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it. Intensity peaks and FO peaks correlate to some extent, yet it is clear that the two parameters 
should be treated separately. Note that speakers W and U have very similar FO peak values but 
different intensity peak values. 

4 Duration (speaking rate) and pause 
Average total utterance duration for the three utterances for each speaker is presented in 
Figure 6. Of the three utterances, the utterance /a-soo-desuka/ permits the insertion of a pause 
after the initial interjection /a/. When pause duration is included, it shows the same durational 
pattern as the other two utterances without a pause in reflecting the attitude types. Therefore, 
we interpreted pause as part of durational manifestation and included it in total utterance 
duration. The smallest cross-speaker variation was found for NEU for which all except one 
speaker used the shortest duration, clustering aroimd 600-800ms. In the absolute duration 
value, speakers were also uniform for SUS which falls in the range between 1000 to 1200ms. 
The greatest cross-speaker variation was found for DIS for which the dm-ation of the utterance 
varied from 800ms to 1250ms. 

Figure 6 Geft). Average utterance duration for each attitude type. 
Figure 7 (right). Plotting of F l and F2 for the vowel /a/ (speaker Z). 

5 Vowel quality 
Auditory impressions suggested considerable intra- and cross-speaker variation in the use of 
voice quality in general as well as in the specifically tested attitude types. Since the acoustic 
cues for voice quality are less straightforward than other acoustic cues, we only present the 
differences in vowel quality in this paper. Figure 7 above shows the manifestation of vowel 
quality by speaker Z. This speaker differentiated the vowel quality of /a/ in such a way that 
SUS and JOY had a more front quality than NEU, Q, and DIS. The figure also shows the 
formants values of /a/ in nonsense words /mamamama/ spoken neutrally by the same speaker. 

6 Summary and discussion 
Together with our earlier report on FO shape and phrasing (Nagano-Madsen & Ayusawa 
2005), both agreement and discrepancies were observable among the six speakers in their 
manifestation of attitudes. It seems that pragmatic information can be expressed in at least a 
few alternative ways in Japanese and that this line of research needs more attention. 
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Abstract 
Automatic detection of emotions has been evaluated using standard Mel-frequency Cepstral 
Coefficients, MFCCs, arul a variant, MFCC-low, that is calculated between 20 and 300 Hz in 
order to model pitch. Plain pitch features have been used as well. These acoustic features 
have all been modeled by Gaussian mixture models, GMMs, on the frame level. The method 
has been tested on two different corpora and languages; Swedish voice controlled telephone 
services and English meetings. The results indicate that using GMMs on the frame level is a 
feasible technique for emotion classification. The two MFCC methods have similar perform­
ance, and MFCC-low outperforms the pitch features. Combining the three classifiers signifi­
cantly improves performance. 

1 Introduction 
Recognition of emotions in speech is a complex task that is furthermore complicated by the 
fact that there is no unambiguous answer to what the "correct" emotion is for a given speech 
sample (Scherer, 2003; Bafliner et al., 2003). Emotion research can roughly be viewed as 
going from the analysis of acted speech (Dellaert et al., 1996) to more "real", e.g. from auto­
mated telephone services (Blouin & Maffiolo, 2005). The motivation of this latter is often to 
try to enhance the performance of such systems by identifying frustrated users. 

A difficulty with spontaneous emotions is in their labeUng, since the actual emotion of the 
speaker is almost impossible to know with certainty. Also, emotions occurring in spontaneous 
speech seem to be more difficult to recognize compared to acted speech (Batiiner et al., 2003). 
In Oudeyer (2002), a set of 6 features selected from 200 is claimed to achieve good accuracy 
in a 2-person corpus of acted speech. This approach is adopted by several authors. They ex­
periment with large numbers of features, usually at the utterance level, and then rank each 
feature in order to find a small golden set, optimal for the task at hand (Batiiner et a l , 1999). 

Classification results reported on spontaneous data are sparse in the literature. In Blouin & 
Maffiolo (2005), the corpus consists of recordings of interactions between users and an auto­
matic voice service. The performance is reported to flatten out when 10 out of 60 featares are 
used in a linear discriminant analysis (LDA) cross-validation test. In Chul & Narayanan 
(2005), data from a commercial call centre was used. As is frequently the case, the results for 
various acoustic features were only slightiy better than a system classifying all exemplars as 
neutral. Often authors use hundreds of features per utterance, meaning that most spectral 
properties are covered. Thus, to use spectral features, such as MFCCs, possibly with addi­
tional pitch measures, may be seen as an alternative. Delta MFCC measiu-es on the utterance 
level have been used earlier, e.g. in Oudeyer (2002). However, we have chosen to model the 
distribution of the MFCC parameters on the frame level in order to obtain a more detailed de­
scription of the speech signal. 
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In spontaneous speech the occurrence of canonical emotions such as happiness and anger is 
typically low. The distribution of classes is highly unbalanced, making it difficult to measure 
and compare performance reported by different authors. The difference between knowing and 
not knowing the class distribution will significantly affect the results. Therefore we wOl in­
clude results from both types of classifiers. 

2 Material 
The first material used was recorded at 8 kHz at the Swedish 
company Voice Provider (VP), which runs more then 50 differ­
ent voice-controlled telephone services. Most utterances are 
neutral (non-expressive), but some percent are frustrated, most 
often due to misrecognitions by the speech recognizer, Table 1. 
The utterances are labeled by an experienced, senior voice re­
searcher into neutral, emphasized or negative (frustrated) 
speech. A subset of the material was labeled by 5 different per­
sons and the pair-wise inter-labeler kappa was 0.75 - 0.80. 

In addition to the VP data, we apply oiu- approach to meeting 
recordings. The ISL Meeting Corpus consists of 18 meetings, 
with an average number of 5.1 participants per meeting and an 
average duration of 35 minutes. The audio is of 16 bit, 16 kHz 
quality, recorded with lapel microphones. It is accompanied by 
orthographic transcription and annotation of emotional valence 
(negative, neutral, positive) at the speaker contribution level 
(Laskowski & Burger, 2006). The emotion labels were con­
structed by majority voting (2 of 3) for each segment. Split deci­
sions (one vote for each class) were removed. Finally, the de­
velopment set was split into two subsets that were used for 
cross-wise training and testing. 

Both corpora were split into a development and an evaluation 
set, as shown in Table 1. 

3 Features 
Thirteen Standard MFCC parameters were extracted from 24 Mel-scaled logarithmic filters 
from 300 to 3400 Hz. Then we applied RASTA-processing (Hermansky & Morgan, 1994). 
Delta and delta-delta features were added, resulting in a 39 dimensional vector. For the ISL 
material we used 26 filters from 300 to 8000 Hz; otherwise the processing was identical. 

MFCC-low features were computed similarly to the standard MFCCs but the filters ranged 
from 20 to 300 Hz. We expected these MFCCs to model FO variations. 

Pitch was extracted using the Average Magnitude Difference Function, Ross et al. (1974) as 
reported by Langlais (1995). We used a logarithmic scale subtracting the utterance mean. Also 
delta features were added. 

4 Classifiers 
A l l acoustic featares are modeled using Gaussian mixture models (GMMs) with diagonal co-
variance matrices measured over all frames of an utterance. First, using all the training data, a 
root G M M is trained with the Expectation Maximization (EM) algorithm with a maximum 
likelihood criterion, and then one G M M per class is adapted from the root model using the 
maximum a posteriori criterion (Gauvin & Lee, 1994). We use 512 Gaussians for MFCCs and 
64 Gaussians for pitch features. These numbers were empirically optimized. This way of us-

Table 1. Materials used. 

VP development set 
Neutral 3865 94% 
Emphatic 94 2 % 
Negative 171 4 % 
Total 4130 

VP evaluation set 
Neutral 3259 93% 
Emphatic 66 2 % 
Negative 164 5 % 
Total 3489 

I S L development set 
Neutral 6312 80% 
Negative 273 3 % 
Positive 1229 16 % 
Total 7813 

I S L evaluation set 
Neutral 3259 70% 
Negative 151 3 % 
Positive 844 19 % 
Total 4666 
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ing GMMs has proved successful for speaker verification (Reynolds et al., 2000). The outputs 
from the three classifiers were combined using multiple linear regression, with the final class 
selected as the argmax over the per-class least square estimators. The transform matrix was 
estimated from the training data. 

5 Experiments 
We ran our experiments with the features and classifiers described above. An acoustic com­
bination was composed by GMMs for MFCC, MFCC-low, and pitch. The combination matrix 
was estimated by first testing the respective G M M with its traming data. 

Table 2. Results. Accuracy, Average Recall, f 1. 
6 Results 
Performance is measured as abso­
lute accuracy, average recall (for 
all classes) and f l , computed 
from the average precision and 
recall for each classifier. The 
results are compared to two naive 
classifiers: a random classifier 
that classifies everything with 
equal class priors, random with 
equal priors, and a random 
classifier knowing the true prior 
distribution over classes in the 
training data, random using 
priors. The combination matrix 
accounts for the prior distribution 
in the training data, heavily 
favoring the neutral class. There­
fore a weight vector which forces 
the matrix to normalize to equal 
prior distribution was also used. 
Thus we report two more results: 
acoustic combination with equal priors, that is optimized for the accuracy measiu-e and 
acoustic combination using priors, which optimizes the average recall rate. Thus, classifiers 
under the random equal priors heading do not know the a priori class distribution and should 
only be compared to each other. The same holds for the classifiers under random using priors. 
Note that the performance difference in percentages is higher for a classifier not knowing the 
prior distribution compared to its random classifier, than for the same classifier knowing the 
prior distribution compared to its random classifier. This is due to the skewed prior 
distributions. 

From Table 2 we note that all classifiers with equal priors perform substantially better than 
the random classifier. The MFCC-low classifier is almost as good as the standard MFCC and 
considerably better than the pitch classifier. 

Regarding the ISL results in Table 2 we again notice that the pitch feature does not perform 
on the same level as the M F C C features. When the disfribution of errors for the individual 
classes was examined, it revealed that most classifiers were good at recognizing the neutral 
and positive class, but not the negative one, most probably due to its low frequency resulting 
in poor training statistics. 

VP Neutral vs. Emphasis vs. Negative 
Classifier Acc. A.Rec. fl 
Random with equal priors 0.33 0.33 0.33 
MFCC 0.80 0.43 0.40 
MFCC-low 0.78 0.39 0.37 
Pitch 0.56 0.40 0.38 
Acoustic combination 0.90 0.37 0.39 
Random using priors 0.88 0.33 0.33 
Acoustic comb, using priors 0.93 0.34 0.38 

I S L Negative vs. Neutral vs. Positive 
Classifier Acc. A.Rec. fl 
Random with equal priors 0.33 0.33 0.33 
MFCC 0.66 0.49 0.47 
MFCC-low 0.66 0.46 0.44 
Pitch 0.41 0.38 0.37 
Acoustic combination 0.79 0.50 0.47 
Random using priors 0.67 0.33 0.33 
Acoustic comb, using priors 0.82 0.42 0.48 
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7 Conclusion 
Automatic detection of emotions has been evaluated using spectral and pitch features, all 
modeled by GMMs on the frame level. Tvi'o corpora were used: telephone services and meet­
ings. Results show that frame level GMMs are useful for emotion classification. 

The two MFCC methods show similar performance, and MFCC-low outperforms pitch 
features. A reason may be that MFCC-low gives a more stable pitch measure. Also, it may be 
due to its abiUty to capttire voice source characteristics, see Syrdal (1996), where the level dif­
ference between the first and the second harmonic is shown to distinguish between phona-
tions, which in tum may vary across emotions. 

The diverse results of the two corpora are not surprising considering their discrepancies. 
A possible way to improve performance for the VP corpus would be to perform emotion 

detection on the dialogue level rather than the utterance level, and also take the lexical content 
into account. This would mimic the behavior of the human labeler. 

Above we have indicated the difficulty to compare emotion recognition results. However, it 
seems that our results are at least on par with those in Blouin & Maffiolo (2005). 
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Abstract 
This paper briefly describes the development of a research tool for analysis of speaker age 
using data-driven formant synthesis. A prototype system was developed to automatically ex­
tract 23 acoustic parameters from the Swedish word 'sjalen' ['§e:bn] (the soul) spoken by four 
differently aged female speakers of the same dialect and family, and to generate synthetic 
copies. Functions for parameter adjustment as well as audio-visual comparison of the ruitural 
and synthesised words using waveforms and spectrograms were added to improve the synthe-
sised words. Age-weighted linear parameter interpolation was then used to synthesise a tar­
get age anywhere between the ages of 2 source speakers. After an initial evaluation, the sys­
tem was further improved and extended. A second evaluation indicated that speaker age may 
be successfully synthesised using data-driven formant synthesis and weighted linear interpo­
lation. 

1 Introduction 
In speech synthesis appUcations hke spoken dialogue systems and voice prostheses, the need 
for voice variation in terms of age, emotion and other speaker-specific quahties is growing. 
To contribute to the research in this area, as part of a larger study aiming at identifying pho­
netic age cues, a system for analysis by synthesis of speaker age was developed using data-
driven formant synthesis. This paper briefly describes the developing process and results. 

Research has shown that acoustic cues to speaker age can be found in almost every phonetic 
dimension, i.e. in Fo, duration, intensity, resonance, and voice quality (HoUien, 1987; Jacques 
& Rastatter, 1990; Linville, 2001; Xue & Dehyski., 2001). However, the relative importance 
of the different cues has still not been fully explored. One reason for this may be the lack of an 
adequate analysis tool in which a large number of potential age parameters can be varied sys­
tematically and studied in detail. 

Formant synthesis generates speech from a set of rules and acoustic parameters, and is con­
sidered both robust and flexible. Still, the more natural-sounding concatenation synthesis is 
generally preferred over formant synthesis (Narayanan & Alwan, 2004). Lately, formant syn­
thesis has made a comeback in speech research, e.g. in data-driven and hybrid synthesis with 
improved naturalness (Carison et al., 2002; Ohlin & Carlson, 2004). 

2 Material 
Foiu- female non-smoking native Swedish speakers of the same family and dialect were se­
lected to represent different ages, and recorded twice over a period of 3 years: Speaker:!: girl 
(aged 6 and 9), Speaker 2: mother (aged 36 and 39), Speaker 3: grandmother (aged 66 and 
69), and Speaker 4: great grandmother (aged 91 and 94). The isolated word 'sjalen' ['^eilsn] 
(the soul), was selected as a first test word, and the recordings were segmented into pho­
nemes, resampled to 16 kHz, and normalized for intensity. 

mailto:susanne.schot2@ling.lu.se

