
Lund University, Dept. of Linguistics
Working Papers 38 (1991), 169-87

169

P r o l o g I m p l e m e n t a t i o n s o f E n g l i s h

a n d S w e d i s h G B G r a m m a r s

Bengt Sigurd and Mats Eeg-Olofsson

Introduction and abstract
Government and Binding theory (Chomsky 1981, Sells 1985) plays a
dominant role in current linguistics and is an almost compulsory part of the
linguistics curriculum at universities. The advantage of G B is its rigorous
theory, allowing only certain simple trees and transformations, supple­
mented by certain simple principles and constraints. The G B approach
makes it possible to characterize language in a simple way and to pinpoint
the differences between languages as different settings of the parameters of
the base structure, transformations and constraints.

In spite of its dominance in linguistics, GB has a comparatively low
status in computational linguistics, as is witnessed by the proceedings of
COL1NG and A C L (for exceptions see References). Computational linguists
instead favour competing theories such as Generalized Phrase Structure
Grammar, Lexical-Functional Grammar, Tree Adjoining Grammar, or
eclectic variants. There is, however, a demand for computer implementa­
tions of GB for linguistic and pedagogical purposes.

This paper presents an experimental Prolog (L P A MacProlog)
implementation of the basic features of G B , including categorial base rules
for deep structures (d-structures) and transformations for movements of
tense, w/z-words, noun phrases, verbs and adverbs. The movements leave
traces in the surface structure (s-structure) in accordance with current
theory. Both the leaves (words) of the d-structure tree and the leaves of the
s-structure tree can be projected as sentences, the s-structures with or
without traces. Sentences can be generated from the d-structure through the
transformations or parsed by finding the d-structure after running the
transformations in reverse. The English and Swedish grammars differ, as
the English auxiliaries are generated in the tense slot (infl) and not is a
barrier in English. Furthermore, Swedish moves all finite verbs to the

170 BENGT SIGURD AND MATS EEG-OLOFSSON

second (comp) position, which is done only in questions in English, e.g.
Whom did Bill like? The paper also shows how the grammars can be used
for machine translation, handling differences in the d-structure by transfer
rules.

Overview
Current theory agrees on using so-called X-bar syntax, which entails that
the characteristic feature (head) of a category should be reflected in all
larger phrases constructed (projected) from it, and that the hierarchy of the
phrases should be indicated by a (bar) number. Thus there are verb phrases
of different sizes, e.g. a simple verb as in v(like), this verb phrase adjoined
to an object, as in vl(like Eve), or this phrase adjoined to a preceding
subject, as in v2(Bill like Eve), and according to this theory the successively
larger phrases should be marked as vl, v2, v3, etc. (using numbers instead
of superimposed bars). Adverbs may be adjoined rather freely, allowing
still larger verb phrases such as (not Bill like Eve) or (Bill like Eve much).

The X-bar hierarchy is at least partly reflected in our experimental d-
rules. The node below the top node cp (the comp phrase) is called cl, as is
usual, and the node below ip (the inflectional phrase) is called il. This usage
is in accordance with the presentation of Swedish in Falk 1991. The verb
phrase including the object is termed vp, the verb phrase including also the
deep subject is termed vpl, the verb phrase including a sentence adverbial
is, however, termed vps, and the verb phrase with an adjoined adverbial of
any other kind is called vpa. These labels could of course be changed if
required. Figure 1 shows a sample G B d-structure tree. The representation
states that Bill is in the deep subject (specifier) position of the verb phrase
labelled vpl, and that who is in the complement position after the verb like.
The tense slot (il) is occupied by did (the d tense affix alone would not be
accepted by the later transformations). We wil l call the specifier position of
cp the fundament, following the Danish linguist Diderichsen.

After having passed through the transformations, the representation
would surface as the following s-structure tree:

cp (whom, c l (d i d , i p (b i l l , i l ([] , v p l (n l , v p (l i k e , n 2)))))) .

This s-tree shows that who has been changed into the object form whom and
moved to the initial position, did has been moved to the cl position in order
to precede the subject, which is moved to the normal surface subject

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 171

cp
i

D c l
I

[] ip
I

[] i l

did vpl
I

B i l l vp
I

like who

c p ([] , c l ([] , i p ([] , i l (d i d , v p l (b i l l , v p (l i k e , w h o))))))

Figure 1. d-representation (tree and parenthesis) of Whom did Bill like?

position ip. The grammatical modules and their results are shown in the
following (comments within /* */ as in Prolog).

D-structure rules (sample) in Definite Clause Grammar

d (c p (C p , C l)) —> fund(Cp) , c l (Cl) . / * fund f o r c p
(Dider ichsen) * /

fund([]) —> [] . / * fund may be empty * /

c l (c l (C , I p)) —> c (C) , i p (I p) .

c ([]) —> [] . / * c(amp) may be empty, i f main c l a u s e * /
c (Subj) —> subj (Subj) . / * c i s a s u b j u n c t i o n i n sub
c l a u s e s * /

i p (i p (I , I l)) —> i (I) , i l (I l) .

i (U) —> [] .

i l (d) —> [d] . / * tense marker d e t c . - see below * /

The rules generate structures such as

c p ([] , c l ([] , i p ([] , i l (d , v p l (w h o , v p (l i k e , E v e)))))))

172 BENGT SIGURD AND MATS EEG-OLOFSSON

corresponding to the d-structure projection (d-sentence)

d, w h o , l i k e , E v e .

Transformations (sample)
Subject wA-movement to the front ('fund') position, leaving the trace nl:

cp([] , c l ([] , i p ([] , i l (T , v p l (who,X))))) ==>
c p (w h o , c l ([] , i p ([] , i l (T , v p l (n l , X))))) .

This transformation results in structures like

c p (w h o , c l ([] , i p ([] , i l ([] , v p s (n l , v p (l i k e d , E v e)))))))

whose projection (without traces) is

w h o , l i k e d , E v e .

English d-structure rules (categorial base rules)
The d-structure rules used for English are the following, where the prefix e
(as in efund, eel, ecomp etc.) marks English categories to prevent them
from being confused with the corresponding Swedish categories, which are
labelled fund, cl, comp, etc. The D C G formalism used when constructing
the d-structure yields a direct projection of the d-structure. The d-structure
is established as an argument to the left of the arrow, and the projection of
the leaves of this d-structure is seen to the right of the arrow. The
projection of the leaves of the d-structure may also be called the d-structure
sentence or 'base string'. It is an artificial grammatical product, charac­
terized by the d-structure order, where the aux and tense morphemes come
first, the sentence adverbial next, and finally the SVO complex, as i l l u ­
strated by: [d,Bill,like,Eva], corresponding to the surface: [Bill.liked.Eva];
or [d,perhaps,bill,move], corresponding, e.g., to normal surface structure
[perhaps,Bill,moved].

English d-rules

e d (c p (F u n d , c l (C o m p , Ip))) —>
e f u n d (F u n d) , e e l (c l (C o m p , I p)) ,
{(Fund=[],Comp=[];Fund=[] , Comp=that;
Fund=q,Comp\=that) } .

/ * A c o m p l e m e n t i z e r p h r a s e (cp) may c o n s i s t o f a
Fundament (=Spec o f cp) f o l l o w e d by a Comp node

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 173

(=cl) ; t h e c o m b i n a t i o n o f Fund and Comp must be
r e s t r i c t e d as shown between {}. Both may be empty as
i n main d e c l a r a t i v e c l a u s e s , t h e Comp may be a
s u b j u n c t i o n as i n a s u b o r d i n a t e d c l a u s e , or t h e
Fundament may be q (marking a ques t ion) , but i n t h a t
case t h e r e cannot be any s u b j u n c t i o n * /

e f u n d ([]) —> [] . / * the fundament may be empty
(d e c l a r a t i v e) * /
efund(q) —> [?] . / * a q u e s t i o n mark denotes a yes-no
q u e s t i o n * /

e e l (c l (C o m p , I p)) —> ecomp(Comp),eip(Ip) .

ecomp([]) —> [] . / * main c lause * /

ecomp(that) —> [t h a t] . / * s u b o r d i n a t e c l a u s e * /

e i p (ip (I , I I)) —> e i (I) , e i l (I I) . / * i n f l phrase * /

e i ([]) --> [] .
e i l (i l (I , V p l)) —> e i n (I) , e v p l (V p l) . / * wi thout
sentence adverb * /
e i l (i l (I , V p s)) —> e i n (I) , e v p s (V p s) . / * w i th sentence
adverb vp * /

e in(d) —> [d] . / * g e n e r a l tense marker (a v o i d i n g
i r r e g u l a r i t i e s) * /
e i n ([A , d]) —> e a u x (A) , [d] . / * t ensed a u x i l i a r y , d i d
i n c l u d e d * /

e v p l (v p l (K , V p)) —> e n p (N) , e v p (V p) . / * s u b j e c t vp * /
e v p l (v p l (N , V p a)) —> e n p (N) , e v p a (V p a) . / * w i th adverb
vp * /

e v p s (v p s (S , V p l)) —> e s a d v (S) , e v p l (V p l) .

evpa (vp (Vp, A)) —> evp (Vp) , eadv (A) . / * vp wi th f i n a l
adverb * /

e v p (v p (V , [])) —> e v i (V) . / * i n t r a n s i t i v e * /
evp(vp(V,N)) —> e v t (V) , e n p (N) . / * t r a n s i t i v e * /

/* Lexicon */
evt (l i k e) —> [l i k e] .

evi(move) —> [move]. / * a l lows d as g e n e r a l tense
marker * /

174 BENGT SIGURD AND MATS EEG-OLOFSSON

eaux(coul) —> [c o u l] . / * a l lows d as g e n e r a l tense
marker * /
eaux(di) —> [d i] .
/ * a l lows d as g e n e r a l tense marker * /

enp (b i l l) —> [b i l l] .
enp(eva) —> [eva] .
enp(who) —> [who].

esadv(nt) —> [nt] •
/ * c o n t r a c t e d form chosen, as not i s o c c u p i e d i n
P r o l o g * /
esadv(perhaps) —> [perhaps] ,
eadv(yes terday) —> [y e s t e r d a y] .

e v e r b (l i k e) .
everb(move) .
e v e r b (c o u l) .
e v e r b (d i) .

e a u x (d i) .
e a u x (c o u l) .

enp (b i l l) .
e n p (e v e) .

English transformations
The d-structure rules presented above require a number of transformations
in order to produce suitable s-structures. Some of these are presented in
detail below with comments.

English tense-moving transformations

e i a t t (X , Y) : -
X = c p (A , c l (B , i p (C , i l (d , v p s (S , v p l (N , v p (V , N 2))))))) ,
S\=nt,
Y = c p (A , c l (B , i p (C , i l ([] ,

v p s (S , v p l (N , v p ([V , d] , N 2))))))) .
/ * moves and a t taches tense (d) to verb stem (V) , i f
not (nt) does not i n t e r v e n e : Bill perhaps liked Eve
*/

A l l such rules of movement should preferably be summed up in a more
general rule, expressing the interactions of various principles such as c-
command etc. It is difficult to combine such a modular approach with
reversibility, i.e. the demand that it should be possible to use the same rule

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 175

for both analysis and synthesis. One might suggest a rule of the following
format with six variables, which is a specification of the famous move(@)
rule:

m o v e (A l p h a , I n t r e e , O u t r e e , S o u r c e , T a r g e t , B a r r i e r) .

This rule states that a category (Alpha) in an input tree (Intree) should
result in an output tree (Outree), if situated in Source and moved to Target
without passing a certain Barrier (such as not or an NP boundary). The
implementation of such a rule is not straightforward. We wil l not present a
general rule, but we wil l examine some of the different cases in detail in the
following.

As can be seen, our specific rule above can only move the simple tense
marker d, not auxiliaries such as could or did which are generated in the
same slot. The existence of not in the tree requires do-support, as is well-
known. On our approach there is, in fact, no reason to talk about do-
support or Jo-insertion. The only thing to note is that in English past tense
may be expressed both by d and did, the last form being used when the tense
marker cannot be moved down to the verb stem; do-forms may, of course,
also be used for emphasis.

In certain cases a different form of the rule must be written for analysis.
In analysis, the variables in the tree X are not instantiated when the rule is
to apply. If the tense-moving rule is to apply obligatorily to all d-trees,
those with auxiliaries should be able to pass vacuously, and so a rule of the
following form is needed, allowing, e.g., [coul.d] to pass without having to
be moved. The variable Rest denotes whatever follows.

e i a t t (X,Y) : -
X=cp (A, c l (3, i p (C, i l ([Aux, d] , Rest)))) ,
Y=cp (A, c l (B, i p (C, i l ([Aux, dj , Rest)))) .

/* Bill could like Eva */

Wh-moving transformations

efmove(X,Y) : -
X=cp([] , c l ([] , i p (C , i l (D , v p l (who,Z))))) ,
Y = c p (w h o , c l ([] , i p (C , i l (D , v p l (n l , Z))))) .

/ * moves subj who t o fund p o s i t i o n i f Fund and Comp
are empty (not i n s u b o r d i n a t e c lause) * /

This rule illustrates how a trace nl is posited in the place of the who moved
to the fund position. No do-support is needed here, unlike the case where

176 BENGT SIGURD AND MATS EEG-OLOFSSON

the object who (whom) is moved (Whom did Bill like). In English there is
no reason to move all subjects to the fund position, as is done in Swedish. In
Swedish the equivalent of who and ordinary subjects may be moved by the
same transformation. In English subjects are normally only moved to the ip
position.

The movement of the object who is illustrated by the following rule,
which requires a do form (specified as [di,d] in our restricted program). In
that case n2 is left as a trace. The do-form is also moved to the cl position,
and the pronoun is simply given its object form whom in the process. One
may of course handle the do-movement and the change of who into whom
as separate processes. Case assignment is not covered separately in our
model program.

efmove(X,Y) : -
X=cp([] , c l ([] , i p ([] , i l ([d i , d] ,

v p l (N , v p (V , w h o)))))) ,
Y=cp (whom, c l ([d i , d] , i p (N, i l ([] ,

v p l (n l , v p (V , n 2)))))) .
/ * moves objwho(m) to fund p o s i t i o n and did t o cl */

Adverbs may also be moved to the fund position, and this case is handled by
the following rule, where the trace al is placed in the original position of
the adverb in the d-structure. The adverb is represented by the variable
Adv. Only one adverb is treated.

efmove(X,Y) : -
X = c p ([] , c l ([] , i p (C , i l (D , v p l (N , v p (v p (E , A d v)))))) ,
Y = c p (A d v , c l ([] , i p (C , i l (D , v p l (N , v p (v p (E , a l)))))) .

/ * moves Adv to fund p o s i t i o n i f Fund empty, l e a v i n g
t r a c e a l * /

The word order in yes-no questions is illustrated by Did Bill move? and Did
Bill like Eva? The do auxiliary is required (if there is not any other
auxiliary) in all such questions in English. This may be handled by
requiring that the simple tense marker should not be accepted in the tense
slot in questions, and that the auxiliary (did, could, ...) should be moved to
the cl position, in order to precede the subject in cl. Yes-no questions are
marked by a q in the fund position in our simple system, but, alternatively,
one might mark this in some variable outside the d-structure tree. (Wh-
questions need not be marked by a q in the fund position in our system.)

Alternatively, one may move the auxiliary in yes-no questions to the
fund position, but there are several reasons for not doing so. What is

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 177

important is that it precedes the subject (which is moved to the ip position
by the subsequent subject movement transformation). The movement of the
aux in yes-no questions does not leave any trace in our implementation.

efmove(X,Y) : -
X = c p (q , c l (A , i p (B , i l ([A u x , d] , R e s t)))) ,
Y = c p (q , c l ([A u x . , d] , i p (B , i l ([] , R e s t)))) .

/ * aux (do inc luded) move t o c l i n q u e s t i o n * /

Subject-moving transformations
The movement of an English subject to the standard position ip is illustrated
by the following rule:

esmove(X,Y) : -
X=cp (A, c l (B, i p < [] , i l (C, v p l (N, Vp))))) ,
Y = c p (A , c l ([] , i p (N , i l (C , v p l (n l , V p))))) .

/ * moves subj (N) to i p p o s i t i o n , l e a v i n g t r a c e n l * /

The subject may be said to move obligatorily in order to get case, which can
be distributed by ip.

Wh-filter to delete remaining wh-words
Normally, wA-words that have not been fronted are to be filtered out. Wh-
words may, however, stay in their original position, as illustrated by Who
gave whom a book? or When did who do what? When there are several wh-
words, only one can be fronted. The others must remain in situ. Some
languages tolerate unmoved wA-words, and there is thus a wA-parameter to
set for each language. The following rule shows how structures are accepted
if they do not include wA-words in the subject and object positions
indicated.

e w h f i l t e r (X , Y) : -
X = c p (A , c l (B , i p (C , i l (D , v p l (N , v p (V , N 2)))))) ,
N\=who,N2\=who,
Y = c p (A , c l (B , i p (C , i l (D , v p l (N , v p (V , N 2)))))) .

/ * b l o c k s remain ing subjec t (N) or o b j e c t (N2) who */

Swedish d-structure (base) rules
The Swedish base d-structure rules look very much the same, except that
auxiliaries are not generated under il but under vp in Swedish. The
following are the corresponding Swedish rules, with lexical items chosen
strategically to enable translation between English and Swedish.

178 BENGT SIGURD AND MATS EEG-OLOFSSON

d (c p (F u n d , c l (C o m p , I p))) —>
f u n d (F u n d) , c l (c l (C o m p , I p)) ,
{ (Fund=[] ,Comp=[];Fund=[] ,Comp=att;
Fund=q,Comp\=att)} .

fund([]) —> [] . / * d e c l a r a t i v e c l a u s e s * /
fund(q) —> [?] . / * ques t ions * /

c l (c l (C o m p , I p)) —> comp(Comp), ip(Ip) .

comp([]) —> [3. / * main c lause * /
comp(att) —> [a t t] . / * s u b o r d i n a t e c l a u s e * /

i p (i p (I , I l)) —-> i (I) , i l (I l) .

i ([]) —> [] .

i l (i l (I , V p l)) —> i n (I) , v p l (V p l) .
i l (i l (I , V p s)) —> i n (I) , v p s (V p s) .

in(de) —> [de] . / * the past tense marker * /

v p l (v p l (N , V p)) —> n p (N) , v p (V p) .
v p l (v p l (N , V p a)) --> n p (N) , v p a (V p a) .

v p s (v p s (S , V p l)) —> s a d v (S) , v p l (V p l) .

vp (vp(V,N)) —> v t (V) , n p (N) . / * t r a n s i t i v e * /
v p (v p (V , [])) —> v i (V) . / * i n t r a n s i t i v e * /
vp (vp (V, Vp)) —> aux (V) , vpm (Vp) .
/ * aux wi th main verb * /

v p a (v p (V p , A)) —> vp(Vp) ,adv (A) .

vpm(vp(V,N)) —> v t (V) , n p (N) . / * t r a n s main verb
vpm(vp(V, [])) —> v i (V) . / * i n t r a n s main verb * /

v t (g i l l a) —> [g i l l a] . / * g i l l a = l i k e * /
v i (f l y t t a) —> [f l y t t a] . / * f lytta=move * /

aux(kun) —> [kun]. / * kun=coul * /

n p (b i l l) —> [b i l l] ,
np(eva) —> [eva] .
np(vem) —> [vem]. / * vem=who(m) * /

s a d v (i n t e) —> [i n t e] . / * inte=not * /
sadv(kanske) —> [kanske] . / * kanske=perhaps * /

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 179

a d v (i g a r) —> [i g a r] . / * i gar=yes terday * /
v e r b (g i l l a) .
v e r b (f l y t t a) .
v e r b (k u n) .

a u x (k u n) .

n p (b i l l) .
n p (e v a) .
np(vem).

The Swedish transformations must differ somewhat from the English ones.
The Swedish subject may be focused and placed in the cp position, while the
Swedish finite verb is always moved to position cl. Clearly the tense
morpheme de must be moved down to the verb before the verb is fronted.
We wi l l not illustrate these transformations here, however.

Projection rules
The s-structure trees should have the words in the proper linear order - this
is the main objective of the movement transformations. But if traces are
left, the s-structure trees wil l include elements that we do not want to
appear in the final surface sentence, e.g. nl (trace of subject), n2 (trace of
object), al (trace of adverb). The rules which delete unwanted elements of
s-structures are here called projection rules. Several types of such rules may
be written. The simplest type of projection rule collects the leaves in a list
according to their order in the s-structure and then deletes unwanted
members of this list.

The simple projection rule mentioned works in generation, but not in
analysis (parsing). The parsing problem of G B is not only the problem of
finding the relations between the words and the constituents of the sentence,
but also the problem of finding the places where traces are to be found
(inserted) and identifying the type of trace. The difficult problem of parsing
is generally not mentioned in the linguistic G B literature. Since the G B
approach is generative and synthetic at heart, the projection of the s-tree
deleting unwanted traces etc. is not a problem.

One may write projection rules as D C G rules as illustrated below. These
work both in generation and analysis, but they add another layer of
grammar rules to the whole system and take away some of the simplicity
and beauty of GB.

180 BENGT SIGURD AND MATS EEG-QLOFSSON

/ * E n g l i s h p r o j e c t i o n r u l e s f o r s u r f a c e sentence
without t r a c e s e t c . * /

e p r o j (c p ([] , c l ([] , i p (N , i l ([] , v p l (n l , v p (V , N 2)))))))
—> e n p (N) , [V] , e n p (N 2) .
/ * Eng t r a n s i t i v e : bill liked bill */

e p r o j (c p ([] , c l ([] , i p (N , i l ([] , v p l (n l , v p (V , [])))))))
—> e n p (N) , [V] . / * i n t r a n s i t i v e : bill moved */

e p r o j (c p ([] , c l ([] , i p (N , i l ([] ,
v p l (n l , v p (v p (V , []) ,A))))))) —>

e n p (N) , [V] , e a d v (A) .
/ * i n t r a n s i t i v e wi th adv: bill moved yesterday */

Rules specifying well-formed GB trees
As an alternative approach one may use Node Admissibility Condition (nac)
rules in the Prolog implementation of G B . The following node admissibility
rules specify which Swedish syntactic s-trees are well-formed according to
G B X-bar theory. These rules deviate somewhat from the previous rules,
following Falk 1991 more closely.

n a c (c p , c p (F u n d , c l (C o m p , I p))) : - n a c (i p , I p) .
nac (i p , i p (S p e c I P , I I (I , V p))) : - n a c (v p , V p) .
n a c (v p , v p (v l (V))) . % Impersonal verb
n a c (v p , v p (N p , V I)) : - n a c (v l , V l) .
n a c (v p , v p (S a d v , V p)) : - n a c (v p , V p) .

% Sentence adverb a d j o i n e d
n a c (v p , v p (V p , A d v)) : - n a c (v p , V p) .

% Other adverb (ADV,PP,CP)
n a c (v l , v l (V)) . % 1-p lace (i n t r a n s i t i v e) verb
n a c (v l , v l (V , A r g)) . % 2 - p l a c e (t r a n s i t i v e) verb
n a c (v l , v l (A u x , V p)) : - n a c (v p , V p) . % A u x i l i a r y
n a c (a p , a p (a l (A))) . % Impersonal a d j e c t i v e
n a c (a p , a p (N p , A l)) : - n a c (a l , A l) .
n a c (a l , a l (A d j)) . % A d j e c t i v e wi thout complement
n a c (a l , a l (A , A c o m p)) . % A d j e c t i v e w i t h complement (NP,PP)
nac (pp,pp (SpecPP,p l (P ,Np))) . % With s p e c i f i e r
n a c (n p , n p (N l)) : - n a c (n l , N l) . % No s p e c i f i e r
n a c (n p , n p (N p , N l)) : - n a c (n l , N l) . % S p e c i f i e r
n a c (n l , n l (N)) . % No complement
n a c (n l , n l (N , N c o m p)) .

% Complement (PP, subc lause , i n f i n i t i v e)
n a c (n l , n l (A P , N 1)) : - n a c (a p , A P) , n a c (n l , N l) .

% Adj a t t r i b a d j o i n e d

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 181

Deriving GB d-structure without passing s-structure and
transformations
It is clearly possible - and in fact much simpler - to arrive at a G B d-
structure of a sentence without deriving first an s-structure with all the
traces in the proper places and then passing through all the transformations
in reverse. The problem of finding the proper s-structure does not have a
straightforward solution. It is also much simpler to go directly from the d-
structures to the sentences in sentence generation. This approach is
mentioned in Sigurd 1990. Using the D C G formalism it is sufficient to
describe which of the d-structures the combinations of categories specified
to the right correspond to. The d-structure cp (A, c l (B , i p (C . . .
appears as an argument within parentheses to the left of the arrow. The
following Swedish rules illustrate how this is done, using the same
categories and lexical items as before (for the last more compact rule some
additional categories are needed).

/ * GB d - s t r u c t u r e d i r e c t without s - s t r u c t u r e and
t r a n s f o r m a t i o n s , f o r the same types o f sentences * /

sent (cp([] , c l ([] , i p ([] , i l (T,
v p l (S u b j , v p (V , []))))))) -->

n p (S u b j) ,
v i (V) , i n (T) . / * i n t r a n s * /

sent (cp([] , c l ([] , i p ([] , i l (T,
v p l (S u b j , v p (A , v p (V , [])))))))) —>

n p (S u b j) ,
aux (A) , i n (T) ,
v i (V) . / * aux + i n t r a n s * /

sent (cp([] , c l ([] , i p ([] , i l (T,
v p l (S u b j , v p (V , O b j))))))) —>

n p (S u b j) ,
v t (V) , i n (T) , / * t r a n s * /
np(Obj) .

s e n t (c p ([] , c l ([] , i p ([] , i l (T ,
v p l (S u b j , v p (v p (V , []) , A d v))))))) —>

n p (S u b j) ,
v i (V) , i n (T) , / * i n t r a n s * /
adv (Adv) . /* • w i t h adv * /

182 BENGT SIGURD AND MATS EEG-OLOFSSON

sent (cp ([] , c l ([] , i p ([] , i l (T,
v p s (S a d v , v p l (S u b j , v p (V , [])))))))) ~ >

n p (S u b j) ,
v i (V) , i n (T) , / * i n t r a n s * /
sadv(Sadv) . / * w i t h sadv * /

s e n t (c p ([] , c l ([] , i p ([J , i l (T /
v p s (S a d v , v p l (S u b j , v p (V , O b j)))))))) ~ >

np (S u b j) ,
v t (V) , i n (T) , / * t r a n s * /
sadv(Sadv) , / * w i t h sadv * /
n p (O b j) .

s e n t (c p ([] , c l ([] , i p ([] , i l (T ,
v p l (S u b j , v p (v p (V , []) , A d v))))))) —>

a d v (A d v) ,
v i (V) , i n (T) , / * i n t r a n s * /
n p (S u b j) . / * w i t h i n i t i a l adv

sent < c p (q , c l ([] , i p (• , i l (T , v p l (S u b j , v p (V , []))))))) -~>
v i (V) , i n (T) , / * i n t r a n s * /
n p (S u b j) . / * q u e s t i o n * /

The following is a more compact alternative rule for transitive sentences
with or without adv. It is written in the G W O G style (Generalized Word
Order Grammar) presented in Sigurd 1990. Some necessary extra
categories (subj, obj, advl) are added after the rule.

c l ([] , i p ([] , i l (T , v p l (S u b j , v p (v p (V , O b j) , A d v))))))) —>
(n p (N l) ; a d v (A l)) ,
v t (V) , i n (T) ,
s u b j (N 2) ,
o b j (N 3) ,
a d v l (A 2) ,

{ (nonvar(Nl) ,Subj=Nl ,N2=[] ,Obj=N3,Adv=A2;
n o n v a r (N l) , O b j = N l , S u b j = N 2 , N3=[] , Adv=A2;
n o n v a r (A l) , A d v = A l , S u b j = N 2 , O b j = N 3 , A 2 = []) } .
/ * assignment of f u n c t i o n a l r o l e s * /

s u b j ([]) —> []•
subj(Np) —> np(Np) .

o b j ([]) - - > []•
obj(Np) —> np(Np) .

a d v l (t l) —> [] .
advl (Adv) —> a d v (A d v) .

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 183

These rules for Swedish can be used in conjunction with the previous lexical
and transfer rules to translate into English. They insert the values of the
different categories directly into the G B tree, which is considered merely as
a way of recording some syntactic characteristics of the sentences analysed.
The direct rules do not offer a level from which the word order of the
sentence can be projected as shown above. Nor do they offer any set of
explicit transformations that could be taken to be a characteristic of the
language. The direct rules do not offer explicit points where the differences
between languages can be pinpointed as nicely as in G B grammar. But the
deep structure differences between languages can be kept even in direct d-
derivation. The deep structure differences assumed, e.g. the generation of
aux in the il node would, however, never have been posited i f mere had not
been a transformational component, where the surface order is arrived at
through a series of cooperating movement transformations.

Transfer rules for translation
When used in automatic translation between English and Swedish, the d-
structure trees of the source language must be changed. The most important
change is the change of lexical items. In most cases this can be handled by
simple rules, such as the following, where the English term is found first.

e s l e x (m o v e , f l y t t a) .
e s l e x (l i k e , g i l l a) .

One may also handle the translation of the tense marked d into de in this
way:

e s l e x (d , d e) .

However, as mentioned before, it is necessary also to allow did to be
translated as de, to be used in negated sentences, where English cannot use
simple d. Our transfer and lexical rules can also be used in reverse, and in
that case the processor of English may e.g. first try to use d as the
equivalent of Swedish de in a negative sentence, but then must settle for the
alternative did, as in Bill did not move. The following is the general format
for transfer rules, where many lexical transfer rules are called upon by
eslex. In a more sophisticated system with complex NPs, more complex
transfer rules are of course needed.

184 BENGT SIGURD AND MATS EEG-OLOFSSON

e s t r a n s f (X , Y) : -
X = c p (A , c l (B , i p (C , i l (D , v p l (E , v p (F , G)))))) ,
e s l e x (A , K) , e s l e x (B , L) , e s l e x (C , M) ,
e s l e x (D , N) , e s l e x (E , 0) ,
e s l e x (F , P) , e s l e x (G , Q) ,
Y = c p (K , c l (L , i p (M , i l (N , v p l (0 , v p (P , Q)))))) .

Transfer between Swedish and English is handled by the following rule:

s e t r a n s f (X , Y) : - e s t r a n s f (Y , X) .

The following detailed lexical transfer rules are needed in order to translate
using our two simple grammars.

e s l e x (b i l l , b i l l) .
e s l e x (e v a , e v a) .
e s lex(who,vem) .
e s l e x (d , d e) .
e s l e x ([d i , d] , d e) . / * do support i f no o ther aux*/
e s l e x (c o u l , k u n) .
e s l e x (m o v e , f l y t t a) .
e s l e x (l i k e , g i l l a) .
e s l e x ([] , []) .
e s l e x (q , q) .
e s l e x (n t , i n t e) .
e s l e x (p e r h a p s , k a n s k e) .
e s l e x (y e s t e r d a y , i g å r) .
e s l e x (t h a t , a t t) .

Predicates and commands for interaction
The following are some useful predicates for interaction with the system.
The printout of some processes shows which transformations have been
applied in the analysis, the deep structure of the source, and the target
sentences before and after transfer.

e t r a n s (X , R) : -
e i a t t (X , Y) , e f m o v e (Y , W) , e s m o v e (W , V) , e w h f i l t e r (V , R)

/ * C a l l s on i n d i v i d u a l t r a n s f o r m a t i o n s i n due o r d e r
* /

e r e t r a n s (R , U) : - e smove (W,R) ,pr in t (spassed) , n l ,
e f m o v e (V , w) , p r i n t (f p a s s e d) , n l ,
e i a t t (U , V) , p r i n t (i p a s s e d) , n l .

/ * C a l l s on t r a n s f o r m a t i o n s i n r e v e r s e o r d e r and
r e p o r t s when each has been passed * /

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 185

/ * Some p r e d i c a t e s f o r a n a l y s i s of E n g l i s h sentences
and t r a n s l a t i o n between E n g l i s h and Swedish * /

e a n a l (X , Z) : - e p r o j (Y , X , []) , e r e t r a n s (Y , Z) .
/ * A n a l y s e s the sentence and d e r i v e s t r e e from
s t r i n g , r u n n i n g the t r a n s f o r m a t i o n s backwards, eg
e a n a K [b i l l , [l i k e , d] , eva] , X) * /

e s t r a (X , Y) : -
e p r o j (F , X , []) , e r e t r a n s (F , F 2) , e s t r a n s f (F 2 , F 3) ,
t r a n s (F 3 , F 4) , p r o j (F 4 , Y , []) .

/ * T r a n s l a t e s between E n g l i s h and Swedish v i a dé­
s t r u c t u r e * /

/ * Some t e s t s * /
e p s t e s t : - e d (F , X , []) , p r i n t (X) , n l , p r i n t (F) , n l .
/ * generates d - t r e e s and p r i n t s the u n d e r l y i n g base
sentence and the t r e e * /

e t e s t : - e d (F , X , []) , p r i n t (F) , n i , e t r a n s (F , Y) ,
p r i n t (Y) . / * generates sample d - t r e e , t r a n s f o r m s i t
and p r i n t s the r e s u l t i n g s - s t r u c t u r e * /

e t e s t l : -
e d (F , X , []) , e t r a n s (F , Y) , e p r o j (Y , Z , []) , p r i n t (Z) .

/ * generates d - s t r u c t u r e , t rans forms i t , and p r o j e c t s
the s - s t r u c t u r e * /

Translatable English and Swedish sentences
The following are some sentences that can be analysed, generated and
translated (in both directions). Note that the verb stem and ending must be
included in [], e.g. [coul4]- (This can, of course, be avoided by adding
some cosmetic operations.)

English Swedish
[biU,[move,d]] [bill,[flytta,de]]
[biIl,[move,d],yesterday] [bill,[flytta,de] ,igâr]
[yesterday,bill, [move,d]] [igâr,[flytta,de] ,bill]
[who,[move,d]] [vem,[flytta,de]]
[[di,d],bill,move] [[fly tta.de],bill]
[bill,[di,d],nt,move] [bill,[flytta,de],inte]
[bill,[like,d] ,eva] [bill,[gilla,de] ,eva]
[bill, [like.d] ,eva,yesterday] [biU,[giila,de] ,eva,igâr]
[yesterday ,eva,[like,d],bill] [igâr,[gilla,de],eva,bili]

186 BENGT SIGURD AND MATS EEG-OLOFSSON

[eva,[di,d] ,nt,like,bill] [eva,[gilla,de],inte,bill]
[eva,[coul ,d] ,like,bill] [eva,[kun,de] ,gilla,bill]
[who,[like,d],bill] [vem,[gilla,de],bill]
[whom,[di,d],billlike] [vem,[gilla,de],bill]
[[di,d],eva,like,bill] [[gilla,de],eva,bill]
[that,bill,[move,d]] [att,bill,[flytta,de]]

Conclusion
The GB model can be implemented without too much difficulty, and such
implementations can be used in order to test the generative power of the
base rules, the ordering or the conditions of transformations, etc. Writing
grammatical rules to be tested in a computer program requires great care,
detail and regard for consequences. On the other hand, the technical and
programming problems tend to dominate when the grammar rules are to fit
the computer. The implementation presented here models the base
structures and movement transformations suggested by G B , but some of the
principles and constraints are concealed in the transformations. The
program may in a sense be said to simulate G B grammar. Government, as
reflected in case, and binding, as reflected in pronouns, are not
implemented, but certainly can be. As the list of references shows, G B
implementations have focused on different aspects of the theory.

The need in G B for a set of parsing rules to arrive at surface structures
with all the traces required by the theory adds to the difficulty of using the
model for parsing. We have written such rules in the D C G formalism and
tested some alternatives. One could, in fact, arrive at the required G B d-
structures more easily by one set of DCG rules which derive d-structures
directly without calling several transformations. Such an approach, which
may be called Direct GB Parsing (DIG), conceals the movements of the
surface constituents to the places they are to have in the d-structure. The
attraction of G B rests on the belief in the universality and psychological
reality of the d-structure suggested with certain basic nodes storing mode,
finiteness, subordination, tense, sentential adverbs, SVO, etc. as well as the
belief in the universality of a small set of movement transformations
supplemented with certain universal principles and constraints.

A copy of the implementation presented is available at the Department of
Linguistics, University of Lund.

IMPLEMENTATIONS OF ENGLISH AND SWEDISH GB GRAMMARS 187

References
Abney, S. & J. Cole. 1985. ' A Government-binding parser'. Proc. of the

North Eastern Linguistic Society XVI.
Berwick, R. & A . Weinberg. 1984. The grammatical basis of linguistic

performance. Cambridge, Mass: MIT Press.
Chen, H . 1990. ' A logic-based government-binding parser for Mandarin

Chinese'. Proc COUNG 13, vol 2,48-53. Helsinki.
Chomsky, N . 1981. Lectures on government and binding. Dordrecht:Foris.
Chomsky, N . 1986. Barriers. Cambridge, Mass: MIT Press.
Dooley Collberg, S. 1991. Comparative studies in current syntactic theories.

Working papers 37. Lund: Dept of Linguistics, Lund University.
Falk, C. 1991. Modern grammatisk teori. Lund: Inst for nordiska spr&k.
Kuhns, R. J. 1986. ' A Prolog implementation of Government-Binding

theory'. Proc COUNG 11, 546-550. Bonn.
Latecki, L . 1991. ' A n indexing technique for implementing command

relations'. Proc of the 5th Conf of the European chapter of ACL, 39-44.
Berlin.

Pritchett, B . & J. Reitano. 1990. 'Parsing with on-line principles: a
psychologically plausible, object oriented approach'. Proc COUNG 13,
vol 3, 437-439. Helsinki.

Sells, P. 1985. Lectures on contemporary syntactic theories. Stanford:
CSLI.

Sigurd, B. 1990. 'Implementing the generalized word order grammars of
Diderichsen and Chomsky'. Proc COUNG 13, vol 2, 336-340. Helsinki.

Stabler, E . 1987. 'Restricting logical grammars with binding theory'.
Computational linguistics, Vo l 13, 1-2.

Wehrli, E . 1988. 'Parsing with GB-grammar'. Natural language parsing
and linguistic theories, eds. U . Reyle & C. Rohrer. Dordrecht: Reidel.

Acknowledgement
We are indebted to Barbara Gawroriska and Christer Platzack for valuable
comments on this paper and the program presented.

