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Deductive chart parsing in Haskell 

Marcus Uneson 

1 Introduction 
Given a formal grammar and a string of tokens, the problem of parsing 
amounts to deciding whether the string is recognized by the grammar; and, if 
so, returning some suitable representation of its structure. Parsing has ubiqui­
tous applications as a preprocessing step in computational linguistics, for in­
stance in speech recognition, machine translation, and information extraction. 

Grammars describing natural language (as opposed to formal grammars, 
explicitly designed to minimize ambiguities) are notoriously ambiguous, and 
naive parsing algorithms often have time complexity 0(a") in the length of 
the input sequence. Chart parsing, originally proposed by Earley (Earley 
1970) and Cocke, Kasami, and Younger (Kasami 1965, Younger 1967), is a 
family of widely used dynamic programming algorithms which achieve 0(n )̂ 
running times, by saving partial parses, items, in a chart, or lookup table. 
Chart parsing has been generalized (Shieber, Schabes & Pereira 1995) to 
deductive parsing, where a simple, dedicated natural deduction prover allows 
the parsing process to be described declaratively. In this framework, a 
particular parsing algorithm corresponds to a particular logic with a particular 
set of inference rules and axioms; thus, imperatively rather diverse top-down 
and bottom-up algorithms can be expressed relatively uniformly. 

The present paper describes an attempt to transfer (the chart parsing part 
of) the deduction engine of Shieber et al. from the logical into the functional 
programming paradigm, with the hope of reaping well-known functional 
benefits such as referential transparency and higher-order functions without 
sacrificing either too much declarativity or speed in the process. We draw the 
outlines of a reasonably efficient deduction engine in the purely functional 
language Haskell. 

The paper is organized as follows. In Section 2, we present the notation 
and mechanics used for grammar, chart, and parsing logic. The bulk of the 
paper is made up by the implementational notes in Section 3, where we 

http://www.csc.ncsu.edu/
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summarize the representations and roles of the protagonists of chart parsing: 
tokens, symbols, rules, grammar, items, chart, deduction engine, inference 
rules. Section 4 describes filtering based on the left-comer relation. Section 5 
deals with extracting parse trees, and Section 6 discusses briefly time and 
space complexity. We conclude with some remarks on future directions. Five 
variations on Kilbury bottom-up chart parsing expressed as parsing logics are 
given in Appendix A. 

2 Chart parsing and deductive systems 
2.1 Context-free grammars (CFGs) 
A context free grammar G is usually described as a tuple G = (N, Z,P, S), 
where N and S are disjoint sets of nonterminal and terminal symbols, 
respectively; P is a set of productions or rules and S e N is the start symbol. 
The nonterminals are also called categories and the set V = N U S are the 
symbols of the grammar. Each production in P is of the form A ^ a where 
A e N is a nonterminal and a e V* is a sequence of symbols. As is usual, we 
will reserve A, B, C for denoting single nonterminals, and a, j3, y for arbitrary 
strings of terminals and nonterminals. When discussing rules generically, or 
when it is otherwise clear what rule is being referred to, we will also 
informally use 'Ihs' and 'rhs' with the obvious interpretations. 

An A phrase is a sequence of terminals P G Z' such that A =>' ^ for some 
A e N, where the rewriting relation => is defined as aBy ajJy whenever 
a,Y e V* and B -» P E P. A sentence is an S phrase, i.e., a phrase recognized 
by the start symbol. The language L accepted by a grammar is the set of 
sentences of that grammar. 

In the rest of this paper, we will make a few further assumptions, typically 
true for CFGs intended to describe natural language: 

1. The grammar contains no empty productions A -» e (that is, the empty 
string either is not in L, or else it can be handled separately). 
2. The grammar is in Normal Form (NF): all rules are either of form 
A N ' or B -» t, where A , B G N , 16 Z . We will refer to the first set of 
rules P„ as phrase category rules and to the second Pt as preterminal rules, 
and to the left-hand sides of P„ and P ,̂ viewed as sets, as phrase categories 
(N„) and preterminals (Nj), respectively. Intuitively, preterminals 
correspond to parts of speech and phrase categories to higher syntactic 
categories; however, although P„ and Pj form a partition of P (they will if 
the grammar is in NF), N„ and need not be disjoint. 
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S -> NP VP N -> hasten 1 arbete 

NP-> N I Adjp NP v -> avskyr 

Adjp -> Adj Adv -> intensivt 

VP -> v NP I V AdvP NP Adj -> intensivt 

AdvP -> Adv 

Figure 1. Example grammar. Alternative rules are separated by 'I'. P„ in left 
column, PJn right. N„={S, NP, AdjP, VP, AdvP}; = {N, V, Adv, Adj}. 

It should be noted that the NF requirement is no severe restriction - any 
context-free grammar can be easily transformed into NF. Figure 1 gives an 
example grammar. 

2.2 Chart parsing 
The chart of chart parsing is a data structure holding a set of items, which we 
can think of as the discovered parsing facts up to the current point in the 
input string. An item has the general form [A ay, i, j] which can be read 'in 
the process of identifying an instance of category A starting from i , we are 
currently at j and have so far found a; it remains to find y'. The dot thus 
represents the position j . The set of all items with the dot at k is called Earley 
state k. 

New items may be added to the chart in three ways. In prediction, we 
consult the grammar to find possible expansions of a needed nonterminal. In 
scanning, we examine the tokens of the input string. Scanning will be done 
once per input token and does not depend on the grammar. In completion, 
finally, we combine two known facts into a third. Prediction will result in 
items with empty a and i = j ; scanning will yield items with empty y and 
j = i + l ; and completion will intuitively 'move the dot', i.e., shift the first 
category in y and add it to a. A state of type [A a; i,j] (i.e. y is empty) is 
known as a passive state; this corresponds to a confirmed category A 
spanning W;... Wj. Conversely, a state with non-empty y is called an active 
state, meaning that it is only partially confirmed and still looking for 
continuations. The parse succeeds if the item [S a; 0, n] is in the chart (see 
also Figure 3). 
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chart 

S \ NP VP 

S \ VP 
NP 
N 

hasten 

VP \ V Advp NP 
VP \ V NP NP \ AdjP NP 

î A^P'V NP 

1 : 2 
VP \ AdVP NP 

VP \ NP 
V 

avskyr 

NP \ N 
,N \ hasten 
' N \ arbete 

AdvP 
Adv 

NP \ NP 
AdjP 
Adj 

intensivt 

i 4 

tokens hasten avskyr intensivt arbete 

Figure 2. Chart parsing of sentence hasten avskyr intensivt arbete 'the horse 
detests work intensively/intensive work' according to the grammar above. The 
notation '\' denotes an active arc, where the '\' separates a category to the left 
from its 'wish list', the still missing components to the right. For instance. 
VP \ AdvP NP on the arc from 1 to 2 can be read 'if we, starting at the target ol" 
this arc, can find an AdvP followed by an NP, then we will also have found a V P 
starting at its source'. Passive arcs are simply arcs with empty wish lists; theso 
correspond to confirmed nonterminals for some token substring (although wo 
omit the '\' to reduce clutter). 

States resulting from completion are depicted with solid arcs (shown as one n-
labeled arc instead of n single-labeled ones, to reduce clutter), and those yielded 
by prediction are shown dashed (irrelevant ones omitted). 

The chart shows the situation just before the last token arbete is scanncil. 
When this happens, a terminal arbete will be completed from 3 to 4; this in turn 
completes a noun from 3 to 4; this in turn completes an NP from 3 to 4; this in 
turn completes a) a VP from 1 to 4 and b) an NP from 2 to 4; the latter in turn 
completes another VP from 1 to 4; the two VPs complete an S from 0 to 4 (in 
two ways, reflecting the ambiguity of the sentence). 
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The parsing process can usefully be visualized as a digraph with 
nodes 0... n corresponding to the spaces between the n input tokens 
(including before first and after last token). In this view, items correspond to 
the arcs of the graph, and a parse is just a path through the graph from node 0 
to node n. Ambiguous sentences have more than one path through the graph. 
Figure 2 shows a chart under construction. 

23 Chart parsing as a grammatical deduction system 
If we interpret the arcs In the digraph view of chart parsing as inference rules, 
reformulating the problem as one of general deduction (Shieber, Schabes & 
Pereira 1995) is not far-fetched. That is, parsing consists in specifying a set 
of inference rules and axioms - a parsing logic. Exploiting the rules, the 
axioms, and/or previously proved statements, we may prove new statements 
about the grammatical status of a sequence of tokens. Our goal, analogous to 
traditional chart parsing above, is to prove that the theorem [S a-, 0, n] is 
derivable in the logic, and we may view statements proved on the way as 
lemmata. 

Inference rules will generally be of form: 

Pi,P„. . . ,P„ 

Here, A^... A„ are antecedents and B is the consequent. The predicates ... P„ 
are side conditions on A^... A^ and B; in the case of parsing, these will express 
constraints given by the grammar. (If we wish, we may consider an axiom as 
just a special case of inference rule with n = 0, i.e., the validity of B is 
decidable from side conditions alone.) 

For Eariey parsing, the initial start state; the goal; and the rules scan, 
predict, and complete can be translated to a parsing logic as shown in 
Figure 3 (irom Shieber, Schabes & Pereira 1995, slightly modified). 

3 Deductive chart parsing in Haskell 
3.1 Implementational considerations 
It should be of no surprise that the logical programming paradigm in some 
ways is a more natural tool for describing a logical deductive system - after 
all, that is the kind of problem it was constructed to solve. For instance, we 
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[S' -s, 0,0] (start axiom) 

[S'-S-,0,n] (goal) 

[A - a-Bp, i, j] 
B ^ Y (inference rule: predict) 

[B T O O ] 

[A ^ %},}] 
t = Wj (inference rule: scan) 

[A - t, j , j+1] 

[A-a-B|3,i ,k],[B^y,k,j] 
(inference rule: complete) 

[A - ccBf, i, j] 

Figure 3. An Earley parsing logic, comprising a start axiom, a goal, and three 
inference rules (scan, predict, complete). 

need to manage state in order to keep track of lemmas; this is efficiently and 
intuitively done by just adding new information to the database. Similarly, 
the non-determinism handling implicit in the backtracking mechanism allows 
the programmer to treat the relations expressed in logical formulae as were 
they functions. 

By comparison, putting on the functional hair shirt may sometimes seem 
like dressing for yet another self-flagellation exercise. Some algorithms do 
rely on state in one way or another - most formulations of chart parsing, in 
traditional-imperative guises as well as logical-deductive, belong to this 
group. In pure functional programming, however, there is no concept of 
mutable memory. A function behaves like its mathematical counterpart: 
given some particular arguments, it will always return a particular value. 
When expressed functionally, such algorithms must have the state threaded. 
We may try to minimize the obtrusiveness of threading the state, perhaps by 
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carefully wrapping it up in a single argument or hiding it in a state monad, 
but declarativity is still at risk. Furthermore, logic formulae express relations, 
not fimctions. Implementationally, this means we will have to handle non-
determinism in one way or another. 

On the other hand, the pure functional paradigm offers some undisputed, 
general benefits (otherwise there would be little motivating its use in parsing 
in the first place). Among them we find higher-order functions and 
(crucially) referential transparency, offering a wide array of compile-time 
program transformations and optimizations as well as much simplified 
reasoning. In the case of Haskell, we also get things like static, polymorphic 
typing; lazy evaluation; and monadic effects. 

In the following, we present the main data types and implementational 
notes of an attempt to transfer logical-deductive chart parsing into the 
functional paradigm, including the issues of state and non-determinism. 
Although the examples are given in Haskell (Peyton Jones et al. 1999), we 
hope they should be understandable with some experience in any functional 
language. Otherwise, Hudak, Peterson & Fasel 2000 is a good introduction to 
Haskell itself. 

Except functions from the Prelude, we will use the following standard 
libraries: 

> import qua l i f i ed Data.Map as M 
> import Data.Maybe (listToMaybe) 
> import Data.Li St 
> import Data.Array ( l i s tA r r a y , (!)) 
> import Control.Monad (guard) 

Documentation for Prelude and libraries comes with the distributions, and 
can also be found on www.haskell .org. The source code is available from the 
author's web page. 

3.2 Token string 
We represent the tokens of the input sequence by a function abstraction, 
allowing us to hide some constant-time access mechanism behind the 
curtains without exposing any details. Given some input tokens as a list, 
mkjokens produces a pair of a function which takes an zero-based integer 
position to the corresponding token; and the upper bound of the function 
domain (i.e. the length of tokens). 

> type Tokens a = (Int -> a, Int) 
> mkTokens tokens = C\n -> C a i n ) , Itok) 
> where a = l i s t A r r a y CO, 1tok- l ) tokens 
> Itok = length tokens 

http://www.haskell
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3.3 Symbols and rules 
A symbol in the grammar is either a terminal of type t or a non-terminal of 
type n t , respectively. In most cases nt and t will both be s t r i n g ; but since 
Haskell lets us play polymorphically as long as we want, there is no need to 
be unnecessarily specific. Apart from these two, we will introduce a special, 
extra-grammatical dummy, useful when declaring axioms (see below). 
Predicates to recognize these three types will allow us help us classify 
symbols without pattern matching, allowing us to keep the symbol type 
abstract. 

Representing rules is equally straightforward: a rule is basically a pair of 
type (Symbol t n t , [Symbol t n t ] ) : 

> data Symbol a b = T a | N b | D b deriv ing (ord) 
> 
> isNonXerm :: Symbol a b -> Bool 
> isNonTerm (N _) = True 
> isNonTerm _ = False 
> 
> isTerm :: symbol a b -> Bool 
> isTerm (T _) = True 
> isTerm _ = False 
> 
> isDummy :: Symbol a b -> Bool 
> isDummy (D _) = True 
> isDummy _ = False 
> 
> newtype Rule a b = Rule CCSymbol a b), [Symbol a b]) 
> 
> Ihs :: Rule a b -> (symbol a b) 
> Ihs (Rule (x, ys)) = x 
> 
> rhs :: Rule a b -> [Symbol a b] 
> rhs (Rule (x, ys)) = ys 
> 
> IhsRhs :: Rule a b -> ((Symbol a b), [symbol a b]) 
> IhsRhs (Rule (x,ys)) = (x,ys) 

3.4 Grammar 
Designing the grammar, in contrast, requires considerably more thought. It is 
much used; thus, it should be designed for efficiency and - even more 
importantly - for convenient updates to more efficient implementations yet to 
be written. We will thus make it an abstract data type (ADT). 

From the description of chart parsing, we note that for top-down 
prediction, we will need efficient access to all rules matching a given Ihs; and 
for bottom-up prediction, to all rules where a given category matches the first 
member of the rhs, which we will denote rhsl. Thus, these two central 
operations will have type 
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> IhsToRules :: Grammar a b -> Symbol a b -> [Rule a b] 
> rhslToRules :: Grammar a b -> Symbol a b -> [Rule a b] 

There are some efficiency pitfalls, however. In a typical CFG for natural 
language, | N | is on the order of 10^ - 1 0 \ |T| on the order of lO' -10^. A given 
preterminal may have thousands of expansions - ihsxoRules may thus easily 
return thousands of rules, at most one of which will match the current input 
symbol. Of course, we might filter them later, but much more efficient would 
be not to have them returned in the first place. 

We therefore add another rule accessor, IhsToRulesconstrained, which in 
addition to ihs takes the current token w as argument. If Ihs is not a 
preterminal, the function will behave just as ihsroRules does. If ihs is a 
preterminal, however, IhsToRulesconstrained instead searches in the 
precalculated, much smaller set of possible preterminals for w. Thus, for 
preterminals, IhsToRulesconstrained grammar Ihs w will return either 0 or 1 
rules, rather than 0(|T|). 

> IhsToRulesconstrained :: Grammar a b -> Symbol a b -> a -> [Rule a b] 

The current implementation is omitted here, but it first partitions P into P„ 
and Pj . Then both rule sets are indexed separately when the grammar is built, 
from Ihs to rules and from rhsl to rules. 

Out of the four possible combinations, indexing from Ihs to rules for 
preterminals often isn't very rewarding - for many natural language CFGs, 
where | T | 3> | N I, this means mapping a small set to a large, which is not 
very useful as far as indexing operations go (at most it might be used as a 
baseline for efficiency comparisons). On the other hand, it is instructive to 
note that we pay no price for including it - Haskell's lazy evaluation allows 
us to define structures just in case we'll need them later, without performance 
loss. 
> data Grammar t nt = Grammar 
> { nTermGrammar :: M.Map (Symbol t nt) [Rule t nt] 
> , termcrammar :: M.Map (Symbol t nt) [Rule t nt] 
> , termGrammarR :: M.Map (Symbol t nt) [Rule t nt] 
> , rhsF i r s t :: M.Map (Symbol t nt) [Rule t nt] 
> } 
> 
> fromRuleLists :: (ord a, Ord b) => 
> ([Rule a b], [Rule a b]) -> Symbol a b -> Grammar a b 
> fromRuleLists (nru les.t ru les) = Grammar ntg tg tgrev pts r h s l 
> where 
> ntg = M.fromListwith (++) S map (\ r@(Rule (k, _)) -> ( k , [ r ] ) ) nrules 
> tg = M.fromListwith (++) $ map (\ r®(Rule (k, _)) -> ( k , [ r ] ) ) t ru le s 
> tgrev= M.fromListwith (++) $ map (\ r@(Rule (v, [k])) -> ( k , [ r ] ) ) t r u l e s 
> r h s l = M.fromListwith (++) $ map (\ r@(Rule (_, (h:_))) -> (h , [ r ] ) ) nrules 
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> 

Given these maps, the accessor functions above might look like 
> IhsToRulesConstrained g sym w 
> I isNonTerm syra = concat $ M.lookup sym (nxermGrammar g) 
> ++ f i l t e r (C==5ym) . lbs) CrhslToRules g (T w)) 
> I isTerm sym = [] 
> 
> 
> IhsToRules g sym 
> I isNonrerm g sym = concat $ M.lookup sym (termGrammar g) 
> ++ M.lookup sym (nTermGrammar g) 
> 
> rhslToRules g sym 
> I isNonTerm sym = fromMaybe [] (M.lookup sym CrhsFirst g)) 
> I isTerm sym = M.findwithDefault 
> (error $ "(rhslToRules): unknown terminal: " ++ show sym) 
> sym CtermGrammarR g) 

The grammar also provides functions for construction, inspection, validation, 
filtering, etc. We omit most of those here, but we will return to filtering 
issues in Section 4. 

3.5 Items 
The form we use to store established facts, or lemmata, corresponds to what 
we have said in Section 2. However, we will want to declare some indexing 
function(s) for efficient lookup in the chart, discussed below. We also add a 
field i found for representing the parsed results space-efficiently (see 
Section 5). 

> data Item a b = 
> Item { ifrom :: Int 
> , i1hs :: (Symbol a b) 
> , ifound :: [( Int, Symbol a b, i n t ) ] 
> , i t o f i n d :: [Symbol a b] 
> , idot :: i n t 
> } der iv ing (Eq,Ord) 
> 
> 
> indexDotToFind :: item a b -> ( i n t , Maybe (Symbol a b)) 
> indexDotToFind i = ( idot i , listToMaybe $ i t o f i n d i ) 

3.6 Store 
The chart and the grammar are heavily used and will carry most of the 
responsibility for parsing performance. Thus, for the same reasons as for the 
grammar, an ADT is appropriate. However, in this ADT we will bundle the 
chart with an agenda. The chart holds items which have already acted as 
triggers for inference rules, while the agenda contains items which have been 
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inferred from some other trigger, but not yet been explored themselves. Less 
high-flown, chart and agenda might be called 'done' and 'todo' lists. 
Together, the (chart, agenda) pair will be referred to as the store. 

The main operations on the store will be deleting and returning a single 
trigger T from the agenda (more on which in 3.8); deriving a set of items 
derived from T and adding them to the agenda; and adding T to the chart. 

Deriving items involves testing the different inference rules against T and 
(for combine) the chart. Since the combine operation will search for customers 
for some category C at some dot position i , it is convenient to index the chart 
on (1, C). We can then export a f i ndcustomersAtFor function directly. 

In no case should we have duplicates in either chart or agenda, lest we risk 
paying an exponential performance price (Shieber, Schabes & Pereira 1995). 
If we eliminate redundancy in the agenda, however, we get a duplicate-free 
chart automatically. Again, this calls for indexing considerations. For 
simplicity, the current implementation reuses the (i, C) indexing mechanism 
above for searching the chart. However, although this may work for simpler 
cases, more varied indexing schemes are needed to guarantee logarithmic 
worst-case access time. 

The store also exports several convenience functions for finding passive 
edges (confirmed categories) beginning and/or ending at certain states: 
f i ndcorapl eted, f i ndcorapl etedAt, etc, not meant to be heavily used. 

3.7 Deduction engine 
Imperatively, pseudo-code for the actual deduction process may look like: 

1) [initStore]: initialize the store: the chart as empty, the agenda with the 
axioms of the parsing logic 

2) [exhaustAgenda]: if agenda is empty, stop and return chart; otherwise: 
a) delete a trigger from the agenda 
b) try the inference rules on the trigger and add any unseen items to 

the agenda 
c) add the trigger to the chart 

3) repeat from 2 

Given the chart operations above, the Haskell phrasing is of comparable size: 

> import qua l i f i ed store as S 
> 
> i n i t S to re :: (Ord a, Ord b) => Grammar a b -> Tokens a -> S.Store a b 
> in i t S to re grammar tokens = S.addltemsTodo (axioms grammar tokens) S.mkEmpty 
> 
> exhaustAgenda :: (Ord a, ord b) => [ iRule a b] -> S.Chart a b -> S.Chart a b 
> exhaustAgenda i r u l e s chart= u n t i l (s.isEmptyTodo) eAgenda chart 



170 MARCUS UNESON 

> where 
eAgenda chart = s.addltemoone tr igger . s.addltemsTodo newltems $ char t ' 

> where 
> newltems = f i l t e r (not . S.mChart chart) 
> $ concatMap (\ru1e -> rule chart t r igger ) i r u l e s 
> ( t r i gge r , chart " ) = s.deleteTrigger chart 

An interesting question is precisely what trigger to delete in 2a. It will be of 
importance only when the trigger is being combined with already known 
facts, i.e. in the complete inference rule (from Figure 3): 

[A-a-BP,i ,k] ,[B-Y-.k, j] 
(inference rule: complete) 

[ A - a B f , i , j ] 

Here, i < k < j . In principle, the trigger may be either of the two rule 
antecedents, and we will have to search for the other one. However, if we 
consistently choose the minimum item in the agenda as trigger, we will know 
that state i is entirely processed when we get to state j . We will thus be able 
to make a left-to-right pass, processing lower states before higher and passive 
edges before active. This means that the trigger will always be the second of 
the antecedents in the rule. It also means that the first clause of the translation 
of the complete logic below (Appendix A) will never be called and could be 
deleted (although one might prefer to keep it for declarative purity). 

> complete chart (Item i a alpha ((sym@(N _)):beta) k) = do 
> Item _k symbol gamma [] j <- s.findCompletedBeginningAt chart k 
> guard $ symbol == sym 
> . 
> return $ Item i a ((k, sym, j)-.alpha) beta j 
> 
> complete chart (Item k (sym@(N _)) gamma [] j ) = do 
> Item i a alpha (_sym;beta) _k <- s.findCustomersAtFor chart k sym 
> 
> return $ Item i a ((k, sym, j ) :a lpha) beta j 
> 
> complete chart _ = [] 

3.8 Defining a parsing logic 
With the rest of the machinery in place, implementing a pari:icular chart 
parsing algorithm now amounts to specifying a particular item form and a 
particular parsing logic for such items. In contrast to the rest of tiie code 
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described here, parsing logics are expected to be changed and modified often; 
therefore, doing so should be easy and intuitive. 

To this end, we exploit the list monad; this allows us to simulate Prolog-
style nondeterminism in a notation which at least reminds of natural 
deduction. For instance, see below the p r e d i c t inference rule from Figure 3 
and a possible rendering in the chart parsing logic. 

[A-a-Bp,i , j ] 

B -* Y (inference rule: predict) 

[B - -Y.j.j] 

> — defined elsewhere: mapsnd f (a, b) = (a, f b) 
> 
> inferenceRules grammar (tokens, Itok) = [predict, ...] 
> where 
> 
> predict chart (Item i r h s l _ toFind j ) 
> I not (nu l l toFind) = [] 
> I i >= Itok = [] 
> I otherwise = do 
> rule <- rhslToRules grammar r h s l 
> l e t (Ih, rht) = mapSnd t a i l . IhsRhs $ rule 
> 
> return $ Item 1 Ih [ ( i , r h s l , j ) ] rht j 

Rather than stepping through the rest of the logic of Figure 3 explicitiy, we 
express chart parsing according to Kilbury 1985 as a parsing logic in 
Appendix A . 

4 Filtering 
Blindly following the inference rules of our parsing logic, the bottom-up 
approach will use the p r e d i c t inference rule to find new lemmata, some of 
which can never form part of a sentence. Similarly, top-down generation will 
p r e d i c t sequences of preterminals (or even words) without considering the 
input sentence at all. Many of the items thus generated are cleariy dead ends, 
and it would thus be beneficial to filter them out even before they are 
predicted. In fact, the already described I h sToRu le scons t ra ined g n t token is 
nothing but a primitive but effective filter: if the nonterminal nt in grammar g 
happens to be a preterminal, then at most one rule is returned, namely the one 
matching token (intended to be the current word). 

file:///ru1e
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We may pursue this further, however. In left-corner parsing, first suggested 
by Rosenkrantz & Lewis 1970, we define a relation >, pronounced 'left-
comer' , such that 

a t> P •<-* 3y.a Py 

Although a, P could in principle be of any length, in practice the cost of 
calculating the relation will quickly dominate the benefit for longer strings. 
We will restrict ourselves to the simplest case where they are single non­
terminals (and thus better written A, B). Informally, A > B iff B can be the first 
category in some A phrase. If we build a digraph D from the grammar G, with 
nodes for nonterminals and an edge from A to B iff A B^ e P, then the left-
comer relation can be computed as the transitive closure T of D. We may also 
find useful the transpose graph of T, the converse relation right-corner 
B < A A > B. Extending this relation to tokens, we get a wordlink relation, 
wAA:w has wordlink relation to A whenever w can be the first token in 
some A phrase. For instance, in the example grammar (Figure 1), we have 
S > {NP, N, AdjP, Adj}; Adj < {AdjP, NP, S}; intensivt < {Adj, Adv, AdjP, NP, S}. 

None of these relations depend on the input string: thus, they can be 
precalculated from the grammar and stored, for instance as closures in the 
Grammar data type. Again, thanks to Haskell's laziness we don't need to 
worry about wasting efforts precalculating things without using them - with 
little performance cost, we can define whatever predicates we might think 
useful and let the implementor of the parsing logic choose between them. 

With this machinery in place, it is rather straightforward to declare filters 
for the predict inference rule. The control .Monad library offers guard for 
conditional monadic executions; used in the list monad, it will yield Prolog­
like nondeterministic backtracking by sequenced conjunctions of predicates. 

Below is again the predict fragment of Appendix A, now with two filters 
added. By omitting one or both of them or changing their order, we get five 
different variations. 

> predict f i l t e r s chart (item i r h s l _ toFind j ) 
> I not (nul l toFind) = [] 
> I i >= Itok = [] 
> I otherwise = do 
> rule <- rhslToRules grammar rh s l 
> l e t (Ih, rht) = mapsnd t a i l . IhsRhs $ rule 
> guard $ bottomup rht 
> guard $ topDown Ih 
> 
> return $ item i Ih [ ( i , r h s l , j ) ] rht j 
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> where 
> bottomup [] = True 
> bottomup (r:_) = j < Itok && wordLink grammar r (T $ tokens j ) 
> topDown Ih = any (not nu l l ) $ map (S.findcustomersAtFor chart i ) 
> (rightcorners grammar Ih) 

Generally, filters will give smaller charts, at the cost of some calculation 
overhead. The smaller charts may additionally save some later calculations. 
However, the optimal number and order of filters depend on the grammar and 
the input; and filters need not come with any savings at all. 

5 Constructing parse trees 
Parsing usually involves not only recognition of a given string of tokens with 
respect to some grammar, but also reconstruction of all possible parse trees 
that the grammar hcenses for the string. Of course, some grammars and some 
strings will yield exponentially many such trees, and a naive implementation 
which stores entire trees directly in the chart will consequently run in 
exponential space (and time). 

A better approach is to add a field to each item, so that each passive (i.e., 
completed) edge from i to j can be represented by a tuple. That is, as soon as 
we have found some category between i and j , we record it in the completed 
item, permitting us to store exponentially many trees in polynomial space. 

When the chart is finished we filter out active (i.e., non-finished) edges. 
The remaining items, corresponding to confirmed phrases, can again be 
described by a CFG, only now with the original categories replaced by tuples 
(category, from, to); if the number of possible parse trees is finite, this 
derived grammar will be non-recursive. If we, as above, represent this 
simpler grammar by an IhsToRules function (cf. Section 3.4), a generic 
folding function for parses, foldparse, might look like: 

> foldparse :; 
> —given a non-terminal nt, return relevant grammar rules 
> (Symbol a b -> [Rule a b]) 
> —what to do when we encounter a terminal (T t ) 
> -> (symbol a b -> b2) 
> —how to combine the results y ie lded by d i f fe rent rules 
> -> ([bl] -> b2) 
> --how to combine the results given by d i f f e ren t cats i n rhs of a s ing le 

production 
> -> (Symbol a b -> [b2] -> bl ) 
> —where to s tar t (some nt) 
> -> Symbol a b 
> - - fo ld ing resu l t 
> -> b2 
> 
> foldParse expand terroF combineRulesF combineRHS symbol = f symbol 
> where f sym | isTerm sym = termF sym 
> I otherwise = combineRulesF (map aux (expand sym)) 
> aux rule = combineRHS (Ihs rule) (map fgt (rhs ru le) ) 
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For instance, we can use foidParse to count parse trees: 

> countPTrees ;: (Ord b, ord a, show b. Show a) => [I.Item a b] -> i n t -> 
integer 

> countPTrees chart n = foldparse 
> ClhsToRules grammar) 
> (const 1) - - a -> integer 
> sum - - [integer] -> integer 
> (\_ sums -> product sums) — [Integer] -> integer 
> (startsymbol grammar) 
> where grammar = chartToGrammar chart n 
> 

Or we can use it to build parse trees one by one, for later formatting and 
printing. 
> data ParseTree a b = PLeaf a 1 PNode b [ParseTree a b] der iv ing Ord 
> 
> buildTrees :; (ord a, ord b) => 
> Grammar a b -> Symbol a b -> [ParseTree (Symbol a b) (Symbol a b)] 
> buildTrees grammar = foldParse 
> (IhsToRules grammar) 
> (\term -> [PLeaf term]) — Symbol a b -> [ParseTree] 
> concat - - [[ParseTree]] -> [ParseTree] 
> cproduct - - [[ParseTree]] -> [ParseTree] 
> where cproduct Ihs rhss = map (PNode Ihs) (crossProduct rhss) 

6 Space and time complexity 
For a particular position (i.e., Earley state) k in the input string, each element 
in the rhs of each phrase category rule may yield an edge for each previous 
position j <k. Thus, the chart corresponding to position k has size 0(n|P„|5) 
where 5 is length of the longest rhs, and the size of the entire chart is 
0(n̂ |P„[5). Excepting the initial 0(n) axioms, at any time the agenda can 
contain items referring to state k only; it is thus also of size 0(n|Pn|5). 

As for time, each item on the agenda, in total 0(n |̂P„i5), will act as a 
trigger exactly once, and it may yield at most 0(n|Pn|5) new items through 
complete (and another 0((P„|) via predict). These must be checked for 
redundancy against the agenda. Constant-time lookup for the chart and 
grammar operations would give us a total of 0(n̂ |P„̂ |5̂ ), matching imperative 
solutions. Using maps, we retain referential transparency but even with the 
ideal indexing scheme (cf Section 3.6), we pay a slight performance cost: 
0(n^|P„P5Mg(n|Pj5)). 

We have relied on finite maps, with inherent logarithmic access time. 
Another candidate is hash tables, which in theory should give constant rather 
than logarithmic time for lookups. However, hash tables use memory 
destructively; while sometimes useful, they therefore do not fit very well into 
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the pure functional paradigm. Furthermore, in the main Haskell 
implementation available at the time of writing (ghc 6.8), in practice they are 
often slower than maps. 

The usefulness of the filters of Section 4 also relies on efficient 
implementations of the relations wordtink and rightcorner relation. Again, 
we prefer finite maps. 

Generation of parse trees is of course exponential, as there may be 
exponentially many of them. However, thanks to laziness, the space 
requirements for enumerating the parse trees are modest. 

7 Conclusion. Future directions 
The described deduction engine aims for purity, modularity, and declarativity 
rather than speed, and there is a slight performance penalty. We have so far 
not carried out any rigourous benchmarks; while the engine seems reasonably 
useful for simple practical purposes, an obvious next step involves more 
principled comparisons. We were careful to design the critical stmctures 
(Grammar, Chart) as ADTs to make room for future improvements (although 
the interfaces still are somewhat experimental). 

We simulated non-determinism passably by exploiting the do notation and 
the list monad. Less elegantly, we also relied on explicit state passing. A 
more uncompromising and challenging approach, not pursued here but 
certainly worth investigating, implies a formulation which does not depend 
on global state, as Ljunglof 2004 does for Kilbury-style chart parsing. An 
even greater challenge, following Shieber et al., is of course to expand the 
framework to express more diverse grammar formalisms, such as tree-
adjoining and categorial grammars. 
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Appendix A . 
Kilbury (1985) bottom-up parsing expressed in a functional deductive 
system, assuming item declared as before. The two guard lines add bottom-
up and top-down filtering. They can change places, or either one or both of 
them can be omitted, yielding five different variations of the basic algorithm. 

> — defined elsewhere: mapsnd f (a, b) = (a, f b) 
> 
> goal :: (Eq a, Eq b) => Grammar a b -> Tokens a -> Item a b -> Bool 
> goal gr C_, Itok) (Item 0 found _ [] n) = isstartsymbol gr found && n == Itok 
> goal = False 
> 
> axioms grammar (tokens, Itok) = start ++ scan 
> where 
> s tar t = l e t N X = startsymbol grammar in [Item 0 (D x) [] [N x] 0] 
> scan = do 
> ( j , t ) <- map (\i -> ( i , tokens i ) ) [O..ltok-1] 
> 
> return $ Item j (T t ) [ ( j , (T t ) , j+1)] [] (j+1) 
> 
> inferenceRules grammar (tokens, Itok) = [predict, complete] 
> where 
> 
> complete chart (Item i a alpha ((sym@(N _)):beta) k) = do 
> Item _k symbol gamma [] j <- S.findCompletedBeginningAt chart k 
> guard $ symbol == sym 
> 
> return $ Item i a ((k, sym, j ) ;a lpha) beta j 
> 
> complete chart (Item k (sym@(N _)) gamma [] j ) = do 
> Item i a alpha (_sym:beta) _k <- S.findCustomersAtFor chart k sym 
> 
> return $ Item i a ((k, sym, j ) :a lpha) beta j 
> 
> complete chart _ = [] 
> 
> predict chart (Item i rh s l _ toFind j ) 
> i notNull toFind = [] 
> I i >= Itok = [] 
> I otherwise = do 
> rule <- rhslToRules grammar rh s l 
> l e t (Ih, rht) = mapSnd t a i l . IhsRhs $ rule 
> guard $ bottomup rht 
> guard $ topDown 1h 
> 
> return $ Item i Ih [ ( i , r h s l , j ) ] rht j 
> where 
> bottomup [] = True 
> bottomup (r:_) = j < Itok && wordLink grammar r (T (tokens j ) ) 
> topDown Ih = any notNull $ 
> map (S.findCustomersAtFor chart i ) (Ih : rightcorners grammar Ih) 
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