
158 SJOSTROM, ERIKSSON, Z E T T E R H O L M & SULLIVAN

Markham, D. 1999. 'Listeners and disguised voices: tiie imitation and
perception of dialectal accent'. Forensic Linguistics 6,289-299.

McGehee, F. 1937. 'Tiie reliability of the identification of the human voice'
Journal of General Psychology 17, 249-271.

Reich, A. & J. Duke. 1979. 'Effects of selected voice disguises upon speaker
identification by listening'. Journal of the Acoustical Society of America
66,1023-1028.

Rodman, R. & M . Powell. 2000. 'Computer recognition of speakers who
disguise their voice'. The International conference on signal processing
applications and technology ICSPAT2000. http://www.csc.ncsu.edu/
faculty/rodmanyComputer%20Recognition%20of%20Speakers%20Who%
20Disguise%20Their%20Voice.pdf (accessed 19 April 2008).

Rose, P. & S. Duncan. 1995. 'Naive auditory identification and discrimina­
tion of similar voices by familiar listeners'. Forensic Linguistics 2,1-17.

Schiller, N.O. & O. Koster. 1998. 'The ability of expert witnesses to identify
voices: a comparison between trained and untrained listeners'. Forensic
Linguistics 5, 1-9.

Sjostrom, M . 2005. 'Earwitness identification: can a switch of dialect fool
us?'. Masters paper, Dept of Philosophy and Linguistics, Umea university.

Thompson, C P . 1987. 'A language effect in voice identification'. Applied
Cognitive Psychology 1:2,121-131.

Van Lancker, D., J. Kreiman & K.T.D. Wickens. 1985. 'Familiar voice
recognition: patterns and parameters. Part 2: Recognition of rate-altered
voices' Journal of Phonetics 13, 39-52.

Yarmey, A.D. 1995. 'Earwitness speaker identification' Psychology, Public
Policy, and Law 1,792-816.

Yarmey, A.D., A.L. Yarmey, M.J. Yarmey & L. Parliament. 2001.
'Commonsense beliefs and the identification of familiar voices'. Applied
Cognitive Psychology 15, 283-299.

Zetterholm, E. 2003. Voice imitation: a phonetic study of perceptual illusions
and acoustic success. Lund: Dept. of Linguistics and Phonetics, Lund
University.

Zetterholm, E. 2006. 'Same speaker - different voices: a study of one
impersonator and some of his different imitations'. Proceedings SST2006,
70-75. Auckland, New Zealand.

Lund University, Dept. of Linguistics and Plionetics
Working Papers 53 (2008), 159-177

159

Deductive chart parsing in Haskell

Marcus Uneson

1 Introduction
Given a formal grammar and a string of tokens, the problem of parsing
amounts to deciding whether the string is recognized by the grammar; and, if
so, returning some suitable representation of its structure. Parsing has ubiqui­
tous applications as a preprocessing step in computational linguistics, for in­
stance in speech recognition, machine translation, and information extraction.

Grammars describing natural language (as opposed to formal grammars,
explicitly designed to minimize ambiguities) are notoriously ambiguous, and
naive parsing algorithms often have time complexity 0(a") in the length of
the input sequence. Chart parsing, originally proposed by Earley (Earley
1970) and Cocke, Kasami, and Younger (Kasami 1965, Younger 1967), is a
family of widely used dynamic programming algorithms which achieve 0(n)̂
running times, by saving partial parses, items, in a chart, or lookup table.
Chart parsing has been generalized (Shieber, Schabes & Pereira 1995) to
deductive parsing, where a simple, dedicated natural deduction prover allows
the parsing process to be described declaratively. In this framework, a
particular parsing algorithm corresponds to a particular logic with a particular
set of inference rules and axioms; thus, imperatively rather diverse top-down
and bottom-up algorithms can be expressed relatively uniformly.

The present paper describes an attempt to transfer (the chart parsing part
of) the deduction engine of Shieber et al. from the logical into the functional
programming paradigm, with the hope of reaping well-known functional
benefits such as referential transparency and higher-order functions without
sacrificing either too much declarativity or speed in the process. We draw the
outlines of a reasonably efficient deduction engine in the purely functional
language Haskell.

The paper is organized as follows. In Section 2, we present the notation
and mechanics used for grammar, chart, and parsing logic. The bulk of the
paper is made up by the implementational notes in Section 3, where we

http://www.csc.ncsu.edu/

160 MARCUS UNESON

summarize the representations and roles of the protagonists of chart parsing:
tokens, symbols, rules, grammar, items, chart, deduction engine, inference
rules. Section 4 describes filtering based on the left-comer relation. Section 5
deals with extracting parse trees, and Section 6 discusses briefly time and
space complexity. We conclude with some remarks on future directions. Five
variations on Kilbury bottom-up chart parsing expressed as parsing logics are
given in Appendix A.

2 Chart parsing and deductive systems
2.1 Context-free grammars (CFGs)
A context free grammar G is usually described as a tuple G = (N, Z,P, S),
where N and S are disjoint sets of nonterminal and terminal symbols,
respectively; P is a set of productions or rules and S e N is the start symbol.
The nonterminals are also called categories and the set V = N U S are the
symbols of the grammar. Each production in P is of the form A ^ a where
A e N is a nonterminal and a e V* is a sequence of symbols. As is usual, we
will reserve A, B, C for denoting single nonterminals, and a, j3, y for arbitrary
strings of terminals and nonterminals. When discussing rules generically, or
when it is otherwise clear what rule is being referred to, we will also
informally use 'Ihs' and 'rhs' with the obvious interpretations.

An A phrase is a sequence of terminals P G Z' such that A =>' ^ for some
A e N, where the rewriting relation => is defined as aBy ajJy whenever
a,Y e V* and B -» P E P. A sentence is an S phrase, i.e., a phrase recognized
by the start symbol. The language L accepted by a grammar is the set of
sentences of that grammar.

In the rest of this paper, we will make a few further assumptions, typically
true for CFGs intended to describe natural language:

1. The grammar contains no empty productions A -» e (that is, the empty
string either is not in L, or else it can be handled separately).
2. The grammar is in Normal Form (NF): all rules are either of form
A N ' or B -» t, where A , B G N , 16 Z . We will refer to the first set of
rules P„ as phrase category rules and to the second Pt as preterminal rules,
and to the left-hand sides of P„ and P ,̂ viewed as sets, as phrase categories
(N„) and preterminals (Nj), respectively. Intuitively, preterminals
correspond to parts of speech and phrase categories to higher syntactic
categories; however, although P„ and Pj form a partition of P (they will if
the grammar is in NF), N„ and need not be disjoint.

DEDUCTIVE CHART PARSING IN HASKELL 161

S -> NP VP N -> hasten 1 arbete

NP-> N I Adjp NP v -> avskyr

Adjp -> Adj Adv -> intensivt

VP -> v NP I V AdvP NP Adj -> intensivt

AdvP -> Adv

Figure 1. Example grammar. Alternative rules are separated by 'I'. P„ in left
column, PJn right. N„={S, NP, AdjP, VP, AdvP}; = {N, V, Adv, Adj}.

It should be noted that the NF requirement is no severe restriction - any
context-free grammar can be easily transformed into NF. Figure 1 gives an
example grammar.

2.2 Chart parsing
The chart of chart parsing is a data structure holding a set of items, which we
can think of as the discovered parsing facts up to the current point in the
input string. An item has the general form [A ay, i, j] which can be read 'in
the process of identifying an instance of category A starting from i , we are
currently at j and have so far found a; it remains to find y'. The dot thus
represents the position j . The set of all items with the dot at k is called Earley
state k.

New items may be added to the chart in three ways. In prediction, we
consult the grammar to find possible expansions of a needed nonterminal. In
scanning, we examine the tokens of the input string. Scanning will be done
once per input token and does not depend on the grammar. In completion,
finally, we combine two known facts into a third. Prediction will result in
items with empty a and i = j ; scanning will yield items with empty y and
j = i + l ; and completion will intuitively 'move the dot', i.e., shift the first
category in y and add it to a. A state of type [A a; i,j] (i.e. y is empty) is
known as a passive state; this corresponds to a confirmed category A
spanning W;... Wj. Conversely, a state with non-empty y is called an active
state, meaning that it is only partially confirmed and still looking for
continuations. The parse succeeds if the item [S a; 0, n] is in the chart (see
also Figure 3).

162 MARCUS UNESON

chart

S \ NP VP

S \ VP
NP
N

hasten

VP \ V Advp NP
VP \ V NP NP \ AdjP NP

î A^P'V NP

1 : 2
VP \ AdVP NP

VP \ NP
V

avskyr

NP \ N
,N \ hasten
' N \ arbete

AdvP
Adv

NP \ NP
AdjP
Adj

intensivt

i 4

tokens hasten avskyr intensivt arbete

Figure 2. Chart parsing of sentence hasten avskyr intensivt arbete 'the horse
detests work intensively/intensive work' according to the grammar above. The
notation '\' denotes an active arc, where the '\' separates a category to the left
from its 'wish list', the still missing components to the right. For instance.
VP \ AdvP NP on the arc from 1 to 2 can be read 'if we, starting at the target ol"
this arc, can find an AdvP followed by an NP, then we will also have found a V P
starting at its source'. Passive arcs are simply arcs with empty wish lists; theso
correspond to confirmed nonterminals for some token substring (although wo
omit the '\' to reduce clutter).

States resulting from completion are depicted with solid arcs (shown as one n-
labeled arc instead of n single-labeled ones, to reduce clutter), and those yielded
by prediction are shown dashed (irrelevant ones omitted).

The chart shows the situation just before the last token arbete is scanncil.
When this happens, a terminal arbete will be completed from 3 to 4; this in turn
completes a noun from 3 to 4; this in turn completes an NP from 3 to 4; this in
turn completes a) a VP from 1 to 4 and b) an NP from 2 to 4; the latter in turn
completes another VP from 1 to 4; the two VPs complete an S from 0 to 4 (in
two ways, reflecting the ambiguity of the sentence).

DEDUCTIVE CHART PARSING IN HASKELL 163

The parsing process can usefully be visualized as a digraph with
nodes 0... n corresponding to the spaces between the n input tokens
(including before first and after last token). In this view, items correspond to
the arcs of the graph, and a parse is just a path through the graph from node 0
to node n. Ambiguous sentences have more than one path through the graph.
Figure 2 shows a chart under construction.

23 Chart parsing as a grammatical deduction system
If we interpret the arcs In the digraph view of chart parsing as inference rules,
reformulating the problem as one of general deduction (Shieber, Schabes &
Pereira 1995) is not far-fetched. That is, parsing consists in specifying a set
of inference rules and axioms - a parsing logic. Exploiting the rules, the
axioms, and/or previously proved statements, we may prove new statements
about the grammatical status of a sequence of tokens. Our goal, analogous to
traditional chart parsing above, is to prove that the theorem [S a-, 0, n] is
derivable in the logic, and we may view statements proved on the way as
lemmata.

Inference rules will generally be of form:

Pi,P„. . . ,P„

Here, A^... A„ are antecedents and B is the consequent. The predicates ... P„
are side conditions on A^... A^ and B; in the case of parsing, these will express
constraints given by the grammar. (If we wish, we may consider an axiom as
just a special case of inference rule with n = 0, i.e., the validity of B is
decidable from side conditions alone.)

For Eariey parsing, the initial start state; the goal; and the rules scan,
predict, and complete can be translated to a parsing logic as shown in
Figure 3 (irom Shieber, Schabes & Pereira 1995, slightly modified).

3 Deductive chart parsing in Haskell
3.1 Implementational considerations
It should be of no surprise that the logical programming paradigm in some
ways is a more natural tool for describing a logical deductive system - after
all, that is the kind of problem it was constructed to solve. For instance, we

164 MARCUS UNESON

[S' -s, 0,0] (start axiom)

[S'-S-,0,n] (goal)

[A - a-Bp, i, j]
B ^ Y (inference rule: predict)

[B T O O]

[A ^ %},}]
t = Wj (inference rule: scan)

[A - t, j , j+1]

[A-a-B|3,i ,k],[B^y,k,j]
(inference rule: complete)

[A - ccBf, i, j]

Figure 3. An Earley parsing logic, comprising a start axiom, a goal, and three
inference rules (scan, predict, complete).

need to manage state in order to keep track of lemmas; this is efficiently and
intuitively done by just adding new information to the database. Similarly,
the non-determinism handling implicit in the backtracking mechanism allows
the programmer to treat the relations expressed in logical formulae as were
they functions.

By comparison, putting on the functional hair shirt may sometimes seem
like dressing for yet another self-flagellation exercise. Some algorithms do
rely on state in one way or another - most formulations of chart parsing, in
traditional-imperative guises as well as logical-deductive, belong to this
group. In pure functional programming, however, there is no concept of
mutable memory. A function behaves like its mathematical counterpart:
given some particular arguments, it will always return a particular value.
When expressed functionally, such algorithms must have the state threaded.
We may try to minimize the obtrusiveness of threading the state, perhaps by

DEDUCTIVE CHART PARSING IN HASKELL 165

carefully wrapping it up in a single argument or hiding it in a state monad,
but declarativity is still at risk. Furthermore, logic formulae express relations,
not fimctions. Implementationally, this means we will have to handle non-
determinism in one way or another.

On the other hand, the pure functional paradigm offers some undisputed,
general benefits (otherwise there would be little motivating its use in parsing
in the first place). Among them we find higher-order functions and
(crucially) referential transparency, offering a wide array of compile-time
program transformations and optimizations as well as much simplified
reasoning. In the case of Haskell, we also get things like static, polymorphic
typing; lazy evaluation; and monadic effects.

In the following, we present the main data types and implementational
notes of an attempt to transfer logical-deductive chart parsing into the
functional paradigm, including the issues of state and non-determinism.
Although the examples are given in Haskell (Peyton Jones et al. 1999), we
hope they should be understandable with some experience in any functional
language. Otherwise, Hudak, Peterson & Fasel 2000 is a good introduction to
Haskell itself.

Except functions from the Prelude, we will use the following standard
libraries:

> import qua l i f i ed Data.Map as M
> import Data.Maybe (listToMaybe)
> import Data.Li St
> import Data.Array (l i s tA r r a y , (!))
> import Control.Monad (guard)

Documentation for Prelude and libraries comes with the distributions, and
can also be found on www.haskell .org. The source code is available from the
author's web page.

3.2 Token string
We represent the tokens of the input sequence by a function abstraction,
allowing us to hide some constant-time access mechanism behind the
curtains without exposing any details. Given some input tokens as a list,
mkjokens produces a pair of a function which takes an zero-based integer
position to the corresponding token; and the upper bound of the function
domain (i.e. the length of tokens).

> type Tokens a = (Int -> a, Int)
> mkTokens tokens = C\n -> C a i n) , Itok)
> where a = l i s t A r r a y CO, 1tok- l) tokens
> Itok = length tokens

http://www.haskell

166 MARCUS UNESON

3.3 Symbols and rules
A symbol in the grammar is either a terminal of type t or a non-terminal of
type n t , respectively. In most cases nt and t will both be s t r i n g ; but since
Haskell lets us play polymorphically as long as we want, there is no need to
be unnecessarily specific. Apart from these two, we will introduce a special,
extra-grammatical dummy, useful when declaring axioms (see below).
Predicates to recognize these three types will allow us help us classify
symbols without pattern matching, allowing us to keep the symbol type
abstract.

Representing rules is equally straightforward: a rule is basically a pair of
type (Symbol t n t , [Symbol t n t]) :

> data Symbol a b = T a | N b | D b deriv ing (ord)
>
> isNonXerm :: Symbol a b -> Bool
> isNonTerm (N _) = True
> isNonTerm _ = False
>
> isTerm :: symbol a b -> Bool
> isTerm (T _) = True
> isTerm _ = False
>
> isDummy :: Symbol a b -> Bool
> isDummy (D _) = True
> isDummy _ = False
>
> newtype Rule a b = Rule CCSymbol a b), [Symbol a b])
>
> Ihs :: Rule a b -> (symbol a b)
> Ihs (Rule (x, ys)) = x
>
> rhs :: Rule a b -> [Symbol a b]
> rhs (Rule (x, ys)) = ys
>
> IhsRhs :: Rule a b -> ((Symbol a b), [symbol a b])
> IhsRhs (Rule (x,ys)) = (x,ys)

3.4 Grammar
Designing the grammar, in contrast, requires considerably more thought. It is
much used; thus, it should be designed for efficiency and - even more
importantly - for convenient updates to more efficient implementations yet to
be written. We will thus make it an abstract data type (ADT).

From the description of chart parsing, we note that for top-down
prediction, we will need efficient access to all rules matching a given Ihs; and
for bottom-up prediction, to all rules where a given category matches the first
member of the rhs, which we will denote rhsl. Thus, these two central
operations will have type

DEDUCTIVE CHART PARSING IN HASKELL 167

> IhsToRules :: Grammar a b -> Symbol a b -> [Rule a b]
> rhslToRules :: Grammar a b -> Symbol a b -> [Rule a b]

There are some efficiency pitfalls, however. In a typical CFG for natural
language, | N | is on the order of 10^ - 1 0 \ |T| on the order of lO' -10^. A given
preterminal may have thousands of expansions - ihsxoRules may thus easily
return thousands of rules, at most one of which will match the current input
symbol. Of course, we might filter them later, but much more efficient would
be not to have them returned in the first place.

We therefore add another rule accessor, IhsToRulesconstrained, which in
addition to ihs takes the current token w as argument. If Ihs is not a
preterminal, the function will behave just as ihsroRules does. If ihs is a
preterminal, however, IhsToRulesconstrained instead searches in the
precalculated, much smaller set of possible preterminals for w. Thus, for
preterminals, IhsToRulesconstrained grammar Ihs w will return either 0 or 1
rules, rather than 0(|T|).

> IhsToRulesconstrained :: Grammar a b -> Symbol a b -> a -> [Rule a b]

The current implementation is omitted here, but it first partitions P into P„
and Pj . Then both rule sets are indexed separately when the grammar is built,
from Ihs to rules and from rhsl to rules.

Out of the four possible combinations, indexing from Ihs to rules for
preterminals often isn't very rewarding - for many natural language CFGs,
where | T | 3> | N I, this means mapping a small set to a large, which is not
very useful as far as indexing operations go (at most it might be used as a
baseline for efficiency comparisons). On the other hand, it is instructive to
note that we pay no price for including it - Haskell's lazy evaluation allows
us to define structures just in case we'll need them later, without performance
loss.
> data Grammar t nt = Grammar
> { nTermGrammar :: M.Map (Symbol t nt) [Rule t nt]
> , termcrammar :: M.Map (Symbol t nt) [Rule t nt]
> , termGrammarR :: M.Map (Symbol t nt) [Rule t nt]
> , rhsF i r s t :: M.Map (Symbol t nt) [Rule t nt]
> }
>
> fromRuleLists :: (ord a, Ord b) =>
> ([Rule a b], [Rule a b]) -> Symbol a b -> Grammar a b
> fromRuleLists (nru les.t ru les) = Grammar ntg tg tgrev pts r h s l
> where
> ntg = M.fromListwith (++) S map (\ r@(Rule (k, _)) -> (k , [r])) nrules
> tg = M.fromListwith (++) $ map (\ r®(Rule (k, _)) -> (k , [r])) t ru le s
> tgrev= M.fromListwith (++) $ map (\ r@(Rule (v, [k])) -> (k , [r])) t r u l e s
> r h s l = M.fromListwith (++) $ map (\ r@(Rule (_, (h:_))) -> (h , [r])) nrules

168 MARCUS UNESON

>

Given these maps, the accessor functions above might look like
> IhsToRulesConstrained g sym w
> I isNonTerm syra = concat $ M.lookup sym (nxermGrammar g)
> ++ f i l t e r (C==5ym) . lbs) CrhslToRules g (T w))
> I isTerm sym = []
>
>
> IhsToRules g sym
> I isNonrerm g sym = concat $ M.lookup sym (termGrammar g)
> ++ M.lookup sym (nTermGrammar g)
>
> rhslToRules g sym
> I isNonTerm sym = fromMaybe [] (M.lookup sym CrhsFirst g))
> I isTerm sym = M.findwithDefault
> (error $ "(rhslToRules): unknown terminal: " ++ show sym)
> sym CtermGrammarR g)

The grammar also provides functions for construction, inspection, validation,
filtering, etc. We omit most of those here, but we will return to filtering
issues in Section 4.

3.5 Items
The form we use to store established facts, or lemmata, corresponds to what
we have said in Section 2. However, we will want to declare some indexing
function(s) for efficient lookup in the chart, discussed below. We also add a
field i found for representing the parsed results space-efficiently (see
Section 5).

> data Item a b =
> Item { ifrom :: Int
> , i1hs :: (Symbol a b)
> , ifound :: [(Int, Symbol a b, i n t)]
> , i t o f i n d :: [Symbol a b]
> , idot :: i n t
> } der iv ing (Eq,Ord)
>
>
> indexDotToFind :: item a b -> (i n t , Maybe (Symbol a b))
> indexDotToFind i = (idot i , listToMaybe $ i t o f i n d i)

3.6 Store
The chart and the grammar are heavily used and will carry most of the
responsibility for parsing performance. Thus, for the same reasons as for the
grammar, an ADT is appropriate. However, in this ADT we will bundle the
chart with an agenda. The chart holds items which have already acted as
triggers for inference rules, while the agenda contains items which have been

DEDUCTIVE CHART PARSING IN HASKELL 169

inferred from some other trigger, but not yet been explored themselves. Less
high-flown, chart and agenda might be called 'done' and 'todo' lists.
Together, the (chart, agenda) pair will be referred to as the store.

The main operations on the store will be deleting and returning a single
trigger T from the agenda (more on which in 3.8); deriving a set of items
derived from T and adding them to the agenda; and adding T to the chart.

Deriving items involves testing the different inference rules against T and
(for combine) the chart. Since the combine operation will search for customers
for some category C at some dot position i , it is convenient to index the chart
on (1, C). We can then export a f i ndcustomersAtFor function directly.

In no case should we have duplicates in either chart or agenda, lest we risk
paying an exponential performance price (Shieber, Schabes & Pereira 1995).
If we eliminate redundancy in the agenda, however, we get a duplicate-free
chart automatically. Again, this calls for indexing considerations. For
simplicity, the current implementation reuses the (i, C) indexing mechanism
above for searching the chart. However, although this may work for simpler
cases, more varied indexing schemes are needed to guarantee logarithmic
worst-case access time.

The store also exports several convenience functions for finding passive
edges (confirmed categories) beginning and/or ending at certain states:
f i ndcorapl eted, f i ndcorapl etedAt, etc, not meant to be heavily used.

3.7 Deduction engine
Imperatively, pseudo-code for the actual deduction process may look like:

1) [initStore]: initialize the store: the chart as empty, the agenda with the
axioms of the parsing logic

2) [exhaustAgenda]: if agenda is empty, stop and return chart; otherwise:
a) delete a trigger from the agenda
b) try the inference rules on the trigger and add any unseen items to

the agenda
c) add the trigger to the chart

3) repeat from 2

Given the chart operations above, the Haskell phrasing is of comparable size:

> import qua l i f i ed store as S
>
> i n i t S to re :: (Ord a, Ord b) => Grammar a b -> Tokens a -> S.Store a b
> in i t S to re grammar tokens = S.addltemsTodo (axioms grammar tokens) S.mkEmpty
>
> exhaustAgenda :: (Ord a, ord b) => [iRule a b] -> S.Chart a b -> S.Chart a b
> exhaustAgenda i r u l e s chart= u n t i l (s.isEmptyTodo) eAgenda chart

170 MARCUS UNESON

> where
eAgenda chart = s.addltemoone tr igger . s.addltemsTodo newltems $ char t '

> where
> newltems = f i l t e r (not . S.mChart chart)
> $ concatMap (\ru1e -> rule chart t r igger) i r u l e s
> (t r i gge r , chart ") = s.deleteTrigger chart

An interesting question is precisely what trigger to delete in 2a. It will be of
importance only when the trigger is being combined with already known
facts, i.e. in the complete inference rule (from Figure 3):

[A-a-BP,i ,k] ,[B-Y-.k, j]
(inference rule: complete)

[A - a B f , i , j]

Here, i < k < j . In principle, the trigger may be either of the two rule
antecedents, and we will have to search for the other one. However, if we
consistently choose the minimum item in the agenda as trigger, we will know
that state i is entirely processed when we get to state j . We will thus be able
to make a left-to-right pass, processing lower states before higher and passive
edges before active. This means that the trigger will always be the second of
the antecedents in the rule. It also means that the first clause of the translation
of the complete logic below (Appendix A) will never be called and could be
deleted (although one might prefer to keep it for declarative purity).

> complete chart (Item i a alpha ((sym@(N _)):beta) k) = do
> Item _k symbol gamma [] j <- s.findCompletedBeginningAt chart k
> guard $ symbol == sym
> .
> return $ Item i a ((k, sym, j)-.alpha) beta j
>
> complete chart (Item k (sym@(N _)) gamma [] j) = do
> Item i a alpha (_sym;beta) _k <- s.findCustomersAtFor chart k sym
>
> return $ Item i a ((k, sym, j) :a lpha) beta j
>
> complete chart _ = []

3.8 Defining a parsing logic
With the rest of the machinery in place, implementing a pari:icular chart
parsing algorithm now amounts to specifying a particular item form and a
particular parsing logic for such items. In contrast to the rest of tiie code

DEDUCTIVE CHART PARSING IN HASKELL 171

described here, parsing logics are expected to be changed and modified often;
therefore, doing so should be easy and intuitive.

To this end, we exploit the list monad; this allows us to simulate Prolog-
style nondeterminism in a notation which at least reminds of natural
deduction. For instance, see below the p r e d i c t inference rule from Figure 3
and a possible rendering in the chart parsing logic.

[A-a-Bp,i , j]

B -* Y (inference rule: predict)

[B - -Y.j.j]

> — defined elsewhere: mapsnd f (a, b) = (a, f b)
>
> inferenceRules grammar (tokens, Itok) = [predict, ...]
> where
>
> predict chart (Item i r h s l _ toFind j)
> I not (nu l l toFind) = []
> I i >= Itok = []
> I otherwise = do
> rule <- rhslToRules grammar r h s l
> l e t (Ih, rht) = mapSnd t a i l . IhsRhs $ rule
>
> return $ Item 1 Ih [(i , r h s l , j)] rht j

Rather than stepping through the rest of the logic of Figure 3 explicitiy, we
express chart parsing according to Kilbury 1985 as a parsing logic in
Appendix A .

4 Filtering
Blindly following the inference rules of our parsing logic, the bottom-up
approach will use the p r e d i c t inference rule to find new lemmata, some of
which can never form part of a sentence. Similarly, top-down generation will
p r e d i c t sequences of preterminals (or even words) without considering the
input sentence at all. Many of the items thus generated are cleariy dead ends,
and it would thus be beneficial to filter them out even before they are
predicted. In fact, the already described I h sToRu le scons t ra ined g n t token is
nothing but a primitive but effective filter: if the nonterminal nt in grammar g
happens to be a preterminal, then at most one rule is returned, namely the one
matching token (intended to be the current word).

file:///ru1e

172 MARCUS UNESON

We may pursue this further, however. In left-corner parsing, first suggested
by Rosenkrantz & Lewis 1970, we define a relation >, pronounced 'left-
comer' , such that

a t> P •<-* 3y.a Py

Although a, P could in principle be of any length, in practice the cost of
calculating the relation will quickly dominate the benefit for longer strings.
We will restrict ourselves to the simplest case where they are single non­
terminals (and thus better written A, B). Informally, A > B iff B can be the first
category in some A phrase. If we build a digraph D from the grammar G, with
nodes for nonterminals and an edge from A to B iff A B^ e P, then the left-
comer relation can be computed as the transitive closure T of D. We may also
find useful the transpose graph of T, the converse relation right-corner
B < A A > B. Extending this relation to tokens, we get a wordlink relation,
wAA:w has wordlink relation to A whenever w can be the first token in
some A phrase. For instance, in the example grammar (Figure 1), we have
S > {NP, N, AdjP, Adj}; Adj < {AdjP, NP, S}; intensivt < {Adj, Adv, AdjP, NP, S}.

None of these relations depend on the input string: thus, they can be
precalculated from the grammar and stored, for instance as closures in the
Grammar data type. Again, thanks to Haskell's laziness we don't need to
worry about wasting efforts precalculating things without using them - with
little performance cost, we can define whatever predicates we might think
useful and let the implementor of the parsing logic choose between them.

With this machinery in place, it is rather straightforward to declare filters
for the predict inference rule. The control .Monad library offers guard for
conditional monadic executions; used in the list monad, it will yield Prolog­
like nondeterministic backtracking by sequenced conjunctions of predicates.

Below is again the predict fragment of Appendix A, now with two filters
added. By omitting one or both of them or changing their order, we get five
different variations.

> predict f i l t e r s chart (item i r h s l _ toFind j)
> I not (nul l toFind) = []
> I i >= Itok = []
> I otherwise = do
> rule <- rhslToRules grammar rh s l
> l e t (Ih, rht) = mapsnd t a i l . IhsRhs $ rule
> guard $ bottomup rht
> guard $ topDown Ih
>
> return $ item i Ih [(i , r h s l , j)] rht j

DEDUCTIVE CHART PARSING IN HASKELL 173

> where
> bottomup [] = True
> bottomup (r:_) = j < Itok && wordLink grammar r (T $ tokens j)
> topDown Ih = any (not nu l l) $ map (S.findcustomersAtFor chart i)
> (rightcorners grammar Ih)

Generally, filters will give smaller charts, at the cost of some calculation
overhead. The smaller charts may additionally save some later calculations.
However, the optimal number and order of filters depend on the grammar and
the input; and filters need not come with any savings at all.

5 Constructing parse trees
Parsing usually involves not only recognition of a given string of tokens with
respect to some grammar, but also reconstruction of all possible parse trees
that the grammar hcenses for the string. Of course, some grammars and some
strings will yield exponentially many such trees, and a naive implementation
which stores entire trees directly in the chart will consequently run in
exponential space (and time).

A better approach is to add a field to each item, so that each passive (i.e.,
completed) edge from i to j can be represented by a tuple. That is, as soon as
we have found some category between i and j , we record it in the completed
item, permitting us to store exponentially many trees in polynomial space.

When the chart is finished we filter out active (i.e., non-finished) edges.
The remaining items, corresponding to confirmed phrases, can again be
described by a CFG, only now with the original categories replaced by tuples
(category, from, to); if the number of possible parse trees is finite, this
derived grammar will be non-recursive. If we, as above, represent this
simpler grammar by an IhsToRules function (cf. Section 3.4), a generic
folding function for parses, foldparse, might look like:

> foldparse :;
> —given a non-terminal nt, return relevant grammar rules
> (Symbol a b -> [Rule a b])
> —what to do when we encounter a terminal (T t)
> -> (symbol a b -> b2)
> —how to combine the results y ie lded by d i f fe rent rules
> -> ([bl] -> b2)
> --how to combine the results given by d i f f e ren t cats i n rhs of a s ing le

production
> -> (Symbol a b -> [b2] -> bl)
> —where to s tar t (some nt)
> -> Symbol a b
> - - fo ld ing resu l t
> -> b2
>
> foldParse expand terroF combineRulesF combineRHS symbol = f symbol
> where f sym | isTerm sym = termF sym
> I otherwise = combineRulesF (map aux (expand sym))
> aux rule = combineRHS (Ihs rule) (map fgt (rhs ru le))

174 MARCUS UNESON

For instance, we can use foidParse to count parse trees:

> countPTrees ;: (Ord b, ord a, show b. Show a) => [I.Item a b] -> i n t ->
integer

> countPTrees chart n = foldparse
> ClhsToRules grammar)
> (const 1) - - a -> integer
> sum - - [integer] -> integer
> (_ sums -> product sums) — [Integer] -> integer
> (startsymbol grammar)
> where grammar = chartToGrammar chart n
>

Or we can use it to build parse trees one by one, for later formatting and
printing.
> data ParseTree a b = PLeaf a 1 PNode b [ParseTree a b] der iv ing Ord
>
> buildTrees :; (ord a, ord b) =>
> Grammar a b -> Symbol a b -> [ParseTree (Symbol a b) (Symbol a b)]
> buildTrees grammar = foldParse
> (IhsToRules grammar)
> (\term -> [PLeaf term]) — Symbol a b -> [ParseTree]
> concat - - [[ParseTree]] -> [ParseTree]
> cproduct - - [[ParseTree]] -> [ParseTree]
> where cproduct Ihs rhss = map (PNode Ihs) (crossProduct rhss)

6 Space and time complexity
For a particular position (i.e., Earley state) k in the input string, each element
in the rhs of each phrase category rule may yield an edge for each previous
position j <k. Thus, the chart corresponding to position k has size 0(n|P„|5)
where 5 is length of the longest rhs, and the size of the entire chart is
0(n̂ |P„[5). Excepting the initial 0(n) axioms, at any time the agenda can
contain items referring to state k only; it is thus also of size 0(n|Pn|5).

As for time, each item on the agenda, in total 0(n |̂P„i5), will act as a
trigger exactly once, and it may yield at most 0(n|Pn|5) new items through
complete (and another 0((P„|) via predict). These must be checked for
redundancy against the agenda. Constant-time lookup for the chart and
grammar operations would give us a total of 0(n̂ |P„̂ |5̂), matching imperative
solutions. Using maps, we retain referential transparency but even with the
ideal indexing scheme (cf Section 3.6), we pay a slight performance cost:
0(n^|P„P5Mg(n|Pj5)).

We have relied on finite maps, with inherent logarithmic access time.
Another candidate is hash tables, which in theory should give constant rather
than logarithmic time for lookups. However, hash tables use memory
destructively; while sometimes useful, they therefore do not fit very well into

DEDUCTIVE CHART PARSING IN HASKELL 175

the pure functional paradigm. Furthermore, in the main Haskell
implementation available at the time of writing (ghc 6.8), in practice they are
often slower than maps.

The usefulness of the filters of Section 4 also relies on efficient
implementations of the relations wordtink and rightcorner relation. Again,
we prefer finite maps.

Generation of parse trees is of course exponential, as there may be
exponentially many of them. However, thanks to laziness, the space
requirements for enumerating the parse trees are modest.

7 Conclusion. Future directions
The described deduction engine aims for purity, modularity, and declarativity
rather than speed, and there is a slight performance penalty. We have so far
not carried out any rigourous benchmarks; while the engine seems reasonably
useful for simple practical purposes, an obvious next step involves more
principled comparisons. We were careful to design the critical stmctures
(Grammar, Chart) as ADTs to make room for future improvements (although
the interfaces still are somewhat experimental).

We simulated non-determinism passably by exploiting the do notation and
the list monad. Less elegantly, we also relied on explicit state passing. A
more uncompromising and challenging approach, not pursued here but
certainly worth investigating, implies a formulation which does not depend
on global state, as Ljunglof 2004 does for Kilbury-style chart parsing. An
even greater challenge, following Shieber et al., is of course to expand the
framework to express more diverse grammar formalisms, such as tree-
adjoining and categorial grammars.

Acknowledgement
Inspiration to this paper came from a proof-of-concept implementation by
Jan van Eijck (correct, but 0(a"), see van Eijck 2004); and a course
assignment by Peter Ljunglof.

References
Eariey, Jay. 1970. 'An efficient context-free parsing algorithm'. Comm. ACM

13:2,94-102.
Eijck, Jan van. 2004. 'Deductive parsing in Haskell'. Unpublished manu­

script (version 20040223, retrieved 20070804 from http://homepages.
cwi.nl/~jve/).

file:///term
http://homepages
http://cwi.nl/~jve/

176 MARCUS UNESON

Hudak, Paul, John Peterson & Joseph Fasel. 2000. A gentle introduction to
Haskell version 98. Available at http:/www.haskell.org/.

Kasami, Tadao. 1965. An efficient recognition and syntax algorithm for
context-free languages. Technical report AFCLR-65-758. Bedford, MA:
Air Force Cambridge Research Laboratory.

Kilbuiy, James. 1985. 'Chart parsing and the Barley algorithm'. In U. Klenk
(ed.), Kontextfreie Syntaxen und wervandte Systeme. Tubingen: Niemeyer.

Ljunglof, Peter. 2004. 'Functional chart parsing of context-free grammars'.
Journal of Functional Programming 14:6,669-680.

Peyton Jones, Simon, John Hughes et al. 1999. Report on the programming
language Haskell 98. University of Yale. Available at http://
www.haskell.org/.

Rosenkrantz, Daniel & Philip Lewis II. 1970. 'Deterministic left comer
parsing', Proc. II"' Annual Symposium on Switching and Automata
Theory, 139-152.

Shieber, Stuart, Yves Schabes & Fernando Pereira. 1995. 'Principles and
implementation of deductive parsing'. Journal of Logic Programming
24:1-2,3-36.

Younger, Daniel. 1967. 'Recognition of context-free languages in time n^'.
Information and Control 10:2, 189-208.

DEDUCTIVE CHART PARSING IN HASKELL 177

Appendix A .
Kilbury (1985) bottom-up parsing expressed in a functional deductive
system, assuming item declared as before. The two guard lines add bottom-
up and top-down filtering. They can change places, or either one or both of
them can be omitted, yielding five different variations of the basic algorithm.

> — defined elsewhere: mapsnd f (a, b) = (a, f b)
>
> goal :: (Eq a, Eq b) => Grammar a b -> Tokens a -> Item a b -> Bool
> goal gr C_, Itok) (Item 0 found _ [] n) = isstartsymbol gr found && n == Itok
> goal = False
>
> axioms grammar (tokens, Itok) = start ++ scan
> where
> s tar t = l e t N X = startsymbol grammar in [Item 0 (D x) [] [N x] 0]
> scan = do
> (j , t) <- map (\i -> (i , tokens i)) [O..ltok-1]
>
> return $ Item j (T t) [(j , (T t) , j+1)] [] (j+1)
>
> inferenceRules grammar (tokens, Itok) = [predict, complete]
> where
>
> complete chart (Item i a alpha ((sym@(N _)):beta) k) = do
> Item _k symbol gamma [] j <- S.findCompletedBeginningAt chart k
> guard $ symbol == sym
>
> return $ Item i a ((k, sym, j) ;a lpha) beta j
>
> complete chart (Item k (sym@(N _)) gamma [] j) = do
> Item i a alpha (_sym:beta) _k <- S.findCustomersAtFor chart k sym
>
> return $ Item i a ((k, sym, j) :a lpha) beta j
>
> complete chart _ = []
>
> predict chart (Item i rh s l _ toFind j)
> i notNull toFind = []
> I i >= Itok = []
> I otherwise = do
> rule <- rhslToRules grammar rh s l
> l e t (Ih, rht) = mapSnd t a i l . IhsRhs $ rule
> guard $ bottomup rht
> guard $ topDown 1h
>
> return $ Item i Ih [(i , r h s l , j)] rht j
> where
> bottomup [] = True
> bottomup (r:_) = j < Itok && wordLink grammar r (T (tokens j))
> topDown Ih = any notNull $
> map (S.findCustomersAtFor chart i) (Ih : rightcorners grammar Ih)

http://http.V/www.haskell.org/
http://
http://www.haskell.org/

