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Abstract 
A novel method to account for dynamic speaker characteristic properties in a 
speech recognition system is presented. The estimated trajectory of a property can 
be constrained to be constant or to have a limited rate-of-change within a phone or 
a sub-phone state. The constraints are implemented by extending each state in the 
trained Hidden Markov Model by a number of property-value-specific sub-states 
transformed from the original model. The connections in the transition matrix of 
the extended model define possible slopes of the trajectory. Constraints on its 
dynamic range during an utterance are implemented by decomposing the trajectory 
into a static and a dynamic component. Results are presented on vocal tract length 
normalization in connected-digit recognition of children's speech using models 
trained on male adult speech. The word error rate was reduced compared with the 
conventional utterance-specific warping factor by 10% relative. 
 
Introduction 
Mismatch between training and test conditions 
is a major cause of performance degradation in 
automatic speech recognition. Much effort has 
been invested into reducing this mismatch 
using adaptation and normalization techniques. 
A special adaptation category is based on 
predictive modelling (Gales, 1998). In this 
approach, explicit knowledge of how specific 
properties of the speaker or the acoustic 
environment affect the speech signal is applied 
to adapt the model to such conditions without 
the use of separate adaptation data. The 
technique has been used to compensate for 
mismatch in background noise (Gales, 1998), 
vocal tract length (VTL) (Lee and Rose, 1996) 
and voice source quality (Blomberg and 
Elenius 2009).  

Adaptation based on predictive modelling 
typically uses the unknown test utterance itself 
as adaptation data. A transform, which 
operates on all frames of the utterance or all 
the trained models, is adjusted to maximize the 
likelihood of the decoding process. This 
procedure has been successfully applied in 
Vocal Tract Length Normalization (VTLN) on 
both adult and children’s speech (Potamianos 
and Narayanan, 2003; Giuliani et al., 2006; 
Blomberg and Elenius, 2008). The transform 
in VTLN is a warping function which expands 
or compresses the frequency axis of the input 
signal or the trained model before matching. 

However, there are arguments against the 
use of a time- and, accordingly, phoneme-
invariant VTL transform. The effective vocal 
tract length of a speaker is dynamically 
increased/decreased by protrusion/spreading of 
the lips and by lowering/raising of the larynx 
(Fant, 1960; Dusan, 2007). Especially the 
larynx height can, to a large degree, be 
changed without shifting the perceived 
phonetic identity. This may give rise to intra- 
and inter-speaker variability for repeated 
pronunciations of the same word sequence. 
Another argument is that the length difference 
between two vocal tracts is in general not 
evenly distributed. For this reason, the 
frequency mapping function between their 
transfer functions is phoneme-specific. For 
example, phonemes with their main resonance 
frequencies belonging to the mouth cavity are 
expected to be quite insensitive to difference in 
pharynx length. The potential of phoneme-
dependent warping has been demonstrated 
both in terms of formant frequencies (Fant, 
1975) and cepstral deviation (Potamianos and 
Narayanan, 2003).  

In recent years, increased interest has been 
directed towards a time-varying warp factor in 
VTLN to account for the above effects. Miguel 
et al. (2005) estimated a frame-specific warp 
factor by a three-dimensional Viterbi decoding 
process. Blomberg and Elenius (2007) 
searched for the best combination of warp 
factor specific phone models for the test 
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utterance. Maragakis and Potamianos (2008) 
used a two-pass method, where spectrally 
similar regions of the test utterance were 
transformed by the same warp factor. Elenius 
and Blomberg (2009) computed phoneme-
specific warp factors for a group of children 
using adult models. Although they achieved 
systematic differences between the factor 
values, the use of these on another child group 
with the same age distribution improved the 
recognition accuracy only marginally. 

The studies report little or moderate 
improvement from using phoneme-dependent 
and time-varying warp factors. However, the 
results should not be seen as a final assessment 
of the idea, since there are still approaches to 
the problem which have not yet been explored. 
In this paper, we propose and evaluate new 
methods for the implementation of dynamic 
warp factors. In short, a standard HMM is 
modified by extending each state by a number 
of warp factor specific sub-states. Constraints 
on the warp factor trajectory are implemented 
in the transition matrix. The trajectory can be 
specified to be constant or to have a 
constrained rate-of-change within realizations 
of phones or phone states. We have studied 
frame-wise adjustment in either of two ways: 
by unconstrained rate-of-change of the warp 
factor and by limiting the change to ±1 
quantization step. Comparison is made with a 
phone-model-dependent warp factor, which 
gives an identical value for all instantiations in 
the utterance of a phone model, and with the 
conventional case, a time-invariant warp factor 
value for the whole utterance.  

Although the speaker property used in this 
report is vocal tract length, the approach 
should be applicable also to other speaker and 
environment characteristics with time-varying 
behaviour, such as speech loudness, voice 
source quality, speech rate and fluctuating 
background noise. 

Method 
Dynamic modelling is accomplished by 
extending the HMMs of the acoustic model 
with a speaker characteristic dimension. New 
states are added in order to model property 
values deviating from those in the training 
data. The probability density functions of the 
new states are derived from the original state 
distribution by a speaker characteristic 
property transform. Thus, a probability density 

function for a new speaker characteristic 
property value is predicted based on the 
original pdf and a parametric transform. The 
rate-of-change constraints are implemented by 
means of changing the state transition 
probabilities in the extended model, which we 
will refer to as a Speaker Characteristic 
Augmented HMM (SCA-HMM). Further 
details of the method are given in (Elenius, 
2010). 

Phone model specific warping 
Phone model specific warping does not require 
the SCA-HMM representation, and can be 
implemented as a standard HMM. The warp 
factors are estimated in a combined 
recognition-estimation step, in which a full 
recognition procedure is performed for each 
combination of factors considered. The search 
objective is to find the set of individually 
warped phone models, which maximizes the 
likelihood of the utterance. An exhaustive 
search is computationally very heavy and a 
reduction of the search space is required to 
make the search feasible. In this report, the 
warp factor is determined separately for each 
phone model, while the other models have an 
initial default warp factor value, as in 
Blomberg and Elenius (2007). Although the 
separate search has been shown to be sub-
optimal, it is included here for comparison 
with other estimation methods. 

Phone and sub-phone instance specific 
warping 
The spoken realization of a phoneme is 
influenced by several variability sources, such 
as phonetic context, its position in the 
utterance, within a stressed or unstressed word, 
etc. It is thus unlikely that two realizations in 
the same utterance would have identical warp 
factors. This reduces the efficiency of phone 
model specific values. To account for this 
effect, phone-instance-specific warp factors 
can be used.  

There is also motivation for changing the 
warp factor within a phone, i.e., between sub-
phone segments. One example is the occlusion 
and the release phase of unvoiced plosives, 
which have different characteristics and should 
be modelled differently. The occlusion phase is 
likely to consist mostly of background sounds 
which are speaker-independent, while the 
release has speaker characteristic features. 
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These segments need to be compensated 
differently.  

Variability in the movements of the 
articulators may cause a need to change the 
warp factor on a frame-by-frame basis. In 
general, the rate-of-change is expected to be 
slow due to the limited speed of the 
articulators, but more rapid changes might be 
required at phoneme boundaries and in 
transitional regions. To model this effect, 
different constraints should be used within and 
between phone-instantiations. We have chosen 
unconstrained rate-of-change at transitions 
between models. This is also motivated from a 
computational point of view, since 
constraining the trajectory across model 
boundaries would require an extensive increase 
in complexity using the current approach. 

As mentioned above, the expansion of a 
standard HMM into an SCA-HMM adds sub-
states to each original HMM state, where each 
of the new states represents a transformed 
version of its source state. Transitions between 
states are then added to model the different 
types of factor dynamics. The structure of the 
new SCA-HMM is indicated in Figure 1. We 
will refer to the states of the original HMM as 
main-states in the SCA-HMM. The new warp-
specific states will be described as sub-states 
of the original main-states.  

 

 

Figure 1. An SCA-HMM with a speaker-
property value index, p, mixture, m, and main-
state index, s. The original model is a three-
state left-to-right HMM. 

Constraints on the rate-of-change are 
implemented by selecting a subset of the 
possible transitions. In cases of more than one 
connection from a sub-state to other sub-states, 
uniform transition probability distribution is 
used.  

Phone-instance-specific warping is realized 
by only allowing transitions between sub-states 
with the same warp factor. This will force the 
warp factor to remain fixed throughout the 
SCA-HMM. In Figure 1, this corresponds to 
having only horizontal connections between 
the main-states. 

Sub-phone-specific warping is realized by 
adding transitions between sub-states of 
different warp factors between the main states 
of the phone-instance-specific model. In 
Figure 1, these are represented by non-
horizontal connections between the main-
states. 

Frame-specific warp factors are 
implemented by adding intra-main-state 
transitions to the sub-phone-specific case. 
These correspond to vertical transitions within 
a main-state in Figure 1. Two types of possible 
transitions are used; one that enables a change 
to any other value and one that limits the factor 
change rate to one quantisation step. In the 
latter case, the same constraint is also applied 
to the inter-main-state transitions. 

Static-dynamic factor decomposition 
A straightforward candidate rule for 
constraining the allowed warp factor range 
during an utterance is to make certain that the 
range is sufficient for most speakers. However, 
this will permit the warp factor trajectory to 
vary between values corresponding to the 
shortest and the longest allowed vocal tracts in 
the same utterance. This is likely to limit 
recognition accuracy. We have approached this 
problem by decomposing the trajectory into a 
static, utterance specific, and a dynamic 
component, which are jointly optimized. The 
static component is estimated in a grid search 
while the dynamics, being modelled in the 
transition matrix, are determined in the Viterbi 
process. In this way, the dynamic range can be 
reduced by excluding inter-speaker variability 
of the static component. To reduce the 
increased computational demand of the joint 
two-fold search, existing speed-up techniques, 
such as a two-pass method (Lee  and Rose, 
1996) or a tree-based procedure (Blomberg 
and Elenius, 2009), can be applied. 

Experiments 
An experiment has been performed on the 
connected-digit corpus TIDIGITS. A speech 
recognition system was trained on the adult-
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male part of the full training set. Evaluation 
was performed on the child part of the full 
TIDIGITS test set. The child subset consists of 
more than 3800 strings with more than 12600 
digits.  

In an experiment using a single component 
representation of the warp factor, the trained 
phone models were extended to SCA-HMMs 
by frequency warping with a warp factor in the 
range 1.0 to 1.7 with a step of 0.02. During 
recognition, warp factors were estimated 
specific to the utterance, a phone model, a 
phone instance, a phone state instance, or a 
speech frame. For the frame-wise estimation, 
an unconstrained rate-of-change of the warp 
factor was compared to one limited to ±0.02 
between frames within a phone instance. In 
both cases, the inter-phone-instance change of 
warp factor was unconstrained. 

Experiments with a static and dynamic 
component were performed using an SCA-
HMM of 9 sub-states per main-state, spanning 
a dynamic interval of 0.16. Its centre 
represented the static component, which was 
determined by a grid search in steps of 0.02. 
The range of the combined warp method was 
limited to the same interval as above. 

The experiments were performed using a 
connected-digit recognition system with 
triphone HMMs implemented in HTK. Each 
acoustic model consisted of 3 states with a 
GMM consisting of 16 mixtures and diagonal 
covariance matrices. A 39-dimensional 
acoustic feature vector was composed by 12 
MFCCs and normalized log energy and their 
velocity and acceleration coefficients. Feature 
extraction was performed at a frame rate of 
100 Hz with a 25 ms Hamming window and a 
mel-scaled filterbank of 38 filters in the range 
corresponding to 0 to 7.6 kHz. 

Frequency warping was implemented as a 
piece-wise linear function using a linear 
transformation of models in the cepstral 
domain (Pitz and Ney, 2005). To avoid 
erroneous warping due to cepstral smoothing 
effects during transformation, training was 
performed using 18 cepstral coefficients. After 
warping the trained models, their mean and 
variance vectors were reduced to contain the 
12 lower static, delta and acceleration 
coefficients, like in (Blomberg and Elenius, 
2008). 

Results and Discussion 
The word error rates of the investigated 
methods are shown in Table 1. The original 
error rate using adult models was considerably 
decreased by all VTLN methods. Using single-
component representation, none of the 
estimation units was significantly better than a 
standard utterance-specific warp factor. In 
contrast, the decomposed static and dynamic 
representation demonstrated clear superiority 
over the utterance-specific factor and all 
single-valued estimation units, with a 
minimum WER of 3.47% for state-instance-
specific factor. Similar relations between the 
different estimation units were observed as for 
the non-decomposed case.  

The superior result of the state-instance 
specific factors compared with that of the 
phone-instance condition supports the initial 
argument that the warp factor should be 
allowed to differ between sub-phonemic 
sound-events.  

The error rate of the phone-model-specific 
factors is substantially higher than the other 
techniques. One reason for this might be found 
in the suboptimal search algorithm.  

Table 1. WER of VTLN methods. The baseline 
result for original male models is 47.55%. 

 Estimation technique 
VTLN 
estimation unit 

Single 
component  

Static & 
dynamic  

Utterance 3.85 - 
Phone model 6.47 - 
Phone instance 4.19 3.69 
State instance 3.84 3.47 
Frame,  Δ 
unconstrained 

3.87 3.67 

Frame,  |Δ| <= 
0.02  

4.13 3.71 

 
An example of chosen warp factor 

trajectories for a child’s utterance (from the 
TIDIGIT training set) is shown in Figure 2. 
The unconstrained frame-specific warp factor 
exhibits a substantial variation from frame to 
frame. A high rate-of-change is used for 
acquiring the best match. Still, the repetitions 
of identical digits exhibit similar, regular, 
patterns.  

The heavily rate-constrained frame-based 
trajectory is evidently too smooth to adjust to 
rapid intra-phone effects. It is probable that an 
intermediate rate limit would give a better 
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result. A few instances of abrupt change in the 
trajectory are explained by the fact that the rate 
was unconstrained at phone boundaries.  

The sub-phone instance specific method 
results in a warp factor, which is constant 
within main-states and changes instantly at 

state transitions. It partly includes the abrupt 
changes observed in the frame-based method 
but removes within-state variation.  

Static-dynamic decomposition can be 
observed to correct excessive warping of 
single component warping at several positions. 
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Figure 2.  Warp-factor as a function of time for frame, state, and phone instance-specific warping for 
a boy’s utterance “3 3 oh 3 oh”. Gray and black curves represent the use of a single-component and a 
static-dynamic decomposed warp factor, respectively, during decoding. An utterance-specific factor 
was estimated to 1.24. 
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Conclusion 
A novel method to incorporate time-

varying speaker characteristic properties into 
the acoustic model was presented and applied 
to vocal tract length normalization. The main 
performance improvement compared with the 
conventional utterance-specific warping is due 
to the factor decomposition into a static and a 
dynamic component. In this way, the dynamic 
range during an utterance is limited to what 
can be expected for an individual speaker. Of 
the tested conditions, the best position for 
implementing the dynamic component was 
between phone sub-states, keeping the warp 
factor fixed within each state. The method 
lowered the standard utterance-specific 
warping error rate by 10% relative. 

We are optimistic regarding its potential for 
further improvement. The proposed technique 
is flexible and was straightforwardly 
implemented in a conventional phone-based 
HMM system. The rate-of-change constraints 
of the warp factor are efficiently implemented 
in the transition matrix. This approach makes it 
possible to train model-specific dynamic 
properties of the warp factor using 
conventional training procedures. Further work 
will be directed to such training. 

The proposed approach is not limited to 
frequency warping, but can be applied to other 
time-varying speaker characteristic and 
environmental properties, such as voice source 
quality, speech rate, non-stationary 
background noise, microphone distance, etc. 
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