ÅR ÄLDRE ÄN PER. (SVEN IS FIVE YEARS OLDER THAN PER)

U: CONV.
C: SVEN ÄR STARK.
JAHA.
ÄR SVEN ÄLDRE ÄN LISA?
VET INTE.

```
    sent(d, s(X, [aer], Y)) ---> np(X), [aer], a(Y), [.
    ].
    sent(d, s(X, Y, i(Z))) --> np(X), mv(Y), i(Z), [.]
    sent(d, s(X, [har], id(Y), Z)) --> np(X), [har], i
    d(Y), mn(Z), [.].
    sent(d, s(X, [aer], Y, Z)) --> np(X), [aer], mf(Y)
    , a(Z), [.].
    sent(d, s(X, [har], Y, Z)) }->->np(X), [har], [en]
    ma(Y), [av], mf(Z), [.].
gent(d, s(X, Y, [aer], Z)) --> nps(X), mn(Y), Caer
], mf(Z), [.].
sent(d, s(X,Y, Z)) --> np(X), mv(Y),mf(Z), [.].
sent(d, s(X, [aer], Z, [aen], W)) --> np(X), [aer]
, compar(Z), [aen], np(W), [.].
sent(d, s(X, Y, Z, [aen],W)) --> np(X), mv(Y), co
mpar(Z), [aen], np(W), [.].
sent(d, s(X, [aer], Y, Z, [aen], W)) --> np(X), [a
er], mf(Y), compar(Z), Caen], np(W), [.].
sent(d, s(X, Y, [lika], [mycket], [som], Z)) --> n
p(X), mv(Y), [lika], [mycket], [som], np(Z), [.].
sent(d, s(X, [aer], [lika], Y, [som], Z)) --) np(X
),[aer],[lika], a(Y), [som], np(Z), [.].
sent(d, s(X, [aer], Y, [gg_saa], Z, [som], W)) -->
    np(X), [aer], num(Y), [gaanger], [saa], a(Z), [so
m], np(W), [.].
sent(d, s(X, [aer], Y, [gg], Z, [aen], W)) - - np(
X), [aer], num(Y), [gaanger], compar(Z), [aen], np
(W), [.].
sent(q, s(X, [aer], mf(hur), Y)) --> [hur], a(Y).
[aer], np(X), [?].
sent(q, s(X, [aer], mf(hur,maanga, Y), Z)) --> [hu
r_maangal, unit(Y), a(Z), [aer], np(X), [?].
sent(q, s(X, Y, mf(hur maanga, Z))) --> [hur_maang
a.], unit(Z), mv(Y), np(X), [?].
sent(g, s(Z,Y,X)) --) mf(X), mv(Y), np(Z), [?].
sent(g, s(X, Y, mf(hur_mycket))) --) [hur_mycket],
    mv(Y), np(X), [?].
sent(q, s(X, Y, mf(vad))) --> [vad], mv(Y), np(X),
    [?].
sent(q, s(X, [har], Y, mf(vilken))) --> [vilken],
mn(Y), [har], np(X), [?].
sent(q, s(X, Y, [aer], mf(vad))) --> [vad], [aer],
    nps(X), mn(Y), [?].
sent(q, s(X, Y, [aer], mf(vilken))) -- -) [vilken],
[aer], nps(X), mn(Y), [?].
sent(q, s(X, [aer], Y)) --> [aer], np(X), a(Y), [?
].
sent(q, s(X, Y, i(Z))) --> mv(Y), np(X), i(Z), [?]
sent(q, s(X, Y, Z)) --> mv(Y), np(X),mf(Z), [?].
sent(q, s(X, [aer], Y, Z)) --> [acr], np(X), mf(Y)
,a(Z), [?].
sent(q, s(X, [har], id(Y), Z)) --) [har], np(X), i
d(Y), mn(Z), [?].
sent(q, s(X, [aer], Z, [aen], W)) ---) [aer], np(X)
, compar(Z), [aen], np(W), [?].
sent(q, s(X,Y,Z,[aen],W): --) mv(Y), mp(X), co
mpar(Z), [aen], np(W), [?].
```

```
/* lexikon */
np(X) --> [X],{isn(X)}.
isn(sven).
isn(lisa).
isn(stolen).
isn(bilen).
isn(stenen).
isn(mannen).
nps(X) --> [X], {isns(X)}.
isns(hans).
gen(hans, hans).
isns(Y) :- isn(X), gen(X, Y).
gen(X,V) :- name(X, Y), name(s, Z), append(Y, Z,
W), name(V, W).
mon(X) --> [X], {ismn(X)].
ismn(bredd).
ismn(hoejd).
ismn(tjocklek).
ismn(storlek).
ismn(tyngd).
ismn(vidd).
ismn(laengd).
ismn(kvalitet).
ismn(styrka).
ismn(kvantitet).
ismn(vikt).
ismn(aalder).
ismn(kostnad).
ismn(volym).
ismn(temperatur).
a(X) --> [X], {isa(X)}.
isa(stark).
isa(djup).
isa(svag).
isa(klok).
isa(dum).
isa(tung).
isa(laett).
isa(billig).
isa(dyr).
isa(snabb).
isa(bred).
isa(smal).
isa(laang).
isa(kort).
isa(stor).
isa(liten).
isa(hoeg).
isa(laag).
isa(tjock).
isa(gammal).
isa(ung).
isa(varm).
isa(kall).
isa(bra).
isa(daalig).
i.(X) --> [X], {isi(X)}.
isi(mycket).
isi(lite).
isi(foega).
id(X) --> [X], {isid(X)].
isid(stor).
```

```
    /* dimension-unit relations */
    du(Iength, meter).
    du(height, meter).
    du(height, fot).
    du(depth, meter).
    du(temperature, grader).
    du(cost, kronor).
    du(weight, kilo).
    du(age, aar).
    du(volume, liter).
    du(time, timmar).
    du(time, minuter).
    /* dimensional meaning of certain adjectives (tran
    slations) */
    b(hoeg, height).
    b(gammal, age).
    b(laang, length).
    b(stor, size).
    b(varm, temperature).
    b(bred, width).
    b(djup, depth).
    b(tjock, thickness).
    /\star derivation of dimenional(unmarked) adjective */
    b(X, D) :- b(X, D, more), isa(X).
    /* dimenional meaning of certain verbs */
vb(kostar, cost).
vb(vaeger, weight).
vb(raeknar, size).
vb(rymmer, volume).
vb(maeter, length).
/ meaning of certain nouns }*
b(kostnad, cost).
b(vikt, weight).
b(storlek, size).
b(laengd, length).
b(hoejd, height).
b(aalder, age).
/* derivation of form and meaning of comparatives
*/
cb(tyngre, weight, more).
cb(aeldre, age, more).
cb(yngre, age, less).
cb(laengre, length, more).
cb(stoerre, size, more).
cb(mindre, size, less).
cb(hoegre, height, more).
cb(mer, size, more).
cb(laegre, height, less).
cb(X, Y, Z) :- atocompar(W, X), b(W, Y, Z).
compar(X) --> [X], {iscompar(X)}.
atocompar(X, Y) :- isa(X), name(X, Z), name(are, W
), append(Z, W, V), name(Y, V).
iscompar(Y) :- isa(X), atocompar(X, Y).
iscompar(aeldre).
iscompar(tyngre).
iscompar(stoerre).
iscompar(laengre).
iscompar(laegre).
iscompar(hoegre).
```

```
    /* translation into logic */
    to_log(F, L) :- F=s(X, [aer], Y), L=l(X, D, E), b(
    Y, D, E).
    to log(F,L) :- F=s(X, Y, i(Z)), L=l(X, D, E), vb(
    Y, D), ib(Z, E).
    to.log(F, L) :- F=s(X, [har], id(Y), Z), L=1(X, V,
    E), ib(Y, E), b(Z,V).
    to_log(F, L) :- F=s(X, [har], Y, mf(Z, M)), L=l(X,
    V,Z,M), b(Y, V), du(V,M).
    to log(F, L) :- F=s(X, [aer], mf(Z, M), U), L=l(X,
    Y, Z, M), b(U, Y), du(Y, M).
to_log(F,L) :- F=s(G,Y, [aer], mf(Z, M)), L=1(X,
    V,Z,M),gen(X,G), b(Y, V), du(V,M).
to_log(F, L) :- F=s(X,Y, mf(Z, U)), L=l(X, D, Z,
U), vb(Y, D), du(D, U).
to log(F, L) :- F=s(X, [aer], Z, [aen], Y), L=1(X,
    D, E, Y), cb(Z, D, E).
to_log(F,L) :- F=s(X, Y, I, Laen], Z), L=l(X, D,
E,Z), vb(Y, D), cb(I, D, E).
to log(F, L) :- F=s(X, [aer], mf(Y, M), Z, [aen],
W), L=1(X, D, E, Y, M, W), cb(Z, D, E), du(D, M).
to_log(F, L) :- F=s(K, [aer], [lika], Y, [som], Z)
, L=I(X, D, E, like, Z), b(Y, D, E).
to_log(F, L) :- F=s(X, [aer], [lika], Y, [som], Z)
, L=l(Z, D, E, like, X), b(X, D, E).
to_log(F, L) :- F=s(X, Y, [lika], [mycket], [som],
    Z), L:= l(X, D, more, like, Z), vb(Y, D).
to_log(F, L) :- F=s(X, [aer], Y, [gg_saa], Z, [som
],W), L=1(X, D, E, Y, times,W), b(Z, D, E).
tolog(F, L) :- F=s(X, [aer], Y, [gg], Z, [aen], W
), L=l(X, D, E, Y, times,W), cb(Z, D, E).
/* implicational rule about old and age for humans
    */
exp(X, D, E) :- l(X, D, E), !.
exp(X, D, E) :- l(X, age, Y, _), Y>60, human(X), E
=more.
human(sven).
human(hans).
human(lisa).
/* inferences */
/* transitivity */
exp(X,D, E, Z) : - l(X, D, E, Y), l(Y, D, E, Z), P
rint(Cas, X, has, E, D, than, Y, and, Y, E, than,
Z]).
exp(X, D, E, Z) :- l(X, D, E, Y), exp(Y, D, E, Z),
print([as, X, has, E, D, than, Y, and, Y, E, than
, Z]).
exp(X, D, E, Z) :- I(X, D, E, Y), exp(Y, D, E, lik
e, Z), print(Cas, X, has, E, D, than, Y, and, Y, i
s, like, Z]).
exp(X, D, E, Z) :- exp(X, D, E, like, Y), l(Y, D,
E, Z), print(Las, X, is, like, Y, and, Y, has, E,
D, than, Z]).
exp(X, D, E, like, Y) :- l(X, D, E, like, Y), !.
exp(X, D, E, like, Z) :- l(X, D, E, like, Y), l(Y,
    D, E, like, Z), print([as, X, is, like, Y, and, Y
, is, like, Z]).
exp(X, D, E, like, Z) :- l(X, D, E, like, Y), exp(
Y, D, E, like, Z), print(las, X, is, like, Y, and,
```

```
/* interactive commands */
logic(X) :- sent(T, F, X, []), to_log(F, L), print
(L), nl.
synt(X) :- sent(T, F, X, []), print(F), nl.
accept(X) :- sent(T, F, X, [J), to_log(F, L), asse
rt(L), print(jaha), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Eaer],
    mf(hur_maanga, Z), W), l(Y, D, N, Z), b(W, D), pr
int(CN, Z]), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, mf(
hur maanga, W)), l(Y, D, N, M), vb(Z, D), print(CN
, MJ), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [har],
    Z,mf(vilken)), l(Y, V,N,U), b(Z, V), print([N,
    Ul). nl.
answer(X) :- sent(T, F, X, [I), T=q, F=s(Y, Z, mf(
hur mycket)), l(X, D, N, U), vb(Z, D), print(CN, U
3), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, mf(
vad)), l(Y, D, N, U), vb(Z, D), print([N, UJ), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [aer],
    mf(hur), Z), l(Y, D, N, U), b(Z, D), print([N, U,
    ZJ), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, Lae
r], mf(vad)), l(G, D, N, U), b(Z, D), gen(G, Y), P
rint([N,UJ), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, Lae
r], mf(vilken)), l(G, D, N, U), b(Z, D), gen(G, Y)
, print(CN, UJ), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Caer],
    Z), exp(Y, V, E), print(ja), b(Z,V, E), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [aer],
    Z), exp(Y, V, P), P\=E, b(Z, V, E), print(nej), n
1.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, i(W
)), vb(Z,V), ib(W, E), exp(Y,V,E), print(ja), n
I.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, i(W
)), vb(Z, V), ib(W, more), exp(Y, V, less), print(
nej), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [har],
    id(Z),V), b(V, D), ib(Z, E), exp(Y, D, E), print
(ja), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, Z, mf(
V,W)), l(Y, D, V, W), vb(Z, D), print(ja), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [aer],
    mf(V, M), Z), l(Y, D, V, M), b(Z, D), print(ja),
nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [aer],
    Z, [aen], W), exp(Y, D, E, W), cb(Z, D, E), print
(ja), nl.
answer(X) :- sent(T, F, X, []), T=q, F=s(Y, [aer],
    [hur_mycket], Z, [aen], W), l(Y, D, E, N, M, W),
b(Z; D, E), print(N, M), nl.
```


A note on Kammu perception verbs

Jan-Olof Svantesson

In this note I will describe a semantic field, perception verbs in the Austroasiatic language Kammu. I will rely heavily on the format and concepts developed by Ake Viberg (1982a) and I have also used his questionnaire (Viberg 1982b) to elicit perception verbs in Kammu.

Viberg clessifies basic perception verbs in two ways, according to the five sense modalities (sight, hearing, touch, taste, smell), and according to the "dynamic meaning" of the verb (activity, experience and copulative). Activity and experience are experiencer-based (have the experiencer as subject) while copulative is source-based. Activity refers to a consciously controlled process, while experience refers to a state that is not controlled. This is reflected in the fact that while activity verbs can be uttered in imperative or prohibitive form, sxperience verbs cannot. For instance, in Kammu the sentences sjáay "Look!" or táa kmnè̀n "Don't listen!" are possible, but *kuuñ "Seel" or *táa mec "Don't hear!" are not.

The three dynamic meanings are exemplified for "signt" by the following sentences (Viberg 1982b):

A(etivity): Peter looked at the birds
E(xperience): Peter saw the birds
C(opulative): Peter looked happy

Thus, fifteen basic terms are obtained. They are illustrated by the following sentences, which were translated by a Kammu informant (Kam Ràw) from Viberg's questionnaire:

Sight: A Làaly sjáay sím "Làay looked at the bird." Làay look bird

E Làly kùuñ sím
"Làay saw the bird."
Lay see bird
© Làay mían càa là hriñam
"Làay looked happy."

| Hearing. | A | Laay kmenen sím (ybam)
 Lday isten birc (cail) | "Lay listened to the bird (sing)." |
| :---: | :---: | :---: | :---: |
| | E | Làay mèc sím (yàam)
 Lay perceive bird (call) | "Lay heard the bird (sing)." |
| | C | Làay máan càa le hrontam Lave like PTC nappy | "Làay sounded happy." |
| Touch: | A | Làay míap téep tee Lavy feel shirt RFL | "Làay felt his shirt." |
| | E | Là ay méc klana yèt tàa kn Lày perceive stone stay at und "Lay felt a stone under his foot. | trìum cłan tèe derside foot RFL |
| | C | téep Imèsl Intrèen shirt smooth EXP | "The shirt felt smooth." |
| Taste: | A | Làay cilm snmàh Lay taste food | "Lay tasted the food." |
| | E | Làay mèc snmàh cán máar Lay perceive food bitter salt | "Lay tasted satt in the cood." |
| | c | snmàh lam food tasty | "The food tasted grod." |
| | | sクmàh cán máar food bitter salt | "The food tasted of salt." |
| Smell: | A | Làay hmpar symàh Lay smell lood | "Lay smelt the food." |
| | E | Làay mèc ráary s?5on h?s Làay perceive flower tree smell "Lay smett fowers in the forest | tàa pri 1 in forest. |
| | c | sjmàh hit r food smell-good | "The food smelt good." |
| | | sŋmàh h?ú food stink | "The food stank." |
| | | sqmàh hịłr hóam food smell onion | "The food smelt of onions." |

The perception verbs are summarized ix the following table:

| | activity | experience | copulative |
| :--- | :--- | :--- | :--- |
| sight | snáay | kuuñ | mían |
| hearing | kmñen | mèc | mían |
| touch | míap | mec | - |
| taste | cim | mèc | - |
| smell | hmíar | méc | hìr, hiú |

For activity, there are five different verbs, according to the sense involved, but for experience there are onvy two, one for "see" and one for the remaining four senses. The copulatives are more complicated: for "look" and "sound" the vert mitan "(be) inke" combined with the aspect particle ces is often used. This particle basically denotes that the speaker does not know whether the state or action denoted by the following verb takes place or not. (Thus it is often used for future tense, but this is not the case nere; see also Svantesson 1984.) The meaning of the combination mían cae is thus something like "seem".

For touch and taste there are wo specific copulative verbs, and various paraphrases are used. For smell there are two basic terms, one for "smell good" and one for "smell bad". These and other hyponyms will be described below.

Polysemy

The dynamic meanings experience and activity are lexicalized by two different verbs for each sense modality and in no case are these two verbs morphologically related to each other. This contrasts with Vietnamese, the only Austroasiatic language in Viberg's sample where the experience verbs are formed from activity verbs by the addition of a serial verb.

Viberg has shown that there is a polysemy hierarchy within the sense modalities in different languages:
smell
slght $>$ hearing > touch $>$

> taste

This means that "a verb having a basic meaning belonging to a sense modality higher (to the left) in the hierarchy, can get an extended meaning that covers some (or all) of the sense modalikies lower in the hierarchy" (Viberg 1982a:15).

As seen above, the activity verbs are lexicalized differenty for each sense modality, but for experience, the verb mec is used for all senses except sight. If the context allows a choice between sense modalities mec is usually interpreted as "hear", which is thus its basic meaning. Thus the Kammu data fit in with this hierarchy, as well as with Viberg's observation that polysemy is most common among the experiences. Languages with the same experience poiysemy pattern as Kammu (i.e. with a separate verb for sight and with the verb for hearing extended to the remaining senses) are common in Viberg's language sample and include Hausa and Turkish.

The only perception verbs which are morphologically related in kammu are hm"tr "smell (activity)" and hir "smell (copulative)". The inilix -m- regularly forms causatives in Kammu (see Svantesson 1983), and the formal relation between copulative and activity verbs is the same as that between an intransitive verb and its causative; the first is constructed patient/source V, and the second agent - V - patient/source.

Hyponymy

Hyponyms for "look" (activity) and for "smell" (copulative) seem to be especially common, and I have collected some of these here.
For "look", the following hyponyms have been noted:
cnkléer "look through a hole, look into, peep"
kléer $=$ cŋjkléer
smdín "stareat"
smlik "glance at, spy on"
smian "look to the side"
smpàh "look upwards" (ci. jàh "bent upwards")
sm? yee "look with one eye" (cf. 7yee "one-eyed")

Many of these words have the minor syllable sm-, which in the last two cases seems to be a kind of derivational prefix.

For copulative "smell" there is no indigenous neutral verb, but one has to specify if the smell is good (h?fr) or bad (h?í). The Lao loanword sáap seems to be neutral. There are several other words for different kinds of smell:

| h7\% | "smell good" |
| :---: | :---: |
| h? 0 | "smell bad" |
| ๆécl | "to stink (of animals, dirty clothes, etc)" |
| p?ial | "to stink (of (1sh) ${ }^{\text {c }}$ |
| sáap | "smell" (Lao loan) |
| ? wias | $=\eta \underline{\varepsilon} \varepsilon{ }^{\text {l }}$ |

These words function both as verbs and as nouns (which is not very common in Kammu):
ká pôal
fish stink "The fish stinks."
ò mèc pilal ká
I perceive stench fish" "I smell the stench of fish."

Biblography

Svantesson, Jan-Olof. 1983. Kammu phonology and morphology. Lund: Gleerup.

Svantesson, Jan-Olof. 1984. "Sketch of the tense-mood-aspect system of Rammu". In Selected working papers from the tense-mood-aspect project, ed. Östen Dahl and Dora Kós-Dienes, Stockholm, p. $44-48$.

Viberg, Ake. 1982a. The verbs of perception. A typological study. Stockhom: Institute of Linguistics

Viberg, Ake. 1982 b . Questionnaire: verbs of perception. Stockhoim: Institute of Linguistics.

Structures prosodiques du suédois et du français:

le cas de la focalisation et du contraste

Paul Touati

Thèse à paraitre

Abstract

Le but principal des recherches menees dans ce travail de thèse est de décrire les structures prosodiques dars le cadre du problème linguistique pose par la focalisation et le contraste Dans cette optique, nous ayons:

1. Procéder à une description préalable de certains aspects de la prosodie ou suédais et du francais dans une perspective essentiellement phrastique.
2. Etudiar les repports entre les structures prosadiques, syntaxiques et enonciatives à travers les variations paramétriques de durée et de fo.
3. Analyser ces variations paramétiques dans le cadre du madèle mis ou point © Lund.
4. A la manierre de Garding dans ses travaux [Gôrding, 1901, 19841, nous avons opté pour une approche multilangagiaire. Notre choix sest porte sur deux lanques non-apparentées, le suédois et le francais.

L'interèt de ls comporaisan du suédois et du français comme langues de reference n'échappera s̀ personne Les typologies lorsqu'elles se réfèrent sux langues europeennes qui nous sont plus ou moins familieres ne manquent pas de citer la prosadie du suédois et du français comme exemples illustratifs de systemes prosodiques différents [Garde, 1968; Hymen, 1977]

Mais notre comparaicon he se veut pas être un simple répertoire des ressemblances et differences phonologiques entre les deux larigues mais une analyse pluriparamétrique de lo substance phonétique (duré et fo) basee sur les domees dun probleme linguistique precis.

De plus choisir deux langues non-apparentées, c'est évité, nous l'esperons, l'ecueil que Rossi met en évidence lorsquil montre combien les divergerces d'opirion de Karceuskij, Danes et de Groot sur les rapports entre la suntaxe et l'enonciation étaient liees à la langue gui leur servait de base de reflexion [Rossi, 1965:137].
2. La prosodie constitue un vaste champ de recherches. Notre étude se situe dans le codre des ropports entre les structures prosadiques, syntaxiques et enonciatives [cf."Semantics, syntax and prosody", Utrecht, 1983]. Des limites plus claires lui sont posees par la hature du problème étudié, c'est à dire la manière dont l'acte d'enonciation constitué pis la rhematisstion d'un elément de l'enoncé influence la structure prosodique et indirectement la liaison de congruence entre les structures citées-ci dessus.

Deux types de rhemetisation, tenus comme differents dans notre hypothèse de départ, sont envisagés; il s'agit de lo focalisation et du contraste où la focalisation a une fonction didentification slors que le contraste a une fonction de selection exclusive [Rassi et al, 1981:230; Naike, 1963:150-151]. De manière gérererele, nous ayons essaye de decrire, suec l'aide de la méthode mise au point par Bruce [Bruce, 1977: 21 sq], les propriétés prosadiques d'énơncés neutres, d"énoncés avec focalisation et d'enoncés ayec contraste derivés à partir σ ine meme ph/sse (d'une même structure syntoxique).

Les propriétés de ces énoncés sont salisies en termes de variations des parametres acoustiques de duree et de fo. Une fois normalisegs, les variations de duree constituent ce que nous avons qualifie de profils temporels lcf. Tousti, 1984]. Les variations locales de fo dues sux accents sant quantifiés. Les variations glabales de fo sont exploitées qualitativement.
3. L'analyse des données acoustiques, surtout celle de fo, est effectué à l'aide des unites (points-clets, grille intanstive, pivats...) proposées dans le modèle mis au point à Lund [Gêrding, 1984 ; Gärding et al, 1982 , servant de point de départ à notre analysel. Ces unités forictionent de la manière suivante.

Chaque sccent a une représentation phonologique intermédiaire sous forme de points-clés Hauts ou Bes. La combinaison de ces points contribue s̀ dater les accents de contours montants ou descendents. Aux points-clés correspondent des maxima et des minima de fo. Les contours se traduisent donce par des chutes et des montées de fo dont l'ampleur est estimée a l'aide du rapport maximum de fo sur minimum de fo.

Les lignes de base et de sommet qui relient respectivement les minima et les maxima des points-clés majeurs compasent une grille dont la direction est censée fournir une claire indication quant au mouvement. glabale de l'intanation. Les lignes ont aussi pour vertu de permettre la comparaison entre les différentes parties de la grille -ies différents groupes intonatifs- en ce qui concerne leur expansion fréquentielle à l'aide des traits comme par exemple $I \pm$ amplel ou [tcomprimée]. Les pivots sont des lieux de ruplure de la grille. Une étroite liaison entre ces unités et les fonctions prosodiques est postulée.

Ce travail de these n'étant pas tatalement acheve, les resultats présentés dans le cadre de ce résumé sont des généralisations préliminsires.

Mais de manière génerale, or peut affirmer que:

1. Il existe des differences phonologiques entre les deux langues qu'il serait trop long d'exposer ici.
2. Dutre ces diferences, on remarque quiune similitude phonologique dans les deux langues (accentuation lexicale finale) se traduit par des différences fondamentales dans les réalisations paramétriques.
3. La réalisation parametrique des accents est sensible à leur categorie (accent de mot/de groupe, accent focal/contraste) et se réalise différement dans les deux langues.
4. Les grilles intonatives chargees de saisir les variations acoustiques glabales ant en commun un certain nombre de trsits dont la distribution varie cependant selon la lanque, la position de l'accent focal ou de cortraste et le type d'énoncé.
5. Une autre difference fondamentale entre les deux langues reside dans le fisit que les parametres de durées et de fo entretiennent une relation de dépendance relativement forte en suédois alors qu'en français, ils seraient plutôt indépendants l'un de l'autre.

En ce qui concerne les effets prosudiques de la focalication et le contraste, on observe que:

1. Dans le deux lengues, la mematisation aboutit au fait que la congruence entre structure suntaxique et la structure prosodique n'est pas maintenue. Elle disparait au profit de celle entre structure enonciative et prosodique.
2. Les vecteurs prosodiques de la focalisation et du contraste sont les sccents dit "accent facal" et "accent de contraste". L"existence de ces catégories comme catégories differentes nest pas clairement attestée. En français, il est ainsi difficile de deriver à partir des realisations paramétriques une catégorie "accent focal". Les manisfestations de la categorie "occent de contraste" sank en revanche claires. En suédois, les cetegories "accent focal" et "accent de contraste" sont acoustiquement. réalisées de la mème manière. Elles ne diffèrent pas qualitativement mais quantitativement.
3. La réalisation paramétrique des accents de mot (pour le suedois') ou de groupe (pour le franças) est sensible à leur pusition par rapport à l'accent focal/de contraste (position postfocale et position prefocale).

Références

Bruce, 6. 1977. Swedish word accent in sentence perspective. Travsux de l'institut de Lund RII. Lund: Gleerups.

Garde, F. 1968. Laccent. Presses Universitaires de France, Poris.
Gärding, E. 1981. Contrastive prosody: A model and its application.
Special lecture ta the AlLA congress 1981. Froceedings II, eds. Sigurd and Svartvik, Studia Linguistica 35, 1-2, 81, Gleerups: 146-166.

Gărding, E., Botinis, A. and Touati, Paul. 1982. A comparative study of Swedish, Greek and French Intanation. Working Papers 22, Departement of Linguistics, Lund Universiuy: 137-152.

Gärding, E. 1984. Comparing intonation. Working Papers 27, Departement of Linguistics, Lund Uriversity: 75-96.

Hyman, L. 1977. Studies in stress and accent. University of Southem Califormia, Los Angeles.

Nalke, H. 1983. Remarques sur la focalisation. Revue Romane, numéro special 24, 147-165.

Rossi, M. 1985. L'intonation et l'organisation de lenonce. Phonetica 42:135-153.

Rossi, M. Di Cristo, A. Hirst, D. Martin, Fh et Nishimuda, Y. 1981. L'intonstion de l'acoustique à la sémantique. Paris: Klincksieck.

Tousti, P. 1984. Profils temporels en suédois et en francais. Dans Elert, C-C. Johansson, I. and Strangert, E. (Eds) Nordic Prosody III, Acta Universitatis Umenis 59, University of Umea, 230-242.

```
CURRENT RESEARCH PROJECTS
Commentator, a computer system simulating vexbal behavior
Bengt Sigurd
Computer simulation of dialogue and communication
Bengt Sigurd
Manuals and instructions with particular reference to the
computer environment
    (Swedish Council for Research in the Humanities and Social
    Sciences)
Bengt Sigurd, Boel de Geer
Language and brain
    (Swedish Council for Research in the Humanities and Social
    Sciences)
Eva Gårding, Christina Dravins
Central features in Scandinavian syntax
    (Nordic Committee for Coordinating Research in the Humanities)
Elisabet Engdahl
Phonological and phonetic studies of vowel articulation in
Bulgarian
Thore Pettersson, Sidney Wood
Language disordered children's reading and spelling
(Swedish council for Research in the Humanities and Social
    Sciences)
Kerstin Nauclér, Eva Magnusson
Reading and spelling difficulties. A search for causes.
(Swedish Council for Research in the Humanities and Social
    Sciences)
Kerstin Nauclér, Eva Magnusson
Diphtongization versus vowel duration in Southern Swedish
Kurt Johansson
Prosodic parsing for Swedish speech recognition
(National Swedish Board for Technical Development)
Gösta Bruce, David House (Lund)
Björn Lindblom, Francisco Lacerda (Stockholm)
From text to prosody
    (The Bank of Sweden Texcentenary Foundation)
Robert Bannert
```

Bannert, R Fokus, Kontrast und Phrasenintonation im Deutschen. Zeitschrift für Dialektologie und Linguistik 52/3

Bannert, R. Towards a model for German prosody. Folia Linguistica XIX, 321-341

Engdahl, E. Parasitic gaps, resumptive pronouns and subject extractions. Linguistics 23:1

Garding, E. An intonation model and its anchors. Institut de phonétique, Aix-en-Provence, July

Garding, E. A phrase-based model of intonation. Institut für Phonetik und sprachliche Kommunikation, München, July

Gårding, E. \& House, D. Frasintonation, särskilt i svenska. In Allén et al. (eds.): Svenskans beskrivning 15, Förhandlingar vid sammankomst för att dryfta fragor rörande svenskans beskrivming, 205-221. Göteborgs universitet

Gårding, E. En intonationsmodell och dess förankringar. Tal, ljud, hörsel 2, GULमNG 13, Göteborgs universitet

Horne, M. English sentence stress, grammatical functions and contextual coreference. Studia Linguistica 39, 51-66

House, D. Betydelsen av spektrala förändringar för kategorisering av tonala mönster. Abstract in Ahlsén, Allwood \& Hjelmquist (eds.): Tal, ljud, hörsel 2 , p 168. Göteborgs universitet

House, D. Kompensatoriska perceptionsstrategier bland hörselskadade Iyssnare. Abstract in Ahlsén, Allwood \& Hjelmquist (eds.) : Tal, ljud, hörsel 2, p 168. Göteborgs universitet

House, D. Compensatory use of acoustic speech cues and language structure by hearing-impaired listeners. Paper presented at the conference "Communication and handicap - aspects of psychological comoensation and technical aids", Stockholm, 3-4 June

House, D Perception of fundamental frequency movement in speech. Poster presented at the Third international conference on event perception and action, Uppsala University, 24-29 June

House, D. Tmplications of spectral changes for categorising tonal patterns in speech. Paper presented at the British Society of Audiology short papers meeting on experimental studies of hearing and deafness. University of Hull, 8-9 July

House, D. Speech perception, intonation and hearing impairment. Paper presented at the "Tal-Ljud-Hörsel" summer school, Särö, 17-24 August

Pettersson, T. \& Persson, G. Tillåt formerna "dom" och "mej". Dagens Nyheter, 15 March

Pettersson, T. Dags att skriva "dom". Paper presented at Sprakvårdsfestival, City Library, Lund, 20 November

Pettersson, T. \& Wood, S. Spektrografic̈eskie i model'nye issledovanija bolgarskix glasnyx (Spectrographic and model studies of the Bulgarian vowels). Paper presented at III Bâlgaro-skandinavski simpozium po ballgaristika, Varna, Bulgaria. September

1986
Bannert, R. Acoustic-phonetic investigations of the intonation of German and Danish: similarities and differences. ARIPUC 20, 45-66

Engdahl, E. Constituent questions: the syntax and semantics of questions with special reference to Swedish. Reidel, Dordrecht

Garding, E. The structure and manifestation of intonation \& Learning and teaching problems in the light of a model for prosody. Papers presented at Nankai University, Tjanjin, and Beijing University, Beijing, May

Gårding, E. Intonation across several languages. Lecture series, Institute of Acoustics, Academia Sinica, Beijing. May-June

Gårding, E. Superposition as an invariant feature of intonation. In Perkell, J.\& Klatt, D.H. (eds.): Invariance and variability in speech. L.Erlbaum Assoc.Publ., Hillsvale, N.J.

Horne, M. Information focus: assignment and phonological implications. In Evensen, L. (ed.): Hordic research in text linguistics and discourse analysis, 155-69. Tapir, Trondheim

House, D. Compensatory use of acoustic speech cues and language structure by hearing-impaired listeners. Forthcoming in Nilsson, L.G.\& Hjelmquist, E.(eds.): Communication and handicap - aspects of psychological compensation and technical aids. North Holland, Amsterdam

House, D. \& Gårding, E. Phrasing in some scandinavian dialects. Paper presented at Nordic prosody IV, Middelfart, 6-8 June

Pettersson, T. Dags att skriva "dom". Sydsvenska Dagbladet, 11 January

Pettersson, T. Stavning av pronomina. Sydsvenska Dagbladet, 27 January

Pettersson, T. Nekotorye nabljudenija nad voprosom o grammaticeskoj interferencii (na materiale svedskogo i russkogo jazykov). Paper presented at the Inter-Scandinavian conference "Sproklig interferens (nordiska språk vis-à-vis ryska), Helgences, Denmark, 25-27 April

Pettersson, T. Kasus i ryska och andra språk. Arhus University, 28 April

Pettersson, T. \& Bilyy, M. Ergativity in Dyirbal. In Mey, J.L. (ed) : Language and discourse: test and protest. A festschrift for Peter Sgall (=Linguistic and literary studies in Eastern Europe 19), 143-161. John Benjamins Publishing Company, Amsterdam

Söderbergh, R. From communication as language to language as communication. Keynote address in Precursors of early speech, eds. Lindblom, B. \& Zetterström, P. (Wenner-Gren Center International Symposium Series, V. 44). Stockton Pross, Southampton

Wood, S. \& Pettersson, T. Spektrograficeskie i model'nye issledovanija bolgarskix glasnyx (Spectrographic and model studies of the Bulgarian vowels). Invited lecture, Second International Congress on Bulgarian Studies, Sofia. Proceedings in press. May

Wood, S. \& Pettersson, T. Vowel reduction in Bulgarian and its implications for theories of vowel production: a review of the problem. Folia Linguistica (in press)

Wood, S. The acoustical consequences of lip, tongue and larynx articulation i palatal vowels. In Journal of the Acoustical Society of America (in press)

Wood, S. The role of the pharynx in speech, Chapter in Otolaryngology - head and neck surgery (vol. 2 The larynx and pharynx), ed. Painter, C., C.V. Mosby Co., St. Louis

RECENT NUMBERS AND CONTENTS

WP 261983 THORE PETTE

WP 271984 ROBERT BANNERT

ANNE-CHRISTINE BREDVAD-JENSEN

GÖSTA BRUCE

CHRISTINA DRAVINS
EVA GARDING

DAVID HOUSE

KURT JOHANSSON

MONA LINDAU

EVA MAGNUSSON, KERSTIN NAUCLER \& EWA SÖDERPALM

ULRIKA NETTELBLADT

KJELL NORLIN

JAN-OLOF SVANTESSON

JIĀLO ZHĀNG

WP 281985
EVA GARDING

EVA GÅRDING

Electoconvulsive Therapy and the Lateralization of Linguistic Functions

Towards a Model for German Prosody
Tonal Geography. Geographical Variation in Declarative and Interrogative Intonation along the West Coast of Sweden

Aspects of Fo Declination in Swedish

Prosody and the Hemispheres
Comparing Intonation

Experiments with Filtered Speech and Hearing-Impaired Listeners

Perceptual Experiments with Duration versus Spectrum in Swedish Vowels

Testing a Model for Hausa Intonation

Form or Substance? The Linguistic Awareness of Pre-school Children and School Children Investigated by Means of a Rhyming Test

PhD Thesis Summary: Developmental Studies of Dysphonology in Children

Acoustic Analysis of Vowels and Diphthongs in Cairo Arabic

Vowels and Diphthongs in Standard Chinese
Perceptual Studies of Chinese Intonation Using Foreign Listeners

In defence of a phrasebased model of intonation

Constancy and variation in Standard Chinese tonal. patterns

WP 281985 EVA GARDING, PAUL KRATOCHVIL, JAN-OLOF SVANTESSON JIALU ZHANG

DAVID HOUSE

DAVID HOUSE

DIETER HUBER

KERSTIN NAUCLER \& EVA MAGNUSSON

KJELI MORLIN

JANTNA PETECKA

Tone 3 and rone 4 discri.mination in Modern Standard Chinese

Implications of rapid spectral changes on the categorization of tonal patterns in speech perception

Sentence prosody and syntax in speech perception

Swedish intonation contours in text-to-speech syntesis

Janguage disordered children's reading and spelling: preliminary results

Pharyngalization in Cairo Arabic

A study of question intonation in Polish
TRAVAUX DE L'INSTITUT DE LINGUISTIQUE DE LUND
FONDES PAR BERTIL MALMBERG
PUBLIES PAR EVA GARDING ET BENGT SIGURD
I
\quad Carl-Gustov Soderberg. A Typological Study on the Phonetic

Structure of English Words with an Instrumental-Phonetic
Excursus on Engish Stress 1959.

PRAKTISK LINGVISTIK

| N上 $1-1979$ | Eva Garding \& Robert Bannert optimexing av svenskt uttal (incl. cassette recording) out of print |
| :---: | :---: |
| Nr $2-1979$ | Kenneth Hyltenstam (Ed)
 Invandrarundervisning m aspekter på alfabetisering och den första nivån out of print |
| Nr 3-1979 | Robert Bannert
 Ordprosodi i invandrarundervisningen
 40:- (incl. cassette recording) |
| Nr 4-1979 | Eva Wigforss
 Svensk pluralbildning hos finska invandrarbarn - en psykolingvistisk utvecklingsstudie 30:- |
| $\mathrm{Nr} 5-1981$ | ```Robert Bannert Svårigheter med svenskt uttal: inventering och prioritering 40:- (incl. cassette recording)``` |
| Nr 6-1981 | ```Gösta Bruce (Ed) Tema prosodi - seminaxieuppsatser i fonctik 30:-``` |
| Nr $7-1982$ | Don Kulick, Karina Vamling, Lars-Ake Henningsson Om tolkning $30:-$ |
| Nr $8-1983$ | ```Jan Fornell, Bengt Sigurd Commentator - ett mikrodatorbaserat forsknings- program för lingvister 30:-``` |
| Nr 9-1984 | ```Thore Pettersson (Ed) Färgterminologi - seminarieuppsatser i allmän sprakvetenskap 40:--``` |
| Nr $10-1985$ | Kerstin Nauclér, Eva Magnusson
 Språket i. skrift - om normal och försenad utveckling av tal och skrift 60:- |
| Nr $11-1985$ | Bengt Sigurd, Jean-Jacques Berthout,
 Robin Cooper
 Språ pa dator - Hur datorn kan konversera, förstå tolka morse och undervisa i franska 45:- |
| (Prices in Sw Swedish Post | sh Crowns)
 fice Giro account 4393492 - 6 |

LINGUISTICS DEPARTMENT
 STAFF

Chairman
Director of studies
Library
Office

General Linguistics
Berthout, Jean-Jacques
Cooper, Robin
Dooley, Sheila
Engdahl, Elisabet
de Geer, Boel
Henningsson, Lars-Ake
Horne, Merle
Malmberg, Bertil
Nordbeck, Britt
Pettersson, Thore
sigurd, Bengt

Karina Vamling

Research Students:

Kurt Johansson
Thore Pettersson
Boel de Geer
Janna Geggus, Eva Körner, Britt Nordbeck
$B A$; extra teacher
PhD; Docent; Lecturer
BA; extra teacher
PhD; Research Fellow
Fil Kand; Research Assistant
Fil Kand; extra teacher
MA; extra teacher
Fil Dr; Professor Emeritus
Secretary
Fil Dr; Docent; Lecturer
Fil Dr; Professor; Head of Division; Dean

Fil Kand; Assistant, extra teacher

Jean-Jacques Berthout, Hans Dahlbäck, Sheila Dooley, Malgorzata Faust, Jan Fornell, Boel de Geer, Janna Geggus, Lars-Ake Henningsson, Merle Horne, Gisela Hakansson, Magnus Olsson, Emilio Rivano-Fischer, Karina Vamling

Fil Dr; Docent; Research Assistant
Fil Dr; Professor; Head of Division
Logoped; Research Assistant
Fil Kand; Programmer
Fil Lic; Secretary
Fil Dr; Professor Emeritus
Fil Dr; Professor Emeritus
BA; Assistant, extra teacher, Desearch Assistant

```
Johansson, Kurt
Jönsson, Karl-Gustav
Körner, Eva
Magnusson, Eva
Nauclér, Kerstin
Nettelbladt, Ulrika
Norlin, Kjell
Svantesson, Jan-Olof
Weimer, Kjell
Willstedt, Ursula
Wood, Sidney
Research Students:
Fil Lic; Lecturer
Technician
Secretary
Fil Dr; Logoped; Research Assistant
Fil Dr; Logoped; Research Assistant
Fil Dr; Logoped; extra teacher
Fil Kand; Research Assistant
Fil Dr; Research Assistant
Fil Kand; extra teacher
Logoped; extra teacher
Fil Dr; Research Fellow
Antonis Botinis, Anne-Christine
Bredvad-Jensen, Christina Dravins,
David House, Dieter Huber, Boris
Larnert, Lili-Ann Rudberg, Gabriella
Stenberg-Koch, Paul Touati, Yasuko
Madsen, Kjell Weimer, Ursula Willstedt,
Shi BO
```

Voice and Speech Training
Norman, Lennart Fil Kand; Voice and Speech teacher

Child Language Research

| Bredvad-Jensen,
 Anne-Christine | Fil Kand; Research Assistant |
| :--- | :--- |
| Mårtensson, Bodil | Fil Kand; Secretary |
| Söderbergh, Ragnhild | Fil Dr; Professor; Head of Division |

Address: \quad| Department of Linguistics and Phonetics |
| :--- |
| Lund University |
| |
| Helgonabacken 12 |
| |
| $\mathrm{~S}-22362$ LUND |

[^0]: Negative values indicate that the segment durations with the short vowel are larger than with the long vowel.

