Vowels and Diphtongs in Standard Chinese

Jan-Olof Svantesson

Jn this article, the acoustic properties of Standard Chinese (pütōnghù) vowels and diphthongs are described. This is one of the most interesting areas of Chinese phonetics, since there are only five monophthongic vowel phonemes, which form an unusual system, but as many as eleven diphthongs, and also two triphthongs. The diphthongs exemplify different types of timing of steady states and transitions between them, and it will be seen that not only the formant frequencies of the steady states and their relation to the vowel goals, but also the timing of the transitions betweeen the steady states is important, and differs between different Chinese diphthongs ond also differs from the "same" diphthong in other languages.

Pinyin speliling (underlined) is used throughout, except in the section on phonology, where a more phonemic transcription is sometimes used (within /.../).

1. PHONOLOGY

A Standard Chinese syllable can be analyzed into an initial consonant and a rhyme. The rhyme has a kernel vowel which can be preceded by one of the medials i, \underline{u} or $i \underline{i}$, and followed by a final, which is either one of the vowels \underline{i} or \underline{u}, or one of the consonants \underline{n} or \underline{n} :

(In traditional Chinese phonology, the medial. is not considered a part of the rhyme.)

Because of the large amount of interaction between the vowels and both the preceding and the following consonant (if any), it is possible to analyze the phoneme system in several different ways, and this has also been done, see e.g. Chao 1934, Hartman 1944, Hockett 1947, Cheng 1973. In particular, the phonemic status of [1] and [讠]r i.e. if they are the allophones of a separate phoneme, or are allophones of /i/ (as assumed here) has been analyzed differently by different authors.

Here the following vowel phoneme system will be assumed:

$i \quad u \quad u$	
e	

The vowel /i/ has the allophone [1] after dental sibilants (s, \underline{z} [ts] and $\underline{c}[t s h])$, the allophone [$\mathcal{Z}]$ after postdental sibilants (sh [$\mathfrak{q}]$, zh [ţ], ch [tgh] and E [z]), and is otherwise [i].

There is no contrast between (phonetically) different mid vowels, so they will be regarded as allophones of a phoneme written /e/. It has the allophone [r] as a single-vowel rhyme (written e in the pinyin spelling), but in other rhymes it has allophones ranging from [o] to [e].

In the pinyin spelling there is a vowel o, which occurs only after labial consonants (b, p, $\underset{\text { f }}{ }$ and \underline{m}). Acoustically, o is very similar to the diphthong uo, which is in complementary distribution with o, so o will be regarded as a notational variant of uo. O is also written in the diphthongs ou, uo and ao, which are phonemicized as /eu/, /ue/ and/au/ (see below).

The following diphthongs and triphthongs occur:

iu	/iu/	ui	/ui/
ia	/ia/	ai	/ai/
ua	/ua/	ao	/au/
j.e	/ie/	ei	/ei/
uo	/ue/	ou	/eu/
ie	/ie/		
iaㅇ	/iau/	uai	/uai/

The system of diphthongs is rather symmetrical, and with the exception of iie all the diphthongs can be obtained by going from one of the four vowels/i/, /u/, /e/ or /a/ to any other (except that */ea/ and */ae/ are not found). Also the triphthongs /iau/ and /uai/ are symmetric to each other:

There is also a syllable consisting of the vowel er [e]. which is usually analyzed as /er/. In the regular syllable inventory (as written by Chinese characters), there is only this single syllable (in three different tones) with the final r, and this rhyme cannot be preceded by an initial consonant. It can be added, however, to other syllables as a suffix, with the phonetic result of an r-colouring of the syllable, with somewhat different effect on different rhymes. It is not entirely clear if this "erization" (érhua) is a feature of standard Chinese, even though it is a common feature of Bëijing pronunciation, since there is a tendency to regard erization as a vulgorism and to avoidit in Standard Chinese. Erization will not be treated in this article.

The following rhymes occur :

i				in	ing	
i				in		
u	ui			un	ong	/un/
iu					iong	/iun/
e	ei	OU	/eu/	en	eng	
ie						
ise						
no	/ue/					
a	ai	ao	/au/	an	ang	
ia		iao	/iau/	ian	iang	
				ian		
บa	uai			uan	uang	
er						

2. PROCEDURE

Four speakers of standard Chinese were recorded. Two of the speakers (B and C) were born and raised in Běijīng, one (A) was born in sūzhōu and moved to Bĕijing when he was six years old, and one (D) is from Liáoníng and has lived in Běijīng since he was 12 .

For each speaker, syllables containing each rhyme were recorded in a sentence frame (wǒ bǎ _ zi xiě hǎo), and each sentence was read twice. The syllable initial was chosen as a dental (\underline{d} when possible), and the syllables were in the high (first) tone whenever possible, and otherwise in the rising (second) tone.

The recordings were made in sound-treated rooms in Lund or Stockholm.

For each syllable, wide-band spectrograms were made on a Kay Digital Sona-Graph 7800. The frequencies of the first three formants, and also the durations of the vowels were measured on the spectrograms.

3. FORMANT FREQUENCIES

Formant frequencies of Standard Chinese vowels have also been published by Howie 1976 (for one speaker), Brotzman 1963
(reported by Howie), and Wú and Cáo 1979 (showing only charts of average F1 and F2 values).

The formant frequencies as measured in the middle of monophthongic vowels in the context C__\# are given in Table 1 .

The formants of the five main allophones of the vowel phonemes (\underline{i} [i], $\underline{i j}[y], \underline{u}[u], \underline{a}[a]$ and $\underline{e}[\gamma]$) are plotted on Figure 1 , and the formants of er [$r]$ and the /i/ allophones [1] and [l] are plotted on Figure 2.

The vowels [1] and [1] are usually described as vocalic [z] and [g]. According to Cheng 1973:13, X-ray studies by Zhōu and Wú 1963 (not available to me) show that compared to [i], the highest point of the tongue is slightly more front and the back of the tongue is slightly higher for these vowels. (The non-IPA symbols [1] and [[], which are generally used in Chinese linguistics were introduced by Bernhard Karlgren, who took [2$]$ from the Swedish dialect alphabet, where it denotes the "Viby i " occurring in Swedish dialects. This alphabet was widely used in Swedish dialectology, and its main inventor, J.A. Lundell, was Karlgren's teacher.)

The vowel pairs \underline{i} and i and e and er do not differ much in Fl or F2, but are clearly separated by F3, the second member of each pair having much lower F3 than the first.

The first two formants of vowels before nasals (i.e. in the contexts $C \ldots n$ and $\mathbb{C} \quad \underline{n}$) are given in Table 2 and on Figure 3. The main differences as compared to open-syllable vowels are: $\underset{i}{ }$ is lowered in nasal contexts, e and a are fronted before \underline{n}, and \underline{u} is considerably lowered before $\underline{n g}$ (where it is written o in the pinyin spelling) and fronted-lowered before \underline{n}.

For the diphthongs and triphthongs, the first two formants for each steady state in the spectrograms were measured, as well as the duration of each steady state and the duration of the transition between the steady states. The formant frequencies were measured in the middle of each steady state. These results are shown in Table 3 (diphthongs) and Table 4 (triphthongs). Steady state formant frequencies and duration
data for diphthongs before a nasal (n or ng) are given in Table 5.

In Figure 4, schematic drawings of average diphthong and triphthong formant frequency movements are shown on a F1-F2-diagram.

The endpoints of diphthongs which do not involve the phoneme /e/ are rather close to the respective vowel phoneme average (represented by a star on Figure 4), while the startpoints differ more, so that for instance ao /au/ and ai start from positions higher than a, and ui starts from a (acoustically) much more central position than u. Diphthongs which contain the phoneme/e/ (realized monophthongically as [r]), i.e. ie, ie, ei, ou /eu/ and uo/ve/ contain [e] ~ [ε] or [o]-like allophones of /e/.

As Figure 4:2 shows, the final a component of the diphthongs ua and ia is much fronter before the nasal \underline{n} than before ng [n].

4. DURATIONS

In Standard Chinese, there is no phonemic length distinction for vowels, but there has been some discussion in the literature about vowel quantity, in the context of tonal phonology. Woo 1969 represents contour tones (e.g. three out of four Standard Chinese tones) as sequences of level tones, and this presupposes that contour tones are assigned to sequences of more than one voiced segment. This causes no problem for rhymes which consist of diphthongs, triphthongs or a vowel followed by a nasal, but for monophthongic vowels in open syllables it means that they must be represented as a cluster of two identical vowels. To justify this, Woo presents acoustical data which shows that vowels are longer in the context C ___ than when followed by a nasal or when included in a diphthong, and says that "It is generally assumed that all pure vowels are normally long, and that vocalic clusters, which are diphthongs, consist of two "short" members" (Woo 1969:25). Walton 1983:174 doubts that there is such a general agreement, but their discussion concerns phonological interpretation rather than the physical
properties of the sounds.
Also this investigation shows that the different components of a diphthong, and also vowels before nasals, are shorter than single vowels in open syllables (see Figure 5).

On the other hand, diphthongs and vowel-nasal rhymes are in most cases longer than single-vowel rhymes. Thus Woo's statement (1969:27) that "the duration of the syllabic nucleus appears to be a constant also, irrespective of whether it is a long vowel [i.e. a single vowel in an open syllable], a diphthong, or a vowel + nasal cluster" is not confirmed by this study (Woo's data came from syllables said in isolation, however).

It is well-known that the duration of Standard Chinese rhymes is dependent on the tone of the syllable (see e.g. Kratochvil 1968, Woo 1969:24-30), and thus both the tone and the segmental composition affect the duration of a rhyme. A preliminary investigation (Nordenhake and Svantesson 1983) shows that the effects of the different tones on the duration vary with the position of a syllable within a sentence, so that for instance the falling (fourth) tone has the shortest duration of all tones in sentence final position, while it is the longest tone in sentence medially.

In this investigation, high-tone syllables have been used whenever possible. (In a few cases, syllables with rising (second) tone were used; duration data from such syllables are marked with a star in the tables and figures, since they are not comparable with the other (high tone) data.) The question how the tones affect the duration and the vowel quality - especially the quality of the diphthongs seem to be somewhat dependent on the tones - will thus not be taken up here, but will be made the subject of a special study.

Figure 5 shows average duration values for all speakers. The durations of open syllable vowels are given in Table 1 , and in Table 2, durations of vowels in rhymes with final nasal are given, together with the duration of the nasal. For monophthongs followed by a nasal., the vowel is generally shorter than the nasal, and also shorter than the same vowel in an open syllable, but also here the duration of the entire
rhyme is longer than for an open syllable.
For the diphthongs of a language, not only the goal values and the way the start and end values of the diphthong relates to these goals (which are here assumed to be vowel phonemes of the language) are important, but also the dynamics of the diphthong, i.e. the way the formant frequencjes change with time. This can be quantified in different ways; the way chosen here is to measure the formant frequencies of the steady states and the durations of the steady states and of the transition between them, and to calculate the ratio between the transition duration and the total duration. (It would also be possible to calculate the velocity with which the formant frequencies (especially $F 2$) change during the transition.) These data are given in Table 3, and are ploted on Figure 6.

This kind of analysis reveals differences between the "same" diphthong in different languages, e.g. [ai] in Standard Chinese, Hausa and Arabic (these two languages have been analyzed with the same methods as used for Chinese). In Hausa (data from Mona Lindau) and Arabic (Norlin 1984), these diphthongs can be regarded as a succession of two vowels [a] and [i], which are nearly identical to the short [a] and the [i] of the respective language, both as regards guality (formant structure) and quantity (duration). Thus, a speaker of Hausa or Arabjc first makes an [a], then goes guickly to [i] and produces that vowel. So there are two steady states, each with about the same length as a short vowel, and a short transition in between.

In Chinese, this diphthong is more gliding, with relatively short steady states, and a long transition (average ratio of transition to total duration is 50.5% for this diphthong). Furthermore, the total duration of a diphthong is usually longer than that of a monophthongic vowel (see figure 6) , but not about twice as long (as is the case in Arabic and Hausa).

ACKNOWLEDGEMENT

The work reported here was supported hy the Swedish Council for Research in the Fumanities and the Social Sciences.

Brotzman, Robert. 1963. "Research on Mandarin phonology: Vowel formant values". Project on Linguistic Analysis, Report No. 6, 7-18. Columbus: Ohio state University Research Foundation.

Chao Yuen-Ren. 1934. "The non-uniqueness of phonemic solutions of phonetic systems". Bulletin of the Institute of History and Philology (Academia Sinica) 4, part 4, 363-97. Also in Joos, ed. 1957, 38-54.
Cheng Chin-chuan, 1973. A synchronic phonology of Mandarin Chinese. The Hague: Mouton.

Hartman, Lawton. 1944. "The segmental phonemes of the Peiping dialect". Language 20, 28-42. Also in Joos, ed. 1957, 116-23.

Hockett, Charles 1947. "Peiping phonology" . Journal of the American oriental Society 67, 253-67. Also in Joos, eत. 1957, 217-228.

Howie, John. 1976. Acoustical studies of Mandarin vowels and tones. Cambridge: University Press

Joos, Martin, ed. 1957. Readings in linguistics. Washington: American Council of Learned Societies.
Kratochvíl, Paul. 1968. The Chinese language today. London: Hutchinson.

Nordenhake, Magnus and Jan-Olof Svantesson. 1983. "Duration of Standard Chinese word tones in different sentence environments". Working Papers (Department of Linguistics, Lund), 25, 105-1 $\overline{1 .}$

Norlin, Kjell. 1984. "Acoustic analysis of vowels and diphthongs in Cairo Arabic". In this volume.
Walton, Ronald. 1983. Tone, segment and syllable in Chinese: A polydimensional approach to surface phonetic structure. $\bar{I} t$ haca: Cornell University China-Japan Program.

Woo, Nancy. 1969. Prosody and phonology. Ph. D. diss., MTT. Reproduced by Indiana University Linguistics club 1972.
Wú Zōngjì and Cáo Jiànfēn. 1979. "Shíyàn yǔyīnxué zhishí jianghuà [Lectures on experimental phonetics]". Zhōngguó yưwén 1979:4, 314-20.
Zhōu Diànfú and Wú Zōngji. 1963. Pưtōnghuà fāyĩn túpǔ.[spectrograms of Standard Chinese pronunciation]. Beijing.

Table 1. Formant frequencies and duration of Standard Chinese monophthongic vowels in the context C \qquad \#.

Vowel	Speaker	F_{1}	F_{2}	F_{3}	duration (ms)
i [i]	A	$\begin{aligned} & 200 \\ & 240 \end{aligned}$	$\begin{aligned} & 2370 \\ & 2400 \end{aligned}$	$\begin{array}{r} 3430 \\ 3400 \end{array}$	$\begin{aligned} & 175 \\ & 165 \end{aligned}$
	B	$\begin{aligned} & 220 \\ & 340 \end{aligned}$	$\begin{aligned} & 2040 \\ & 2320 \end{aligned}$	$\begin{aligned} & 2960 \\ & 3270 \end{aligned}$	$\begin{aligned} & 180 \\ & 170 \end{aligned}$
	C	$\begin{aligned} & 240 \\ & 400 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1830 \end{aligned}$	$\begin{aligned} & 3360 \\ & 3390 \end{aligned}$	$\begin{aligned} & 150 \\ & 195 \end{aligned}$
	D	$\begin{aligned} & 200 \\ & 230 \end{aligned}$	$\begin{aligned} & 2420 \\ & 2360 \end{aligned}$	$\begin{aligned} & 3600 \\ & 3510 \end{aligned}$	$\begin{aligned} & 185 \\ & 200 \end{aligned}$
	mean	259	2192	3365	177
$\underline{\ddot{u}}[y]$	A	$\begin{aligned} & 210 \\ & 220 \end{aligned}$	$\begin{aligned} & 2140 \\ & 2220 \end{aligned}$	$\begin{aligned} & 2580 \\ & 2490 \end{aligned}$	$\begin{aligned} & 150 \\ & 160 \end{aligned}$
	B	$\begin{aligned} & 270 \\ & 460 \end{aligned}$	$\begin{aligned} & 2150 \\ & 2070 \end{aligned}$	$\begin{aligned} & 2340 \\ & 2630 \end{aligned}$	$\begin{aligned} & 140 \\ & 170 \end{aligned}$
	c	$\begin{aligned} & 360 \\ & 380 \end{aligned}$	$\begin{aligned} & 1820 \\ & 1900 \end{aligned}$	$\begin{aligned} & 2450 \\ & 2670 \end{aligned}$	$\begin{aligned} & 180 \\ & 155 \end{aligned}$
	D	$\begin{aligned} & 220 \\ & 220 \end{aligned}$	$\begin{aligned} & 2200 \\ & 1890 \end{aligned}$	$\begin{aligned} & 2510 \\ & 2340 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \end{aligned}$
	mean	292	2040	2501	160
$\underline{\underline{u}}$ [u]	A	$\begin{aligned} & 360 \\ & 240 \end{aligned}$	$\begin{aligned} & 310 \\ & 760 \end{aligned}$	$\begin{aligned} & 2460 \\ & 2730 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$
	B	$\begin{aligned} & 430 \\ & 330 \end{aligned}$	$\begin{aligned} & 640 \\ & 720 \end{aligned}$	$\begin{aligned} & 2430 \\ & 2610 \end{aligned}$	$\begin{aligned} & 165 \\ & 150 \end{aligned}$
	C	$\begin{aligned} & 240 \\ & 310 \end{aligned}$	$\begin{aligned} & 940 \\ & 700 \end{aligned}$	$\begin{aligned} & 2280 \\ & 2620 \end{aligned}$	$\begin{aligned} & 140 \\ & 145 \end{aligned}$
	D	$\begin{aligned} & 450 \\ & 280 \end{aligned}$	$\begin{aligned} & 760 \\ & 760 \end{aligned}$	$\begin{aligned} & 2750 \\ & 2720 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$
	mean	330	761	2575	150
a [a]	A	$\begin{array}{r} 770 \\ 930 \end{array}$	$\begin{aligned} & 1200 \\ & 1290 \end{aligned}$	$\begin{aligned} & 2530 \\ & 2600 \end{aligned}$	$\begin{aligned} & 145 \\ & 185 \end{aligned}$
	B	$\begin{aligned} & 770 \\ & 930 \end{aligned}$	$\begin{aligned} & 1180 \\ & 1340 \end{aligned}$	$\begin{aligned} & 2360 \\ & 2620 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$
	c	$\begin{aligned} & 650 \\ & 960 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1500 \end{aligned}$	$\begin{aligned} & 2640 \\ & 2530 \end{aligned}$	$\begin{aligned} & 155 \\ & 120 \end{aligned}$
	D	$\begin{aligned} & 860 \\ & 920 \end{aligned}$	$\begin{aligned} & 1370 \\ & 1450 \end{aligned}$	$\begin{aligned} & 2800 \\ & 2810 \end{aligned}$	$\begin{aligned} & 195 \\ & 185 \end{aligned}$
	mean	849	1334	2611	171

Table 1 (cont.)

Vowel	Speaker	F_{1}	F_{2}	F_{3}	duration
e [$\mathrm{V}^{\text {] }}$	A	340	1170	2550	220*
		330	1130	2600	235*
	B	510	1030	2500	205*
		500	1120	2570	225*
	C	380	1360	2310	160*
		380	1430	2200	190*
	D	500	1260	2580	240*
		480	1400	2560	215*
	mean	428	1244	2484	211*
er [\quad]	A	400	1480	1890	225*
		500	1480	1320	335*
	B	490	1420	1750	250*
		600	1380	1760	280*
	c	430	1430	1710	195*
		440	1370	1760	240*
	D	440	1320	1630	435*
		450	1340	1720	330*
	mean	469	1402	1755	261*
\underline{i} [1]	A	240	1160	2700	85
		270	1170	2800	120
	B	370	1200	2710	155
		420	1210	2790	190
	C	400	1240	2620	290
		440	1380	2700	145
	D	490	1220	2600	135
		480	1280	2620	140
	mean	389	1232	2692	140
i [1]	A	430	1750	2300	115
		280	1970	2510	130
	B	480	1690	2570	155
		450	1710	2580	170
	C	470	1600	2620	135
		440	1590	2760	130
	D	510	1710	2220	140
		510	1700	2470	125
	mean	446	1715	2496	137

Table 2. Formant frequencies and durations of monophthongic vowels before nasals.

Rhyme	Speaker	F_{1}	F_{2}	Duration (ms)		
				vowel	nasal	total
in	A	260	2200	110	150	260*
	B	470	2230	100	155	255*
	C	380	1900	90	140	230*
	D	240	2400	130	115	245*
	mean	337	2182	107	140	247*
un	A	260	2110	95	175	270
	B	450	1880	100	150	250
	C	380	1800	30	145	225
	D	240	2050	95	125	220
	mean	332	1960	92	149	241
un	A	240	1080	75	1.90	265
	B	440	1130	80	165	245
	C	350	1100	85	155	240
	D	500	1150	95	130	225
	mean	382	1115	84	160	244
en	A	490	1500	80	155	235
	B	570	1520	75	160	235
	C	490	1.440	65	135	200
	D	680	1720	75	135	210
	mean	557	1545	74	146	220
an	A	820	1610	135	145	280
	B	840	1420	110	130	240
	C	750	1550	100	100	200
	D	870	1590	145	95	240
	mean	820	1542	122	117	240
ing	A	450	2230	110	145	255
	B	410	2310	70	140	210
	C	330	2140	95	135	230
	D	460	2320	105	120	225
	mean	412	2250	95	135	230
ong	A	480	890	55	155	210
	B	430	760	45	160	205
	C	520	830	100	140	240
	D	490	780	85	125	210
	mean	480	815	71	145	216
eng	A	500	1410	80	165	245
	B	430	1200	85	170	255
	c	520	1470	90	150	240
	D	470	920	70	165	235
	mean	480	1250	81	162	244

Table 2 (cont.)

Rnyme	Speaker	F_{1}	$\mathrm{~F}_{2}$	Duration		
				vowel	nasal	total
ang	A	830	1310	125	145	270
	B	830	1270	120	130	250
	C	670	1200	115	140	255
	D	900	1340	100	150	250
	mean	807	1280	115	141	256

Table 3. Formant frequencies and durations of steady states in diphthongs in the context C \qquad \#

1. $t_{1}=$ duration of first steady state; $t_{2}=$ duration of transition between the steady states; $t_{3}=$ duration of second steady state.

Table 3 (cont.)

Third formants of the diphthongs ie and üe:

	ie			ue		
Speaker:	A	3070	2670	2240	2600	
B	2790	2680	2280	2520		
C	2710	2460	2210	2420		
D	3210	2730	2500	2640		
mean	2945	2635	2307	2545		

Table 4. Formant frequencies of triphthong steady states.

	Speaker	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	duration
iao	A	420	2270	440	1250	440	900	250
	B	350	1940	590	1080	510	940	250
	C	390	1840	520	1240	400	980	225
	D	430	2460	640	1400	520	980	260
	mean	398	2128	548	1242	468	950	246
$\underline{\text { uai }}$	A	360	1270	620	1720	370	2180	205
	B	390	1230	620	1700	400	1930	195
	C	480	1350	590	1680	500	1850	180
	D	470	1180	740	1510	480	1970	220
	mean	425	1257	642	1652	437	1982	200

Table 5. Formant frequencies anç durations for diphthongs before nasals.

Rhyme	Speaker	F_{1}	F_{2}	F_{1}	F_{2}	vowel	duration nasal	total
ian	A	290	2320	900	1690	135	115	300
	B	310	2200	630	1750	120	130	250
	C	370	1900	670	1650	130	105	235
	D	460	2390	500	1920	185	90	275
	mean	357	2202	675	1752	155	110	265
üan	A	310	2080	500	1720	165	110	275
	B	300	1820	550	1330	145	110	255
	C	450	1800	730	1620	130	115	245
	D	280	2100	630	1630	170	90	260
	mean	335	1950	602	1575	152	106	259
uan	A	450	910	690	1410	155	110	265
	B	380	1000	580	1390	135	140	275
	C	500	1130	630	1510	130	130	260
	D	430	930	700	1320	185	85	270
	mean	440	992	650	1407	151	116	267
iong	A	250	2110	260	1500	100	135	235
	B	420	1710	400	940	70	150	220
	C	330	2100	330	820	65	140	205
	D	250	2160	270	980	90	120	210
	mean	312	2020	315	1060	31	136	217
iang	A	430	2280	720	1180	140	110	250*
	B	600	2170	860	1240	120	125	245*
	C	540	2100	700	1110	150	110	260*
	D	290	2360	350	1370	140	100	240*
	mean	465	2227	782	1225	137	111	249*
uang	A	500	960	730	1090	115	135	250
	B	370	930	560	1180	120	140	260
	C	510	840	620	1110	110	135	245
	D	490	910	700	1280	125	115	240
	mean	467	910	652	1165	117	131	249

Figure 1:1. $F_{1}-F_{2}$-diagram for the five vowel phonemes.

Figure 1:2. $\mathrm{F}_{1}-\mathrm{F}_{3}$-diagram for the five vowel phonemes.

Figure 2:1. $\mathrm{F}_{1}-\mathrm{F}_{2}$-diagram for [$\left.\sigma\right]$, [1] and [l]. The stars represent the averages for the five main allophones of the vowels.

Figure 2:2. $\mathrm{F}_{1}-\mathrm{F}_{3}$-diagram for [$\%$], [2] and [7]. The letters i, $\underline{\underline{u}}, \underline{u}, \underline{e}$ and \underline{a} represent average formant values for these vowels in open syllables.

Figure 3: I. $\mathrm{F}_{1}-\mathrm{F}_{2}$-diagram for vowels before \underline{n}. The stars represent average formant values for vowels in open syllables.

Figure 3:2. $\mathrm{F}_{1}-\mathrm{F}_{2}$-diagram for vowels before ng .

Figure 4:1. Diphthongs before \varnothing.

Figure 4:2. Diphthongs before nasals.

\square

Figure 5:1. Duration of monophthongs.

Figure 5:2. Duration of diphthongs and triphthongs.

Figure 6. Transition percentage plotted against total duration for the diphthongs.

