
132 DAVID HOUSE AND URSULA WILLSTEDT

Scherer, K . R . , D.R. Ladd & K . E . A . Silverman. 1984. 'Vocal cues to
speaker affect: Testing two models.' Journal of the Acoustical Society of
America 76:5, 1346-1356.

Skinner, M.W. , L . K . Holden, T.A. Holden, R.C. Dowell, P . M . Seligman,
j . A . Brimacombe & A . L . Beiter. 1991. 'Performance of
Postlinguistically Deaf Adults with the Wearable Speech Processor (WSP
HI) and Mini Speech Processor (MSP) of the Nucleus Multi-Electrode
Cochlear Implant'. Ear and Hearing 12, 3-22.

Touati, P. 1987. Structures prosodiques du suédois et du français. Lund:
Lund University Press.

Waltzman, S. & I. Hochberg. 1990. 'Perception of Speech Pattern Contrasts
Using a Multichannel Cochlear Implant'. Ear and Hearing 11:1,50-55.

Williams, C E . & K . N . Stevens. 1972. 'Emotions and speech: Some
acoustical correlates'. The Journal of the Acoustical Society of America
52:4, 1238 -1250.

Lund University, Dept. of Linguistics
Working Papers 38 (1991), 133-54

133

A M i n i m a l i s t P a r s e r f o r

F a s t P a r t i a l A n a l y s i s

Christer Johansson

This work is based on Blank 1985, 1989, presenting a method for making a machine that
can provide fast analysis of natural language with bounded resources. The machine is a new
kind of finite automaton and the formalism is called Register Vector Grammar, RVG. The
machine is claimed to provide analysis of natural language in linear time. Linear time is a
considerable improvement compared to polynomial time, which is what is currently
available for parsers. In order to make linear time, the depth of the analysis is restricted. The
machine has been constructed to model performance rather than competence thus the
approach introduces restrictions on the input language. The restrictions can be motivated by
the fact that humans can be viewed as limited devices, in particular their short-term memory
is limited. As an example, an RVG grammar for agreement in Swedish nominals is
developed.

Introduction
A great deal of language analysis can be done with a simplified model that
does not have the overhead of context-free grammar. It can be desirable to
split up the big analysis module needing context-free power into several
smaller analyzers. One reason is that the smaller modules need less
computer capacity; another, more important reason, is that a small module
is easier to maintain. In any big analysis module there wi l l always be
conflicts among the rules and in the lexical database. It is therefore better to
build up the analysis in small stages. There have been several experiments
with late assigning of grammatical roles and incremental parsing at the
Dept. of Linguistics, Lund (Sigurd et al. 1989, Sigurd 1990) and more
recently, experiments with the R V G model. These experiments have
searched for a psychologically plausible model for human language per­
formance.

The parser which this paper presents is heavily influenced by Register
Vector Grammar as described by Blank 1985, 1989. This specific im­
plementation of R V G is, however, constructed to aid limited partial
analysis.

134 CHRISTER JOHANSSON

The parser is based on production rules, i.e. simple ' i f / then' statements,
and a special kind of lexicon which connects the surface form with the rules
to be applied. For example, the ambiguous lexicon entry 'back (noun verb)'
connects the surface form back with either the production rule 'noun' or
'verb'.

The production rules in turn test a global set of features and fire a
change on these features if the current values can be accepted.

This paper will first give an overview of some of the peculiarities of the
grammar used. After that follows an analysis of agreement in Swedish
nominals expressed in feature values, followed by a technical discussion of
the implementation of the parser. A complete grammar for Swedish
agreement is given as an appendix. (It might be a good idea to read the
appendix first to get the feel of R V G grammar.)

The grammar productions
A production mle consists of two parts. The first part defines the condition
for the rule to fire; the second part defines the changes which are made i f
the rule fires. A l l production rules also have a name attached to them which
makes it possible to follow a trace and find out what production rules have
been fired. The final output is a trace of production rule names which has
led to acceptance of the sentence. Following is an example of production
rules illustrating the ternary logic with a scene from the jungle.

The name of the first rule is 'ToughLuck'; if it fires the trace wil l con­
tain the word 'ToughLuck'. The alternative rule is called 'GoodLuck'.

P means that it is a production rule. The N is specific to the implementa­
tion of the grammar and it means that the rule is non-lexical, i.e. it does not
consume any word from the lexical input.

1) P ToughLuck N
IF -f-Mowgli +Tiger +TigerHungry
T H E N -Mowgli H-Tiger -TigerHungry

2) P GoodLuck N
IF +Mowgli +Tiger -TigerHungry
T H E N +Mowgli H-Tiger -TigerHungry

The first rule says that:

if Mowgli might be on ('+') and Tiger might be on ('+')
and TigerHungry might be on ('+')

then the rule can fire with the result that:
Mowgli is off ('-') and Tiger is on ('+') and TigerHungry is off ('-').

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 135

What happens if the machine for some reason cannot determine the value
of some feature? The production can nevertheless be accepted, because an
unknown value (e.g. TTigerHungry) can in fact be interpreted as either '+'
or ' - ' .

If you want to make a feature unknown, you can do this with the ' ! ' op­
erator in the 'then'-part of the production rule. If the first rule had
'!TigerHungry' in its 'then-part' then the machine does not know i f
TigerHungry was '+' or ' - ' after the rule has fired (the tiger would perhaps
still be hungry since Mowgli is so small).

If, for some reason, it is necessary to test for an unknown value then it
can be done by using the ' ! ' operator in the 'if-part of the production rule.
It could be possible for the second rule to have '.'TigerHungry' in its 'if-
part', which would mean the rule applies if and only i f the value of
TigerHungry is unknown ('?').

If Mowgli is on ('+') and Tiger is on ('+') but TigerHungry is unknown
('?') then both rules can be accepted as they are, but the 'ToughLuck' rule is
tried first.

As this parser is customized for grammatical analysis the rules differen­
tiate between the following three types of rules:

1) lexical rules (L) which consume one word from the input
2) non-lexical rules (N) which do not consume input
3) the InitFinal rule (I) which states the condition for acceptance in its ' i f -
part and the start values in its 'then'-part. The InitFinal rule always
consumes one item from the input, typically a punctuation mark.

The lexical rules are closely linked with the lexicon. The lexicon simply
states which lexical rules can be connected with the defining word and in
what order the lexical rules should be tried. For example the lexical entry
'flies (noun_pl verb_sg)' connects the word flies with the two production
rules 'noun_pl' and 'verb_sg'. The 'noun_pl' rule is tried first and 'verb_sg'
is considered an alternative. Those two rules, in turn, are written as
production rules.

The non-lexical rules are mainly used to open and close boxes for small
phrases, primarily by changing the values of the noun and/or verb accep­
tance features (i.e. N V) . By convention the '+' value of N or V is used to
indicate that the box is open and the ' - ' value is used to indicate that it is
closed. Since the parser uses no tree structure, it has to create 'boxes' of

136 CHRISTER JOHANSSON

constituents in the trace. This can be done with non-lexical productions. For
example, a 'noun box' can be defined as an environment where the feature
N is on (+N) and V is off (-V). In this case, the opening production should
set N to +N and V to - V and the closing production should set both N and V
to ' - ' in order to take us out of the box.

E.g.: Parse the sentence Bill loves apples. The initial value of the features
N and V is ' - ' . The bar sign (T) indicates how far the parser has analysed.

I B i l l loves apples. [-N, -V] (outside a box)
Bill demands +N - V which leads to the opening of a box indicated by ' [' .

[Bil l I loves apples. [+N, -V] (inside a noun box)
loves demands - N +V which leads to the closing of the previous box
([-N,-V]) followed by the opening of a new box, indicated by '] ' and ' ['
respectively.

[Bill] [loves I apples. [-N, +V] (inside a verb box)
apples in the same way as Bill demands +N - V , and forces the machine to
take us out of the verb box and into a noun box.

[Bill] [loves] [apples I. [+N, -V] (inside a noun box)
The punctuation mark demands to be accepted outside of a box, and
therefore forces the previous box to close.

[Bill] [loves] [apples].I [-N, -V] (outside a box and ready)

Conflict resolution
As the number of production rules grow there will be conflicts between the
rules. One cause of rule conflicts is that the same surface form may belong
to many different production rules (categories). Another cause of conflicts
is that there might be several alternative paths defined by the non-lexical
rules which all might lead to the acceptance of the sentence. The parser
must have some strategy for determining which rule to try first.

This is particularly important because the number of alternatives that are
kept in memory is limited, a fact which is elaborated upon in the next
section.

Conflicts between production rules are resolved in the following way:
1. Lexical productions are always tested first.
2. The order between the lexical rules comes from the lexicon.
3. Only i f none of the lexical rules that are connected with the word can

be accepted wil l non-lexical rules be tested. The parser tries to stay at
the same level for as long as possible. A typical non-lexical rule
effectuates a change of level by opening or closing a phrase box.

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 137

4. The order between non-lexical rules is the same as their order in the
grammar file.

5. Alternatives are supported by keeping a limited backtracking list of
the possible alternatives at every point where there is a conflict
between rules of the same kind.

Problems with backtracking
Connected with conflict resolution are problems with general backtracking.
This limited parser tries to overcome the problems by choosing limited
backtracking as a support for the conflict resolution. In short, unlimited
backtracking demands unlimited memory and unlimited time (in the worst
case), which cannot be risked especially if the system is to operate in real
time. Limited backtracking can be thought of as functioning in a manner
analogous to human short term memory. Information is constantly renewed
and the oldest alternatives in memory are forgotten. One might say that
forgetful backtracking is an optimistic algorithm; the further an analysis has
proceeded, the more likely it is that the first steps were correct. The
machine might forget a correct alternative but the same is true for us hu­
mans. A piece of evidence is the existence of 'garden-path sentences' (Blank
1989) as in The horse raced past the barn fell. Many people have difficulty
understanding such sentences when they appear out of context. The verb
raced might be interpreted as an intransitive verb and therefore it is
interpreted as the main verb. When the reader later sees the verb fell his
intransitive analysis of the verb raced falls short. The same sentence could
be rewritten into another structure which better guides the reader: The
horse that was raced past the barn fell.

It seems to be a characteristic of human language to avoid centre
embedded structures when it is possible and thus make the sentence easier to
understand. The strongest argument for trying finite automata in language
analysis is that humans are in fact limited devices. We have limited short-
term memory, we do not generate infinitely long sentences and we tend to
avoid centre embedded clauses.

It seems therefore unreasonable that practical M T systems spend much
time and effort trying to cover (uncommon) constructions like infinite
centre embedding and infinitely long sentences. This time could be spent on
other things which could improve the overall quality of the translations, e.g.
keeping track of referents.

138 CHRISTER JOHANSSON

Two relatively new additions to our parser are the possibility to use a
filter and the possibility of being able to guess word categories on the basis
of word endings. The following two sections wi l l shortly describe these
additions before going over to the implementation of agreement in Swedish
nominals.

Experiments with a filter
Sometimes it might be easier to let the grammar overgenerate possible
alternatives which are later ruled out because they have an impossible or
unlikely grammatical structure. This is the purpose of having a filter.

Our filter consists of two parts. The first part is a specification of the
production rule names which are considered important for the structure of
a sentence. The second part is the possible linear patterns of such production
rules. For example, we might have one production rule called NP that opens
a nominal and one production rule called V P that opens a predicate.
Possible patterns of these might be: NP or NP V P or NP V P NP or NP V P
NP NP etc. A n impossible pattern would be V P VP.

A positive filter, as implemented, is a filter which states the valid pat­
terns. A negative filter states the invalid patterns that we might have found
and it is therefore more permissive - it allows all patterns which have not
been found. I made the choice of having a positive filter because I am in­
terested in finding out what patterns actually occur in limited texts.

The actual filter construction is aided by the program. The user specifies
the important productions in a file and chooses the alternative to update a
filter for a specific text. The filter created is a specification of the structure
rules and all of the patterns of those rules that occurred in the text.

The user, who might be somebody else than the grammar constructor,
has to revise the filter and erase all the 'wrong' patterns. Those patterns
which our parser should not recognise must not be included in our positive
filter. The filter allows the grammar writer to write more general pro­
duction rules, but the grammar writer should try to keep the number of
ambiguous rules as low as possible. If the parser can not accept a sentence
because of the filter then the parser will still try to backtrack.

Guessing categories
One of the most tiresome tasks in M T is to construct a lexicon. It would be
most welcome if the machine could guess word categories by itself.

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 139

The meaning of the individual words is of course needed for M T but not
until we make the transfer. When it is time for transfer the parser wil l al­
ready have gathered much information about the word, which narrows
down word ambiguity. This information can be added to the surface form
of the word and form a more accurate key for the lexical look up. This is
the purpose of a Guess Table.

A Guess Table can be viewed as a collection of 'word ends' which are
each paired with a list of possible categories (production rule names). It has,
in fact, been shown that it is possible to predict word category (in Swedish)
to a high degree by just looking at the last letters of the word (Elenius
1991). The Guess Table works by first looking at the last five letters and if
(and only if) no guess can be made from that it looks at the last four and so
on until it looks at the last letter.

One point in favour of having a Guess Table is that it costs almost
nothing in computational power compared with a complete morphological
analysis. The Guess Table does not interfere with the lexicon in the sense
that words which are listed, in their full form, in the lexicon wi l l not be
subject to the Guess Table.

Development of RVG grammar for agreement
Features in Swedish nominal agreement
As a demonstration of Feature Grammar we can look at agreement in
Swedish nominals. Swedish nominals (usually) have agreement in the three
features number, gender and definiteness. Some examples:

ett grönt barn
'a green child'

det gröna barnet
'the green child'

Permissible:
en grön kvarn
'a green mill'

den gröna kvarnen
'the green mill'

Kvarnen är grön.
"The mill is green'

Nonpermissible :
*grönt kvarn * gröna kvarn
'green mill' 'green mill'

gröna kvarnar
'green mills'

de gröna kvarnarna
'the green mills'

i bam
'green children'

de gröna barnen
'the green children'

Barnet är grönt. Kvarnarna är gröna. Barnen är gröna.
"The child is green' "The mills are green' "The children are green'

*grön barn
'green child'

*ett gröna barn
'green child'

A special case occurs when the article is replaced by a genitive determiner.
When this occurs the noun has the same form as an indefinite noun and the
adjective has the 'a-ending' form. For example:

140 CHRISTER JOHANSSON

sin gröna kvarn ! sitt gröna barn ! sina gröna kvarnar sina gröna barn
'his/her green mill' 'his/her green child' 'their/his/her green mills' 'their/his/her green children'

The analysis of ordinary agreement is done by comparing the surface form
with the three agreement features. This is done for articles, adjectives and
nouns. For a more elaborated study on Swedish attributes see Teleman
1969.

Determiners in Swedish
Swedish has three features: number, gender and definiteness which can have
the values ±singular, ±utral and ±deftnite, respectively. This gives rise to 8
possible groups.

Determiners are used to express definiteness but also set demands on
agreement in Swedish. In the most common case the determiner is an article
but it can be more complex consisting of demonstrative pronouns, words
for selection and enumeration, etc. (compare Teleman 1969). The table
below shows articles.

Utral determiners
Singular

Definite: Artf+singular, +utral, +definite]
den 1 'the'

Indefinite: Art[+singular, +utral, -definite]
en/_3/6 'a'

Plural
Art[-singular, +utral, +definite]
de 2 'the'
Art[-singular, +utral, -definite]

8

Neutral determiners
Singular

Definite: Art[+singular, -utral, -fdefinite]
det 4 'the'

Indefinite: Artf+singular, -utral, -definite]
ett/ 5/7'a'

Plural
Art[-singular, -utral, +definite]
de 2 'the'
Art[-singular, -utral, -definite]

Group 1: art[+singular, +utral, +definite]
Group 2: artf-singular, iutral, +definite]
Group 3: artf+singular, +utral, -definite]
Group 4: artf+singular, -utral, +definite]
Group 5: art[+singular, -utral, -definite]

The empty article forms 3 groups:

art[+singular, +utral, -definite]
artf+singular, -utral, -definite]
art[-singular, ±utral, -definite]

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 141

Condition table for the different determiner groups:
group singular utral definite
1 ART_SG_UTR_DEF + + +
2 A R T _ P L _ D E F - ? +
3 ART_SG_UTR_IND + +
4 ART_SG_NEU_DEF + . +
5 ART_SG_NEU_IND +
6 SG_UTR_IND + +
7 SG_NEU IND + - .
8 P L IND - i

Adjectives in Swedish

Utral adjectives
Singular

Definite: Adjt+singular, +utral, +definite]
den gröna kvarnen la
'the green mill-the'
den gröne jätten lb
'the green giant-the'

Indefinite: Adj[+singular, +utral, -definite]
grön 2
'green'

Neutral adjectives
Singular

Definite: Adj[-(-singular, -utral, +definite]
gröna 1
'green'

Indefinite: Adjf+singular, -utral, -definite]
grönt 3
'green'

Plural
Adj[-singular, +utral, +definite]
gröna 1
'green'

Adjt-singular, +utral, -definite]
gröna 1
'green'

Plural
Adj[-singular, -utral, -fdefinite]
gröna 1
'green'
Adjf-singuiar, -utral, -definite]
gröna 1
'green'

Three main groups emerge:

Group la: Adj[±singular, ±utral, ±definite]
Group lb : Adjf+singular, +utral, +definite] [+masculine]
Group 2: Adjf+singular, +utral, -definite]
Group 3: Adjf+singular, -utral, -definite]

The +masculine feature (in group lb) is especially common in southern
Sweden. Swedish can have the following endings on adjectives:

la a-ending
l b e-ending (is on the way out because of a spelling reform)
2 0-ending
3 /-ending

142 CHRISTER JOHANSSON

There also exist some adjectives with the same form in all cases; these are to
be treated as exceptions to the rule and functionally belonging to ending 1
because no features can be determined from this group of exceptions.

Group 1 can be further divided into two groups: ADJ_SG_DEF, and
ADJ_PL. The purpose of dividing the ending into two groups is that now
the groups have distinguishing features. (Note that the underslash ('_')
connects the different parts (e.g. SG UTR) into one concept (one 'word')
like SGJJTR.) Condition table for the different adjective groups:

group singular utral definite
1) ADJ_SG_DEF + ? +
1) ADJ_PL - ? ?
2) ADJ_SG_UTR_IND + +
3) ADJ_SG_NEU_IND +

When looking at the examples it can be seen that the feature we are most in­
terested in, namely the singular or plural feature, can be derived from
agreement phenomena. This shows that agreement phenomena can be useful
for finding important features, without the need of a full lexicon in the
analysis part of machine translation.

Nouns in Swedish

Utral nouns
Singular

Definite: Noun[+singular,+utral,+definite]
kvarnen 1
'mill-the'

Indefinite: Noun[+singular,+utral,-definite]
kvam2
'mill'

Plural
Noun[-singular,+utral,4dcfinite]
kvarnarna 3
'mills-the'
Noun[-singular,+utral,definite]
kvarnar 4
'mills'

Neutral nouns
Singular

Definite:Noun[+singular,-utral,+definite]
barnet 5
'child-the'

Indefinite: Noun[+singular,-utral,-definite]
barn 2
'child'

Plural
Noun[-singular,-utral,+definite]
barnen 1
'children-the'
Noun[-singular,-utral,-definite]
barn 2
'children'

5 groups from these 8 can be derived from the word endings.

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 143

Group 1: Noun [±singular, ±utral, +definite] with specific endings.
Group 2: Noun [±singular, ±utral, ±definite] with no (specific) ending.
Group 3: Noun[-singular, +utral, +definite] with specific endings.
Group 4: Nounf-singular, +utral, -definite] with specific endings.
Group 5: Noun[+singular, -utral, -t-definite] with specific endings.

Groups 1 and 2 are further divided in order to get distinguishing features in
gender and / or number.
Condition table for the different noun groups:

group singular utral definite
1 NOUN_SG_UTR_DEF + + +
1 NOUN_PL_NEU_DEF - - +
2 NOUN_SG_UTR_IND + +
2 NOUN_NEU_IND ?
3 NOUN_PL_UTR_DEF - + +
4 NOUN_PL_UTR_IND - +
5 NOUN_SG_NEU_DEF + - +

Note that there is no ending that differentiates noun group 2 from adjective
group 2. Perhaps this explains why some Swedish speakers actually use the
group as if it were an adjective group; especially when the noun is part of a
compound noun (barn matsedel instead of barnmatsedel 'children's menu').
A n other, more widespread, explanation is that this is due to the influence
of English.

Grammar productions for the nominal
The information gathered about nouns, adjectives and determiners can
easily be transferred into lexical production rules (see appendix). The
special case (a genitive determiner) is explained by a special category of
adjectives which only occur after a genitive determiner. This category has
the same surface form as the adjectives ending with a.

GENITIVE + G E N _ A D J + H E A D
if if +GEN i f -DEF
then [+GEN -DEF]

The -DEF feature says that after a ' G E N I T I V E ' we can only have the
indefinite form of the noun and we also know that there is only one form of
the adjective that can be used, namely the form with agreement in the G E N
feature. This is not to say that the noun is indefinite, but the nouns surface
form corresponds to the indefinite form. The genitive adjective has agree-

144 CHRISTER JOHANSSON

ment in the G E N feature and the noun has agreement in the SG, U T R and
D E F features. Barbara Gawroflska pointed out to me that there are some
other words in Swedish which act as the 'genitive determiner' I have tried
to describe. In some cases perhaps we must accept that Swedish does not
have agreement in its nominals.

BEFORE
AFTER

BEFORE
AFTER

BEFORE
AFTER

BEFORE
AFTER

...sin gröna
9 +GEN +SG +UTR -DEF
+GEN +SG +UTR -DEF +SG +UTR -DEF

...sitt gröna
9 +GEN +SG -UTR -DEF
+GEN +SG -UTR -DEF +SG -UTR -DEF

...srna
?
+GEN -SG -DEF

.. .sina
?
+GEN -SG -DEF

grona
+GEN -SG -DEF
-SG -DEF

gröna
+GEN -SG -DEF
-SG -DF

kvarn
+SG +UTR -DEF
+SG +UTR -DEF

barn
+SG -UTR -DEF
+SG -UTR -DEF

barn
-SG ?UTR -DEF
-SG -UTR -DEF

kvarnar
-SG ?UTR -DEF
-SG +UTR -DEF

In some very special cases there is no agreement between the article and the
head noun. Cooper 1986 indicated that agreement in Swedish might not
obey the Head Feature Convention proposed in the literature on Generalized
Phrase-structure Grammar. (The Head Feature Convention says that a
certain set of features, the H E A D features, are the same in the mother node
and its head daughter for all local subtrees). The following examples 1-4
illustrate the situation.

1) Den gröna jätte som jag känner är snäll 2) Den gröna jätten är snäll
[+DEF] [±DEF] [-DEF] [+DEF] [±DEFJ [+DEF]

'The green giant whom I know is kind' 'The green giant is kind'

3) Den gröna jätten som jag känner är snäll 4) *Den gröna jätte är snäll
'The green giant, whom I know, is kind' "The green giant is kind'

The problem is that in the context of example 1 there is no agreement
between the definiteness of the article den and the head noun jätte. Note that
it is only in certain contexts (when e.g. the subject noun is modified by a
relative phrase) this is true as can be seen from example 4. Example 1 is
very hard to explain in terms of agreement.

I also want to point out some cases where the congruence depends on
other factors such as ellipsis or conflict between natural and grammatical
gender.

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 145

Permissible:
1) Jordgubbar är goda. 2) Jordgubbar är gott.
'Strawberries are good.' 'Strawberries (that) is good.'

Example 1 refers to the individual berries while in example 2 the reference
is to the taste of strawberries in general. Both examples are permissible in
Swedish.

Sometimes there is a conflict between natural gender and grammatical
gender as in the following two examples (Cooper 1986):

1) Statsrådet är sjuk. 2) Statsrådet är sjukt.
"The minister (he) is i l l . ' 'The minister (it) is i l l . '

Technical discussion
Outline
Register vector grammar, R V G , is equivalent to a finite automaton in
computational power. But R V G benefits from the use of local parallelism
which allows the machine to check the values of many ternary features in
one go. This means that R V G is more efficient and compact than an ordi­
nary finite automaton (Blank 1985, 1989). The features are stored in
vectors and backtracking is supported by keeping information in registers.

Vectors
Ordinary finite automata represent states and categories as separate symbols
- nodes and arches in transition diagrams. According to Blank, most
modern syntactic formalisms abstract over category symbols, including
non-terminals and tree structures. R V G abstracts over state symbols (Blank
1985, 1989) through the use of vectors of ternary valued logical units.
These vectors contain a set of features that can be 'on', ' o f f or 'either/or'.
Vectors help to reduce the redundancy in the grammar description. In this
specific implementation, a vector can hold 80 features. This size is chosen
on the ground that it is unlikely that we will need more features in our
RVG-grammar (reality might demand more features).

Registers
R V G uses registers to keep track of alternative states. R V G guarantees
linear time because it only has a limited number of registers. Structural
ambiguities are supported by allowing the machine to return to machine
states stored in these registers. Note that the number of registers never

146 CHRISTER JOHANSSON

grows, instead R V G re-uses registers thereby forgetting many but not all
ambiguities. In my implementation, registers are a part of the backtracking
handling.

Comparison with a finite automaton
The definition of R V G is equivalent to that of a finite non-deterministic
automaton (Blank 1985, 1989). The R V G automaton is a 5-tuple (S, C, I, F,
T) where S is a finite set of machine states, C is a finite set of categories, I
is the initial state, F is the final state and finally T is a transition relation
mapping S x C onto S. The difference lies in how S and T, the states and
transitions, look. T corresponds to the 'if-then' rules of the grammar.

Ternary logic
R V G can handle ternary logic; 'on', ' o f f and 'either/or'. Machine state is
represented by a vector of ternary logical values where every value points
to a (grammatical) feature, f is a vector, [fi , fa, ... f n] , of ternary valued
features. The transition relation T uses two functions, match and change
(Blank 1985, 1989). To be able to express match and change effectively I
want to express them in terms of fast binary operations, such as and, or,
xor. These binary operations are performed in parallel, on the number of
binary units contained in a machine word. I will show one way to accom­
plish this; by simulating match and change in binary logic. The three values
'+' (on), '-* (off) and '? ' (either or) are coded as 01, 10, 00 respectively, fi
and gj are ternary values belonging to the vectors f and g.

The match function
Match checks if two vectors are compatible and returns an ordinary logic
value (true or false). Match is the function associated with the 'if-part' of
the production rule.

e.g. match ([+ - ?], [? - +]) is true, because '? ' matches everything, while
match([+ + +], [+ ? -] is false, as '+' and ' - ' do not match.

For separate values match is defined as:
match(f, g) =

T R U E if f=g or f=? or g=?
F A L S E otherwise.

For two vectors match(f, g) is defined as:
match(f, g) =

T R U E i f match(fj, gj) = T R U E for all relevant i
F A L S E otherwise.

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 147

Match is a projection from a ternary logic value onto an ordinary
Boolean value. As match is symmetric it can be constructed out of sym-
metric functions, such as the binary functions xor and and, with the aid of
a truth table.

Truth table 1: Defining match for Boolean logic
(xor is a binary exclusive or; and is a binary and.)

f g* f xor g' and f f g match(f.g)
00 00 00 ? ? TRUE
01 00 00 + ? T R U E
10 00 00 - ? T R U E
00 01 00 ? + TRUE
01 01 00 + + T R U E
10 01 10 !! - + F A L S E
00 10 00 ? + T R U E
01 10 01 !! + - F A L S E
10 10 00 - - TRUE

From the table it can be noted that when match is true the formula
(f xor g' and f) has the value 00. The match of two vectors is true in the
case that all features fj, g | gave rise to a 00 value; this means that the
machine can compare with the nil vector 0 = [00 00]:

Match(f, g) := (0 = ((f xor g) and f)).

The change function
Change is the function that takes the state of the machine from one state to
another. It is connected with the then-part of a production rule. Change
takes two vectors and creates a third. E.g.,

change([+ - ? - + ?],[- + + ? + ?]) produces the vector [- + + - + ?].

For separate values change is defined as:

change(f, g) = g if g*?

f if g=?.

For two vectors change(f, g) is defined as:

change(f, g) = change(fj, gj) for all relevant i .

148 CHRISTER JOHANSSON

Truth table 2: Comparison between change and Boolean or

The truth table The truth table
for change(f, g) for Boolean or

f g result f g result
00 00 00 00 00 00
01 00 01 01 00 01
10 00 10 10 00 10
00 01 01 00 01 01
01 01 01 01 01 01
10 01 01 10 01 11 -
00 10 10 00 10 10
01 10 10 01 10 11 -
10 10 10 10 10 10

A wrong result is characterized by the value 11. This might be corrected
with a boolean and with the g-value.

r g r a n d g
11 01 01
11 10 10

This is incorrect if g = 00 but it works as it should for the other values.
In this case g is known but f can take on different values. In order to handle
the case g = 0 a mask is constructed as follows:

IF g=00 T H E N mask:=ll E L S E mask:=g.

Now, the formula (f or g and mask) covers all cases.
As every ternary unit in a vector does not affect the other units in the

same vector, the function can be carried out in parallel on two full vectors.
The fourth bit pattern 11, call i t ' ! ' , can be used as follows:

match(X, !) = TRUE if X=? else F A L S E .
change(X, !) = ?.

This makes it possible to check that a value is '? ' and change a '+' or '-* into

a'? ' .

Complexity
One of my goals is to support Blank's claim that the RVG-parser has linear
time complexity. The key to why the machine can operate in linear time is
limited backtracking. In (Blank 1989) there is a similar but perhaps more

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 149

formal analysis. First note that R V G analyzes left to right and depth first. In
every step an alternative might be saved in the backtracking list. The num­
ber of alternatives for any word is determined by the grammar and by the
lexicon. Both the grammar and the lexicon are fixed in size and thus the
maximum number of alternatives for any word is constant. The number of
times a word, in the worst case, can be analyzed is determined by two
things: firstly, by how ambiguous the word can be and secondly, by how
long the backtracking trace IB I is. The ambiguity of a word is determined
by how many productions that can take the word; in the worst case all of the
productions. The ambiguity is thereby proportional to the length of the
grammar IGI. By allowing the backtracking to forget alternatives, as de­
scribed in the previous section, there exists a constant, K , such that every
word cannot be passed more than K times in an analysis; where K depends
on IGI and IBI. Suppose that every word has IGI alternatives and that the ma­
chine is forced to backtrack when the backtracking list is filled. Every word
might then be tested, at most, IG!^' times. The time needed to go through all
the words is proportional to IGI^'N, i.e. a constant term times the number of
words. The constant term is most affected by the length of the backtracking
list IBI. In order to assure that the constant term cannot dominate the time
consumption the length of the backtracking list must be limited. Limiting
the length of the backtracking list makes the RVG-algorithm a linear time
algorithm for every grammar. The fact that the machine does not handle all
possibilities is as it should. If it had been able to find all paths in any
grammar then it could also find the shortest (in linear time). Finding the
shortest path in a graph (graphs can be described by grammars) is com­
parable to 'The Traveling Salesman Problem' which is an intractable
problem (Hopcroft & Ullman 1979) that cannot be solved with an algorithm
in less than polynomial time today. The dependency |Gr®' is not
characteristic of the RVG-algorithm; all algorithms that use backtracking
suffer from the same, or similar, problems. R V G can guarantee to stop
within a short time if the length of the backtracking list is short enough. But
the greatest advantage of R V G is that it uses an iterative method which does
not need more than a small memory space which is known from the start.

Conclusion
For a parser to be able to guarantee low time consumption it must limit the
backtracking trace. This means that possible solutions to the parse problem
are lost. R V G is an example of a limited parsing algorithm, there wi l l be

150 CHRISTER JOHANSSON

similar effects in other parsing systems if the backtracking is limited to a
small fixed depth. The biggest advantages with R V G consist in the fact that
it uses an effective, iterative algorithm which only demands a small memory
space and the fact that it uses a very efficient ternary logic which allows for
micro-parallelism in the match and change functions. R V G is also a very
robust algorithm in the sense that it can guarantee to stop within a time
interval known from the start of the analysis. The parser is also able to deal
properly with many linguistic problems without the need for large re­
sources.

Finally, the grammar grows very slowly (Blank 1989) compared to
other formalisms thanks to ternary logic. A disadvantage of R V G is that the
notation used in the grammar is original and quite difficult to grow accus­
tomed to.

Although this parser does not attempt to make an exhaustive natural lan­
guage analysis, it can provide a fast (but admittedly crude) analysis of many
cases in natural language. Remembering that natural language analysis, in
general, demands context-free power, we must be ready to sacrifice some­
thing to gain the speed of finite state design. The sacrifice is that we cannot
analyse infinite centre embedding and perhaps a correct assignment of
grammatical roles is also too difficult to handle at once. Other designs wi l l
most probably have problems with the fact that the computer has limited
memory and limited speed and it cannot, because of these limitations,
analyse all sentences which are in theory possible for it to analyse. The use­
fulness of our R V G parser is somewhat uncertain because not many
grammars have been written using our R V G parser and it is not tested on
any larger amounts of texts. Johansson 1991 presents some examples of
R V G grammar for handling unbounded dependencies in English.

The grammar for agreement in Swedish might be further elaborated into
an 'agreement checker' for Swedish. It would probably be very welcome in
a word processor, since current 'spelling checkers' do not handle agreement
mistakes. The R V G parser could also be useful as a pre-processor in large
M T systems (because of its speed and the little cost in computer power) on
the way to the construction of the functional structure which a system like
SWETRA (Sigurd et al. 1990) uses to translate from.

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 151

References
Blank, G.D. 1985. 'Register Vector Grammar; A new kind of finite au­

tomaton'. Proceedings of the Ninth International Conference on
Artificial Intelligence (U C L A Aug 18-23, 1985), 749-756.

Blank, G.D. 1989. ' A finite and real-time processor for natural language'.
Communications of the ACM, October 1989 32.10.

Cooper, R. 1986. 'Swedish and the Head-Feature Convention'. Topics in
Scandinavian Syntax, 31-52. Dordrecht: Reidel Publishing Company.

Elenius, K . 1991. 'Comparing a connectionist and a rule-based model for
assigning parts-of-speech'. Speech Transmission Laboratory Quarterly
Progress and Status Report. April 15, 1991. Dept. of Speech
Communication & Music Acoustics, Royal Institute of Technology,
Stockholm.

Hopcroft, J. & J. Ullman. 1979. Introduction to automata theory, languages,
and computation. Addison Wesley.

Johansson, C. 1991. En implementation av en parser för naturligt språk.
Dept. of Computer Science, Lund University.

Sigurd, B . 1990. 'Implementing the generalized word order grammar of
Chomsky and Diderichsen'. Coling 90, vol . 2, 336-40. Helsinki
University.

Sigurd, B . , M . Eeg-Olofsson, B . Gawroriska-Werngren et al. 1989.
Lingvistik och fonetik på dator. Praktisk Lingvistik 12. Dept. of
Linguistics, Lund University.

Sigurd, B. , M . Eeg-Olofsson, B . Gawroriska-Werngren & P. Warter. 1990.
' S W E T R A - a multilanguage system for special purposes.
Documentation and progress report'. Praktisk Lingvistik 14. Dept. of
Linguistics, Lund University.

Teleman, U . 1969. Definita och indefinita attribut i nusvenskan.
Lundastudier i nordisk språkvetenskap. Lund: Studentlitteratur.

The parser is developed on a Macintosh and the compiled program is
available for Macintosh computers on one diskette.

Acknowledgment
Thanks to Bengt Sigurd for support, patience and remarks; to Sheila Dooley
Collberg for drawing my attention to the article by Cooper, to Merle Home
and Barbara Gawronska for comments.

152 CHRISTER JOHANSSON

Appendix
This is an example of the input files that the parser needs. It needs one
Lexicon file, one Guess Table file, one Filter file, one Grammar file and
one Input file. A l l files must be in T E X T format.

The Lexicon
• This is the actual lexicon that was used.
• It contains only words which are not properly handled
• by the Guess Table. In this case there is only one
• alternative for each defined word in the lexicon.

kvam (NOUN_SG_UTR_IND)
den (ART_SG_UTR_DEF)
en (ART_SG_UTR_IND)
ett (ART_SG_NEU_IND)
är (COP)

barn(NOUN_NEU_IND)
de (ART_PL_DEF)
det(ART_SG_NEU_DEF)
grön (ADJ_SG_UTR_IND)
. (close)

The Guess Table
• The Guess Table defines which categories are associated
• with what word endings.

Ending
en

arna
ar
et
t
a

Categories
(NOUN_SG_UTR_DEF
NOUN_PL_NEU_DEF) • 2 alternatives
(NOUN_PL_UTR_DEF)
(NOUN_PL_UTR_IND)
(NOUN_SG_NEU_DEF)
(ADJ_SG_NEU_IND)
(ADJ_PL
ADJ_SG_UTR_DEF
ADJ_SG_NEU_DEF) • 3 alternatives

The Filter
• The filter is used to construct patterns out of pattern
• building productions.
T O K E N S

N O M COP • These are 'structure building' productions
E N D
• These two patterns are the two valid patterns:
(NOM) (NOM COP NOM)

A MINIMALIST PARSER FOR FAST PARTIAL ANALYSIS 153

A sample run on the computer
• All features which are used in the
a grammar must be declared first in the
• grammar file. The '•' is a comment
• marker that makes the rest of the line
® a comment
DECLARE
N V
Art • Article
Head • Head word
SG UTR DEF • Congruence

• Features
NP1 • In nominal 1
END « of declare
MACROS
• Initialize is the start vector
Initialize
-N -V !SG !UTR !DEF -HEAD
-ART-NP1

• Feature values to start a nominal
ClearNominal
+N -Art-HEAD

• No changes to the feature values
Nothing
END • of macros
• Begin non-lexical productions
• A non-lexical production
• to open a box for a nominal
P N O M N
IF -N -V -NP1
THEN %ClearNominal +NP1
• % means use a macro
• To close an open nominal
P NENDN
IF +N +NP1
THEN -N +NP1
• An empty 'article' that handles plural
• congruence with an adjective
P PLJNDEF N
IF +N -SG

-ART • no article found
THEN -SG -DEF !UTR

+ART • this is an article
• Handle singular congruence with an
• adjective
P SG_INDEF_UTR N
IF +N +SG +UTR -ART
THEN +SG -DEF +UTR +ART
P SG_INDEF_NEU N
IF +N +SG -UTR -ART
THEN +SG -DEF -UTR +ART

• Begin lexical productions
• The InitFinal production
P close I
IF -N -V • AU boxes must be off
THEN % Initialize
" A copula verb
PCOPL
IF -N • not in a nominal
THEN -NP1 • prepare for NOM
• The various articles.
• There is only one article
• in a nominal (-ART -> +ART)
P ART_SG_UTR_DEF L
IF +N +SG +UTR +DEF -ART
THEN +N +SG +UTR +DEF +ART
PART_PL_DEFL
IF +N -SG +DEF -ART
THEN +N -SG +DEF +ART
P ART_SG_UTR_IND L
IF +N +SG +UTR -DEF -ART
THEN +N +SG +UTR -DEF +ART
P ART_SG_NEU_DEF L
IF +N +SG -UTR +DEF -ART
THEN+N +SG -UTR +DEF +ART
P ART_SG_NEU_IND L
IF +N +SG -UTR -DEF -ART
THEN +N +SG -UTR -DEF +ART
• The various adjectives.
« There must be some kind of article in
• front of an adjective (+ART)
P AD J_SG_DEF L
IF +N +SG ?UTR +DEF+ART
THEN+N +SG +UTR +DEF
PADJ_PL L
IF +N -SG +ART
THEN+N -SG
P ADJ_SGJJTRJND L
IF +N +SG +UTR -DEF +ART
THEN +N +SG +UTR -DEF
P ADJ_SG_NEU_IND L
IF +N +SG -UTR -DEF +ART
THEN +N +SG -UTR -DEF
• The various nouns.
• There is only one head noun
• in a nominal (-HEAD -> +HEAD)
P NOUN_SG_UTR_DEF L
IF +N +SG +UTR +DEF -HEAD
THEN +N +SG +UTR +DEF +HEAD
P NOUN_PL_NEU_DEF L

154 CHRISTER JOHANSSON

IF +N -SG -UTR +DEF-HEAD
THEN+N -SG -UTR +DEF+HEAD
P NOUN_SG_UTR_IND L
IF +N +SG +UTR -DEF-HEAD
THEN +N +SG +UTR -DEF +HEAD
P NOUN_NEU_IND L
IF +N -UTR -DEF-HEAD
THEN+N -UTR -DEF+HEAD
P NOUN_PL_UTR_DEF L
IF +N -SG +UTR +DEF-HEAD
THEN+N -SG +UTR +DEF+HEAD
P NOUN_PL_UTRJND L
IF +N -SG +UTR -DEF-HEAD
THEN+N -SG +UTR -DEF+HEAD
P NOUN_SG_NEU_DEF L
IF +N +SG -UTR +DEF -HEAD
THEN+N +SG -UTR +DEP+HEAD
• The Input to the machine
• (a text file):
En grön kvarn.
Den gröna kvarnen.
Kvarnen är grön.
De gröna kvarnarna.
Kvarnarna är gröna.
Kvarnen är grön.
Det gröna barnet.
Barnet är grönt.
Barnet är gröna.
• The Output:
• (a text file)
NOM

ART_SG_UTR_IND:=EN
ADJ_SG_UTR_IND:= GRÖN
NOUN_SG_UTR.JND:= KVARN

NEND
CLOSE:=.

ALT_NO
«= No more altematives
NOM

ART_SG_UTR_DEF:=DEN
ADJ_SG_UTR_DEF:= GRÖNA
NOUN_SG_UTR_DEF:=KVARNEN

NEND
CLOSE:=.

ALT_NO
NOM

NOUN_SG_UTR_DEF:=KVARNEN
NEND

COP:=ÄR
NOM
SG_INDEF_UTR

ADJ_SG_UTR_IND:= GRÖN
NEND

CLOSE:=.
ALT_NO

NOM
ART_PL_DEF:=DE
ADJ_PL:=GRÖNA
NOUN_PL_UTR_DEF:=

KVARNARNA
NEND

CLOSE:=.
ALT_NO
NOM

NOUN_PL_UTR_DEF:=
K V A R N A R N A

NEND
COP:=ÄR

NOM
P L J N D E F

ADJ_PL:=GRÖNA
NEND

CLOSE:=.
ALT_NO
NOM

NOUN_SG_UTR_DEF:=
K V A R N E N

NEND
COP:=ÄR

NOM
SG_INDEF_UTR

ADJ_SG_UTR_IND:= GRÖN
NEND

CLOSE:=.
ALT_NO
NOM

ART_SG_NEU_DEF:=DET
ADJ_SG_NEU_DEF:= GRÖNA
NOUN_SG_NEU_DEF:= BARNET

NEND
CLOSE:=.

ALT_NO
NOM

NOUN_SG_NEU_DEF:= BARNET
NEND

COP:=ÄR
NOM
SG_INDEF_NEU

ADJ_SG_NEU_IND:= GRÖNT
NEND

CLOSE:=.
ALT_NO
NO

*Barnet är gröna.

Lund University, Dept. of Linguistics 155
Working Papers 38 (1991), 155-67

O n t h e S t a r t i n g u p o f U T F Ö R

Eva Magnusson and Kerstin Nauclér

In this paper we w i l l describe UTFÖR (Utveckling, utprövning och
utvärdering av träningsmetoder för att förebygga läs- och skrivsvårigheter
hos språkstörda barn; 'Development, trial and evaluation of training
methods in order to help prevent reading/writing problems in language-
disordered children'), a research project aiming to prevent later reading
and writing problems by developing training methods for language-
disordered preschool children. The effect of such training methods on the
development of reading and writing/spelling wil l be evaluated in grade 1.
We wi l l start by giving the background for the project and reviewing
previous research in the field. Then we wil l outline the procedure and
describe the work done during the first year of the project.

Background
For a long time researchers have been busy trying to find the causes of
reading and writing problems, and dedicated teachers have been working
hard at adapting their teaching methods to the latest research findings. In
spite of all these efforts, the number of poor readers and spellers is said to
have increased. A n important reason for this lack of success is that the
relationship found between reading/writing and certain other abilities has
been given a causal interpretation. Other poorly-developed abilities that
have been observed to co-occur with reading and writing problems have
mistakenly been identified as the cause of these difficulties and have
consequently been considered as something that should be trained in order
to eliminate the reading and writing problems. However, other deficiencies
can just as well be an effect of the reading and writing problems as a cause
for them. A third possibility is that they, as well as the reading and writing
problems, may be the manifestations of a common underlying factor.

It is not possible to identify the causes of reading and writing problems
by studying other deficiencies that appear simultaneously in individuals who
have developed into poor readers and writers. Nor is it possible to trace the

