A simple qualitative model for the vibration

of the vocal folds

Lars Garding

The purpose of this short note is to establish a simple
qualitative model for the vibration of the vocal folds. Its
basic assumptions are physically credible, its main aim is
pedagogical and it can be explained with a minimum of
mathematics. It is no real substitute for the more ambitious
models of Flanagan and Landgraf (1973) and Tietze (1973)
which take into consideration that the closure of the vocal
folds is not uniform. The lower part closes first. Therefore
these wodels represent the vocal folds by two masses on each
zide. Our model just uses one mass. Its assumptions are as

follows.

A. The tensions and the massés of the muscles involved,
mainly the vocalis and the cricothyroid muscles, determine a

damped vibratory system 5 with a certain frequency w/2T Hz.

B. The duration of the closed phase is half of the period of

S.

€. The transglottal pressure P and a rebound B from §
initiate the opening movement of the system with a certain

{orce @ of very short duration.

D. When the movement initiated by & has reached its maximum,

a Rernpulli force R sets in which decreases proportionally
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to the opening between the vocal cords.

The assumption A is an uncontroversial simplification. The
basic frequency w is determined by the tension T of § and
its mass M in such a way that it decreases as T decreases
and M increases. (The theoretical formula in the undamped
case is w2=T/M). The assumption B is motivated mainly by the
observation that the closed and open phases of the glottal
cycle are approximately equal. Since the modifications of
the frequency w introduced by the Bernoulli force are never
very large (see below), it has seemed natural to tie the
duration of the closed phase to the state of the system S,

The assumptions C and D express a convenient way of
circumventing the complicated interaction between the
movements of the vocal cords and the flow through the
glottis, 0 expresses the conventional view that the
Berrnoulli sucking force helps close the glottis but adds to
it the assumption that the force sets in when the opening is
maximal, This is natural because the Bernoulli force is
largest when the flow is stationary and the natural moment
for this to happen is when the opening of the glottis is
maximal. As the glottis closes, the flow becomes less and
less stationary. The assumption that the decrease of R
follows the size of the opening is somewhat ad hoc but  not
unreasonable.

Note that the assumption C considers the force ® to be
composed of subglottal pressure P and a rebound B. Under
stable phonation, & is of course constant. For a beginning
phonation, the rebound vanishes +for the first cycle but
picks up to a stable value later. This +its with the

increasing amplitudes of a beginning phonation.
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The model seems to be able to explain a number of known
facts about the vibration of the vocal folds.

Figure | shows the changing shape of the glettal cycle
when 5,P,8 are fixed and the Bernoulli force R increases
/1/. When R is zero, the assumption A says that the open
part of the glottis cycle follows a damped sine curve whose
maximum is proportional to &/M. The sine cdrve in the figure
is only slightly damped. We see that the closing of glottis
becomes faster as R increases. In this way, the curve
representing the open phase acquires its characteristic
asymmetric form (see e.g. Fant 197% and Anathapadmanabha and
Fant 1982) at the same time as the period of the glottal
cycle decreases, i.e. as the frequency increases.

An  increased Bernouwlli force can be thought of as an
efficient way of producing sound. Favourable conditions for
this are regular movements of the vocal cords with no
asymmetries or irregularities. It is probable that trained
singers realize these conditions. A certain support for this
statement is the fact that the ratio of the duration of the
open to the closed phase is smaller for trained singers than
for untrained ones (Sundberg and Gauffin 1979).

It can be shown mathematically (see the formula (3) of
the appendix) that if S is +ixed and 8 and R are
proportional to transglottal pressure P, then the duration
of the glottal cycle is independent of P (Fig.,2). But this
is only approximately true. As a matter of fact, experiments
have shown that when transglottal pressure increases, the
duration of the glottal cycle decreases so that the frequncy
increases. A reasonable explanation for this second order
effect is that the opening force @ is not proportional to P

for large values but subproportional, i.e. it increases less
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than proportionally to P. Since the maximal glottis opening
iz proportional to 8, this means that it grows less than
proportionally to P. Then the formula (3) of the appendix
shows that this has the same effect as an increase of the
Bernouwlli force R. Hence the duration of the glottis cvcle
decreases a little when P increases (Fig. 1).

Another thing that can be shown mathematically in the
model is that the effect of the Bernoulli force R decreases
when W increases as a result of increased tension and/or
decreased mass of the system 8. This means that if w is
large, there 1is less asymmetry in the glottis curve; an
effect which has been pbserved in a striking way by the
sine-like glottograms of falsetto voice (SBundberg 1980 p.

64y /2/.

Mathematical appendix.

According to A, the glottal opening x as a $unction of

t, x=x({t) satisfies the equation

Mx® (L) +CMx’ (L) + Tx(t)=0

during the open phase. The second term on the left accounts
tor the damping. For simplicity in this account, we put C=0.
This restricts our formulas to the undamped or slightly
damped case, but no new effects will appear unless the
damping is very large.

Shortly after the impact of transgliottal pressure, the

function x{t) has the form



(1) x{(t) = (@/Mw) sinwt , w2 = T/M,

which means that Mx"(t)+ Tx(t) = @s({t) (to approximate the
short-lived force @ by an instantaneous one seens
legitimate). The function x(t) reaches its maximum Q/M when

t=t= N/ 2w. After this, the equation of movement changes to

Mx"(t) + Tx(t) + (RM/@)x(t) =0.

Hence, the equation of the closing phase of the open part of

the glottal cycle is

{2) x{t) =(8/M) rcos W{t-T1)

with t between 1 and 1+ W 2W where W is given by

(3) W2 = w2 + (R/Q).

The formula (3) shows how an increased Bernoulli force makes
the closure of the glottal cycle steeper and also that the
quotient W/w decreases as W increases and R/@ is fixed. It
alsp shows that if R and @ are proportional to P, then the
period length (/W) + (/W) is independent of P but that if @
increases less than a constant times P, then R/8 increases
with P so that W also increases and hence the period length
decreases.

The computatichs above can only be taken in a gualitative
sense, although the wmodel contains enough parameters to
permit close +its to very regular observed glottis cycles.

In my view, the importance of the model lies in the fact
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that the parameters have a very direct physical signhificance
and that the model seems to permit direct and meaningful

interpretations of many aspects of the glottal cycle.

/1/. The steep beginning of the curve is an artefact due to

the assumption that the force @ is instantaneous.

/2/. In falsetto voice, the vocal folds do not close. The
mathematical appendix covers this case too, it applied only

to the open phases above a mean opening.
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Fig. | Asymmetry and shortening of the length of the
glottal pulse when the RBernoulli force R increases. The
length of the closed phase is constant, curves with the same
number correspond.
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Fig. 2 The length of the glottal pulse is constant when the
subglottal pressure P varies and the initial force @ and the
Bernoulli force R are proportional to P
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