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ABSTRACT

In this paper, we discuss the construction of an algorithm that classifies pitch movements
according to the IPO intonation labelling. The classification is performed by a feed-forward
network, interpreted as o multi-linear classifier. In speaker-independent tests on a corpus
of speech read by non-professionals, up to 81 % of the 279 piich movements in the test
corpus were correctly classified. These results are obiained by using information from the
sampled speech data files only; a grammar will be used in the second stage of this study.
Keywords: Automatic classificalion, multi-linear classification, IPQ-intonation system,
speech recognition.

1. INTRODUCTION.

In this paper, an algorithm will be described aiming at the (semi-)automatic classification
of pitch movements. The algorithm is trained and tested for Dutch. Its input is a sampled
data file of an utterance; its output consists of a character string containing intonation
transcriptions {‘labelling’). Optimally, the algorithm should come up with a labelling that
is indistinguishable from transcriptions produced by human intonation experts.
Algorithms that classify elementary patterns of speech melody are useful, e.g., the de-
tection of phrase boundaries and accented syllables, the filtering of acoustically based
hypotheses from an ASR-algorithm (Ostendorf, Wightman and Veilleux, 1991; Wightman
and Ostendorf, 1992), and the labelling of large speech corpora.

In the present approach, the intonation labelling convention will be used which is known as
the IPO-labelling. This labelling is chosen due to the relations posed in the theory between
acoustic realization and perceptual labels ('t Hart, Collier, and Cohen (1990). This system
defines ten labels (five different pitch rises labelled ‘1’ to ‘5’, five falls labelled ‘A’ to ‘E’),
with additional labels referring to a ‘pointed hat’ (‘P’). Syllables bearing a perceptually
relevant pitcl movement can be labelled with at most one of these labels. Five labels are
most common: ‘17, ‘2, ‘A’, ‘B’, and ‘P’ (also denoted ‘1&A’). The functional difference
hetween the rises ‘1’ and ‘2 and falls ‘A’ and ‘B’ corresponds to a phonetic difference with
respect to the exact timing of the pitch movement: Accent-lending movements such as ‘1’
and ‘A’ are generally earlier in the syllable than are the non-accent-lending movements 2!
and ‘B’

The ‘TPO-intonation-grammar’ prescribes the permitted sequences of labels within one
utterance ('t Hart ef al., 1990).

2. DESIGN OF THE ALGORITHM.

Several attempts have been made to come to a (semi)automatic classification of pitch
movements, using, e.g., dynamic programming (Brew and Isard, 1990), or Hidden Markov
Modelling (Butzberger, 1990). These approaches have proven to be fairly successful. We
did not opt for these approaches, however, due to the difficulty of a proper interpretation
of the many model parameters.
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In this study, classification is based on multi-linear discrimination on features extracted
from the sampled data file. The algorithm consists of two steps: (a) training, which is based
on a labelled training corpus, and (b) classification, based on multi-linear discrimination.
(a) Training.

For the construction of a labelled database, a number of 800 Dutch sentences have been
recorded. The average number of words per sentence was 7.4. These sentences (elicited
speech) were spoken by over forty different speakers, male as well as female.

Sentences were manually labelled according to the IPO-system by four expert intonologists
independently. A common subset was labelled, on which a consensus labelling has been
defined. Eventually, a resulting total of 249 sentences were used in the test described
below. The total number of labelled syllables was 817 (an average of 3.3 labelled syllables
per sentence).

The distribution of the labels over the set of labelled syllables is ‘1’ 31 %, ‘2° 14 %, ‘A’ 15
%, ‘B’ 14 %, ‘P’ 16 %, and other 10 %.

For each label, a corresponding class of acoustic realizations was constructed. The data
space was constructed by feature representation in four steps (cf. Ten Bosch, 1993): (1)
Pitch determination, (2) Correction of pitch measurements, (3) Determination of vowel
onsets, and (4) Choice of pitch reference points.

Step (2) is included since the pitch determination algorithm usually returns the correct
pitch as perceived on a (sub)syllabic scale. The actual pitch as it is perceived on the
sentence scale (without gating) may deviate from the PDA outcome. A reinterpretation
of the pitch contour results (figure 1).

In step (4), five pitch measurements per syllable were chosen as reference measurements:
two measurements in the previous syllable, two measurements in the current syllable, and
one measurement in the next syllable. These measurements were anchored at the moments
of vowel onsets {Ten Bosch, 1993). The resulting data set (denoted D) has dimension 5.
We make two observations about this representation. It is rather ‘poor’ in the sense
that it does not make use of other spectral features. However, this ‘poor’ representation is
sufficiently rich to cover the main distinctive features between the label classes (see below).
Secondly, it deviates from the more standard representation spanned by ‘excursion size’,
or moment of start and end of a pitch movement. The results of the training step allow
these ‘classical’ features to be used in a description of class prototypes, but these features
are certainly not unique.

(b) Classification. .

The classification training was done on a subset of 65 % of the available set of labelled
syllables. Most label classes in D are convex; they however do not necessarily obey a
gaussian distribution (Ten Bosch, 1993). Consequently, the design of a Bayes classifier
is not straightforward, and the recognition technique that is based on nearest prototypes
may require more than one prototype per class (Ulmann, 1973, chapter 4). For the
classification, a multi-linear discrimination was applied (cf. Fukunaga, 1972). The actual
implementation of this optimization is done by a multi-layer classifier, i.e. a multi-layer
perceptron {MLP), provided with a 5-ny-ny-topology, ns (2 < ny < 5) and n, denoting
the number of hidden units, and the number of output categories, respectively. For small-
sized topologies, the MLP-results can be interpreted in a precise manner by relating them
to a posteriori probabilities and CART-node questions (Richard and Lippmann, 1991;
Breiman et al., 1984).

In table 1, a summary is given of the results. The table shows results for several values
of n, and ny. The normalized error (norm. error) denotes the mean error at an output
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unit. The column ‘class. rate’ denotes the {raction of correctly classified pitch movements.
To cross validate the minimization, it was performed on 65 % of the available data, and
tested on the remaining 35 % (279 syllables).

The results can be interpreted as follows. If the number of output categories n, is clamped
to 2, the best two ‘class groupings’ are {A, B} and {1, 2, P} (first row in table 1). Here,
P’ is more likely to belong to the group {‘’, ‘2'}, rather than to {*A’, ‘B’}. An increase in
the number of hidden units ny, i.e. of the number of separating hyperplanes L; used in the
multi-linear discrimination in D, shows an increasing classification rate (class assignment).
If each class is to be labelled separately, an acceptable value of ny, is 5, as can be seen from
the last four rows. As is suggested by the last row, it does not make sense to increase the
discriminative power within D in order to optimize the classification rate substantially.
The result presented in the last row is tentative. It is the best result among 35 minimiza-
tions with substantially different initializations for the positions of L;.

3. DISCUSSION.

In this paper, an attempt has been made to classify pitch movements by multi-linear
discrimination. The main results are presented in table 1. These results have a unique
interpretation from the point of view of technical optimization. The data obtained so far
suggest that unigue prototypical acoustical realizations of a class do not exist. In other
words, prototypes do not specify the class topology on their own. Only under certain con-
ditions, such as equal covariance matrices for each of the classes, the linear classification
can be translated into a prototypical approach. These conditions are likely not to hold
in D. The present approach allows to look for distinctive features in the form of a set
of hyperplanes L; in D, each hyperplane representing a specific ‘property’, i.e., a linear
combination of the input features.

The question of how the classification results can be lined up with the ‘classical’ results
in 't Hart ef al. (1990) is solved by a close examination of the resulting MLP-weights.
This shows that the difference between, e.g., ‘1’ and ‘2’ is mainly due to the value of
the syllable-initial pitch in the current syllable relative to the syllable-final pitch in the
previous and the current syllable. The behaviour of the ‘classical’ parameters that were
known to be class-specific (e.g. timing and excursion differences, see 't Hart et al., 1990)
could be traced back in the test data as a trend only. This suggests that ‘higher order’
prosodic information (accents, grammar) must be used to further disambiguate between
‘1" and ‘2" or between ‘A’ and ‘B’ ’

A final remark deals with the use of an intonation grammar. The disambiguation capa-
bility of the grammar presented in 't Hart el al. (1990) is, on the basis of the database
presently used, for {1, 2} and {A, B} estimated to be 0.3. This means that the grammar
disambiguates in the questions of the tree nodes {1, 2} and {A, B} in about one third of
these cases.
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Figure 1. An ezample of correction and stylization of measured pitch. Along the abscissa,
time is plotted. The pitch (scaled) is indicated along the ordinate. Correction and styliza-
tion remove perceptually irrelevant pitch jumps (e.g., octave errors).

Bottom: the original pitch measurement and its stylization.

Top: corrected pitch measurement and its stylization.

Table 1: Results of the classification as a function of the two parameters ny, and ny.
For an ezplanation see the text.

np | ny | norm. error class. rate classes

2 2 0.81 0.79 {L,2} U {P, A, B}

2 2 0.54 0.85 {1,2,P} U {A, B}

3 2 0.59 0.83 {1,2} U {P, A, B}

3 2 0.33 0.89 {1,2,P} U {A, B}

3 3 0.41 0.81 {1,2} u{P} U {A, B}

4 3 0.22 0.92 {1,2} u {P} U {A, B}

4 5 0.42 0.54 {1} u {2} u {P} U {A} U {B}
5 | 5 0.27 0.81 {1}u {2} u {P} U {A} U {B}
6 5 0.23 0.83 {1yu {2} u {P}u{A} U {B}
>7] 5 < 0.23 0.83 < rate < 0.86 7 | {1} U {2} U {P} U {A} U {B}

245





