Acoustic Analysis of Vowels and Diphtongs in Cairo Arabic ## **Kiell Norlin** ### 1. INTRODUCTION This paper reports an investigation on acoustic properties of vowels and diphtongs in Cairo Arabic. The two classes of plain and pharyngalized consonants in Cairo Arabic are also discussed, using the alveolar fricatives /s/ and /s/ as an illustration (Norlin 1983). The effects on vowels in the environment of these consonant classes are demonstrated. Arabic belongs to the Semitic branch of the Afroasiatic language family. Like all varieties of Arabic, Cairo Arabic has few contrasting vowel phonemes, giving place to a number of vowel allophones. Cairo Arabic has five contrasting long vowels: /ii, ee, aa, oo, uu/, and three short vowels: /i, a, u/. The long mid vowels are derived from the diphtongs /ai/ and /au/. The diphtongal qualities are still preserved in Standard Arabic. In Cairo Arabic the long mid vowels /ee/ and /oo/ are shortened under certain morphological conditions and merge with short /i/ and /u/ phonetically. In addition, Cairo Arabic does have three phonetic diphtongs, [iu, au, ai] in a subset of the vocabulary. These are usually analyzed as /iw, aw, ay / (Harrell, 1957). Syllable structure is rather simple. The following syllables occur: CV, CVC, CVV, CVVC, CVCC. The last two syllables can only occur in word final position and, of course, form monosyllabic words. ## 2. PROCEDURE Most of the data illustrating vowels are taken from real monosyllabic words of the types CVVC and CVCC, set in a sentence frame 'ulna ... kamaan (we said ... again), preceded and followed by dental consonants. All contrasting vowel phonemes and the three diphtongs occur in this position. To get examples of short [e] and [o], some disyllabic words were included, since they cannot occur in monosyllables. Long /ii, aa, uu/ also occur in a stressed syllable in disyllabic words, since vowels are not found between these consonants in monosyllables. Six speakers of Cairo Arabic recorded the sentences to give five tokens of each utterance. The recordings were made in the studio of the Phonetic Department in Lund. The recordings of vowels and diphtongs were analyzed from broad-band spectrograms from a Kay Digital Sonagraph 7800. For the vowels the first two formants of the five tokens were traced and superimposed on each other to get an idea of variation within each speaker. The variation proved to be very small and can in all cases be considered to be within the measurement error. Therefore three tokens were selected for analysis. The long and short vowels were all monophtongs. Formant frequencies were measured from a steady state portion of the formant. Mean formant values representing each vowel of each speaker were calculated, tables 1 and 2. Using a lab computer the formant values in Hz were converted to mel and plotted on an acoustic chart with ${\rm F_1}$ and ${\rm F_2}$ in the usual way. Vowel duration was measured from five tokens and mean values calculated, table 3. For the diphthongs the first two formants were measured together with the duration of each steady state and the duration of the transition. The formant frequencies were measured in the middle of each steady state. ## 3.1. RESULTS: VOWEL DURATION Vowel durations were first considered separately in plain and pharyngalized environment. The results show that vowel duration is not significantly different between plain and pharyngalized long vowels, nor between plain and pharyngalized short vowels in these environments. Therefore plain and pharyngalized vowels are considered together. Table 3 shows the mean duration for all the vowels. The difference in length between long and short vowels is rather large. Short vowels are about half the duration of long ones. ## 3.2. RESULTS: VOWEL QUALITY Figure 1 is a formant chart of plain, long vowels. Plain, long vowels are well separated with no overlapping, except for long /ii/ and /ee/ touching each other. Figure 2 shows a formant chart of the three plain, short vowels. These vowels are also well separated clusters. Figure 3 also shows plain, short vowels, but it includes the non-phonemic [e] and [o]. Here short [e] and [o] show nearly complete overlapping with short /i/ and /u/. Their non-phonemic status is stated in literature, but phonetic data supporting the linguistic analysis is generally not presented. In some text-books there is even a claim that there is a phonetic difference between [i] and [e] on the one hand, and [o] and [u] on the other (Abdel-Massih 1975). Figures 4 and 5 show formant charts of the pharyngalized long and short vowels. ## 4. DISCUSSION # 4.1. Vowel length and vowel quality Difference in vowel length influence vowel quality. For both plain and pharyngalized environments the long vowels are more peripheral, whereas the short vowels are inside the space of the long vowels with the exception of long /aa/ and short /a/ where the quality difference is small. Both plain and pharyngalized long /ii/ differ significantly (p<0.001) from short /i/ along both F, and F2. The short /i/ vowels are lower and further back than the long /ii/ vowels. Short /u/ vowels are lower and more front than long /uu/ vowels. Both sets of long /aa/ differ to some extent from their short counterparts along F_{γ} . The short vowels tend to be further back. The differences along \mathbf{F}_1 between long and short /a/ vowels are non-significant: long and short vowels have the same vowel height. It seems as if vowels in Cairo Arabic are anchored on the low vowels and the short vowels /i/ and /u/ do not reach the vowel quality of the long ones, figure 6. # 4.2 Vowel quality in plain and pharyngalized environment. An earlier study (Norlin 1983) analyzed all the fricatives in Cairo Arabic. These include the pharyngalized fricatives /s/ and /z/. In this study FFT spectra of the fricatives were converted to critical band spectra. The center of gravity of the critical band spectra was plotted against dispersion, figure 9. The center of gravity in the spectra was also plotted against the mean intensity level of the spectra in dB, figure 10. The results from this earlier study showed that the plain and pharyngalized consonants are different, even if the difference ## is small. Considering the effects of plain and pharyngalized environments on vowel quality, a comparison between long vowels shows that there is a complete overlapping for for both sets of long /uu/. Pharyngalized long /ii/ shows a small difference from its plain counterpart in that it is slightly lower and further back. Pharyngalized long /aa/, however, is greatly affected, showing a considerable difference in the ${\bf F}_2$ dimension from its plain counterpart: the pharyngalized /aa/ is much further back than the plain /aa/, figure 7. A comparison between the plain and pharyngalized short vowels shows that the pharyngalized short /u/ does not overlap with plain short /u/, as is the case with the long counterparts. It is further back. The short pharyngalized /i/ is also further back than plain /i/. The two sets of short /a/ differ in the same manner: pharyngalized short /a/ is further back. Thus all short vowels are further back in pharyngalized environment. Fig. 8. In conclusion, it is evident that the pharyngalization process affects the whole syllable. On the one hand, plain and pharyngalized consonants differ consistently. On the other hand, vowels in plain and pharyngalized environment differ in more complex ways. Plain and pharyngalized low vowels always show a considerable difference in the ${\rm F_2}$ dimension, regardless of length, the pharyngalized vowels being more back. High long vowels show small or no difference, whereas short high vowels always are further back than plain ones. # 5. DIPHTHONGS Most Standard Arabic diphtongs /ai/ and /au/ have in Cairo Arabic developed into long /ee/ and /oo/. They also exist in Cairo Arabic, however, in a number of purely dialectal words and some Standard Arabic words commonly used in daily speech. In addition, there exists a third diphtong [iu] due to morphophonematic rules in verb conjugation. A comparison between the short vowels and the corresponding segments in the diphthongs shows some differences in vowel quality. In the diphtongs, F_1 frequencies are always identical with F_1 in short vowels, but F_2 is always lower, making diphthong segments more back. The rate of transition between the two components in diphthongs is fast, around 30-35 milliseconds in all the diphtongs. It seems as if the diphthongs in Cairo Arabic are made by stringing the short vowels together with a fast transition, figures 11, 12, 13. #### **ACKNOWLEDGEMENTS** The work reported here is supported by the Swedish Council for Research in the Humanities and Social Sciences. #### REFERENCES - Abdel-Massih, E. 1975. An introduction to Egyptian Arabic. Ann Arbor: The University of Michigan. - Harrell, R.S. 1957. The phonology of colloquial Egyptian Arabic. New York: American council of learned societies. - Norlin, K. 1983.Acoustic analysis of fricatives in Cairo Arabic. Working Papers 25:113-137. Phonetics Laboratory, Lund University. Table 1. Formant frequencies of long and short plain vowels in Cairo Arabic. | Vowel | Speaker | F ₁ | $^{\mathrm{F}}_{2}$ | F ₃ | Vowel | Speaker | F ₁ | $^{\mathrm{F}}_{2}$ | F ₃ | |-------|---------|-------------------|----------------------|----------------------|-------|---------|-------------------|----------------------|----------------------| | /ii/ | 1 | 225
275
250 | 2600
2575
2650 | 3050
3150
3100 | /aa/ | 1 | 625
600
625 | 1700
1650
1675 | 2700
2650
2675 | | | 2 | 300
300
300 | 2275
2325
2325 | 3150
3000
3150 | | 2 | 550
550
575 | 1750
1825
1800 | 2475
2500
2500 | | | 3 | 275
250
275 | 2250
2275
2250 | 2900
2850
2800 | | 3 | 525
575
500 | 1700
1750
1700 | 2600
2675
2650 | | | 4 | 300
300
300 | 2050
2100
2000 | 2775
2800
2800 | | 4 | 525
500
500 | 1600
1625
1525 | 2500
2500
2500 | | | 5 | 300
300
275 | 2300
2325
2300 | 2925
3025
3000 | | 5 | 575
575
575 | 1750
1775
1825 | 2600
2550
2525 | | | 6 | 350
300
300 | 2200
2200
2200 | 3150
3125
3200 | | 6 | 550
550
550 | 1675
1750
1700 | 2700
2700
2700 | | , | mean | 288 | 2289 | 2997 | | mean | 557 | 1710 | 2594 | | /ee/ | 1 | 300
300
400 | 2250
2400
2375 | 2800
2800
2825 | /00/ | 1 | 400
350
400 | 750
750
800 | 2650
2500
2500 | | | 2 | 425
400
450 | 2100
2125
2150 | 2700
2650
2650 | | 2 | 400
400
425 | 850
900
875 | 2225
2225
2250 | | | 3 | 375
400
375 | 2075
2025
2050 | 2700
2700
2700 | | 3 | 400
450
400 | 950
1000
1000 | 2350
2375
2400 | | | 4 | 400
350
400 | 1825
1875
1900 | 2500
2600
2500 | | 4 | 350
350
400 | 900
850
975 | 2250
2200
2400 | | | 5 | 350
325
350 | 2275
2225
2225 | 2700
2650
2700 | | 5 | 400
400
400 | 825
850
775 | 2400
2400 | | | 6 | 350
375
325 | 2200
2200
2150 | 3100
3100
3050 | | 6 | 400
325
350 | 775
775
800 | 2400
2500
2450 | | | mean | 369 | 2135 | 2746 | | mean | 389 | 856 | 2381 | | Table | e 1 | (cont.) | ١ | |-------|-----|---------|---| | Tant | = 1 | (COLLE) | į | | Table | (cont. | , | | | | | | | | |-------|---------|-------------------|----------------------|----------------------|-------|---------|-------------------|----------------------|----------------------| | Vowel | Speaker | F 1 | F ₂ | F ₃ | Vowel | Speaker | F ₁ | F ₂ | F ₃ | | /uu/ | 1 | 275
300
275 | 775
700
700 | 2675
2650
2500 | /a/ | 1 | 550
575
625 | 1600
1600
1600 | 2725
2700
2700 | | | 2 | 250
300
300 | 825
850
875 | 2300
2275
2325 | | 2 | 650
625
625 | 1500
1475
1525 | 2450
2500
2500 | | | 3 | 275
300
300 | 750
825
800 | 2475
2500
2350 | | 3 | 550
550
550 | 1575
1600
1600 | 2525
2600
2525 | | | 4 | 300
300
300 | 800
850
775 | 2275
2200
2225 | | 4 | 550
525
550 | 1500
1600
1525 | 2575
2550
2600 | | | 5 | 325
300
300 | 700
650
700 | | | 5 | 600
575
600 | 1500
1575
1525 | 2625
2600
2500 | | | 6 | 300
300
300 | 725
725
775 | 2350
-
- | | 6 | 525
600
525 | 1650
1700
1700 | 2800
2750
2825 | | | mean | 294 | 767 | 2392 | | mean | 575 | 1575 | 2614 | | /i/ | 1 | 400
375
375 | 1875
1950
1900 | 2750
2725
2750 | /u/ | 1 | 400
400
475 | 1150
1100
1075 | 2750
2725
2900 | | | 2 | 475
475
450 | 1850
1825
1850 | 2425
2550
2500 | | 2 | 450
450
475 | 975
1050
1050 | 2250
2350
2250 | | | 3 | 425
425
400 | 1875
1825
1825 | 2550
2600
2600 | | 3 | 400
450
425 | 1175
1175
1200 | 2250
2375
2400 | | | 4 | 400
475
450 | 1750
1750
1800 | 2500
2500
2425 | | 4 | 400
375
425 | 1250
1200
1250 | 2250
2300
2225 | | | 5 | 400
375
400 | 1925
1925
1925 | 2625
2625
2600 | | 5 | 350
375
400 | 1100
1250
1150 | 2500
2400
2400 | | | 6 | 450
450
450 | 1950
1900
2000 | 2825
2800
2800 | | 6 | 425
400
400 | 1050
1100
1050 | 2550
2400
2600 | | | mean | 425 | 1872 | 2619 | | mean | 415 | 1131 | 2438 | Table 2. Formant frequencies of long and short pharyngalized vowels in Cairo Arabic. | Worse 1 | Cnaskon | | T2 . | T. | Versel | Chaplear | · [7 | T | Er. | |---------|---------|-------------------|----------------------|----------------------|--------|----------|-------------------|----------------------|----------------------| | vower | Speaker | ^F 1 | F ₂ | F ₃ | vowei | Speaker | ^F 1 | F ₂ | F ₃ | | /ii/ | 1 | 250
275
275 | 2400
2400
2325 | 2800
2800
2825 | /uu/ | 1 | 325
250
250 | 725
675
675 | 3000
2975
- | | | 2 | 300
300
300 | 2150
2200
2200 | 2625
2725
2700 | | 2 | 300
300
325 | 875
775
800 | 2375
2450
2500 | | | 3 | 300
350
325 | 2200
2125
2100 | 2600
2575
2600 | | 3 | 250
325
300 | 825
850
800 | 2500
2400
2500 | | | 4 | 325
350
325 | 2000
2000
1925 | 2425
2475
2425 | | 4 | 325
300
325 | 825
800
800 | 2500
2500
2575 | | | 5 | 350
350
300 | 2200
2175
2200 | 2700
2750
2700 | | 5 | 300
325
325 | 650
700
625 | 2700
2650
2750 | | | 6 | 350
300
350 | 2175
2150
2150 | 3150
3100
3100 | | 6 | 350
300
300 | 800
750
750 | -
-
- | | | mean | 315 | 2171 | 2726 | | mean | 304 | 761 | 2598 | | /aa/ | 1 | 600
600
675 | 1125
1100
1050 | 2900
2900
2975 | /i/ | 1 | 400
450
450 | 1375
1250
1300 | 2800
2800
2900 | | | 2 | 550
600
600 | 1000
1000
1000 | 2250
2375
2350 | | 2 | 475
450
475 | 1525
1550
1525 | 2500
2450
2400 | | | 3 | 600
550
550 | 1100
1100
1050 | 2300
2300
2300 | | 3 | 475
475
475 | 1475
1475
1475 | 2500
2475
2500 | | | 4 | 550
500
550 | 1050
1025
1125 | 2400
2350
2300 | | 4 | 450
450
425 | 1325
1300
1300 | 2400
2375
2300 | | | 5 | 550
525
525 | 1050
1025
1025 | 2750
2675
2750 | | 5 | 350
400
400 | 1850
1800
1800 | 2550
2625
2675 | | | 6 | 575
650
550 | 1225
1300
1200 | 2775
2500
2725 | | 6 | 400
400
425 | 1900
1800
1900 | 2725
2725
2650 | | | mean | 572 | 1086 | 2549 | | mean | 435 | 1551 | 2575 | | Tа | ble | 2 | (cont. | • | |----|-----|---|--------|---| | | | | | | | | | • | | | | | | | | |-------|---------|-------------------|----------------------|----------------------|-------|---------|-------------------|----------------------|----------------------| | Vowel | Speaker | F ₁ | F_2 | F ₃ | Vowel | Speaker | F 1 | F_2 | F ₃ | | /a/ | 1 | 650
625
600 | 1200
1200
1225 | 2800
2850
2750 | /u/ | 1 | 500
500
400 | 900
1000
975 | 2300
-
2300 | | | 2 | 650
650
625 | 1100
1100
1075 | 2500
2525
2500 | | 2 | 400
450
450 | 800
750
825 | 2350
2500
2350 | | | 3 | 600
600
550 | 1175
1150
1100 | 2350
2275
2400 | | 3 | 500
450
475 | 1100
1100
1100 | 2400
2225
- | | | 4 | 600
600
575 | 1050
1150
1125 | 2300
2400
2300 | | 4 | 450
450
400 | 1050
1100
975 | 2500
2475
2350 | | | 5 | 550
550
575 | 1050
1100
1125 | 2875
2850
2875 | | 5 | 375
400
400 | 925
900
975 | 2600
2700
2725 | | | 6 | 600
550
575 | 1250
1300
1325 | 2800
2850
2800 | | 6 | 400
400
400 | 1000
1000
925 | - | | | mean . | 596 | 1156 | 2611 | | mean | 433 | 967 | 2444 | Table 3. Vowel duration, plain and pharyngalized vowels, mean values in milliseconds. /ii/ 131 /i/ 67 /ee/ 153 /a/ 84 /aa/ 158 /u/ 75 /oo/ 185 /uu/ 139 Table 4. Formant frequencies and durations of diphthongs in ${\tt Cairo\ Arabic.}^1$ | Diphtong | Speake | r F ₁ | F ₂ | F ₁ | F ₂ | t ₁ | t ₂ | t ₃ | tot. | |----------|--------|-------------------|----------------------|-------------------|----------------------|----------------|----------------|-----------------|-------------------| | iu | 1 | 300
450
425 | 1850
1850
1800 | 300
425
375 | 800
850
775 | 60
40
30 | 50
50
55 | 50
50
35 | 190
175
170 | | | 2 | 450
450
475 | 1750
1700
1750 | 350
325
450 | 1000
850
1025 | 30
60
45 | 25
30
25 | 40
35
40 | 125
155
125 | | | 3 | 450
500
450 | 1800
1800
1850 | 375
325
350 | 950
900
925 | 50
65
50 | 35
40
40 | 40
25
40 | 150
160
150 | | | 4 | 475
400
475 | 1750
1675
1725 | 375
325
350 | 800
800
850 | 60
40
50 | 25
25
25 | 45
40
45 | 145
135
140 | | | 5 | 400
375
400 | 1900
1850
1825 | 300
300
325 | 800
750
750 | 55
60
50 | 40
40
40 | 40
60
50 | 160
190
165 | | | 6 | 425
400
450 | 1700
1650
1625 | 325
350
375 | 775
800
800 | 50
50
50 | 30
30
30 | 50
50
50 | 150
155
170 | | | mean | 430 | 1769 | 350 | 844 | 49 | 35 | 44 | 156 | | ai | 1 | 650
675
700 | 1600
1675
1700 | 400
375
400 | 2450
2450
2500 | 60
60
75 | 25
20
25 | 85
90
90 | 170
170
185 | | | 2 | 650
650
675 | 1700
1600
1675 | 375
400
425 | 2000
2000
2100 | 75
80
70 | 30
35
40 | 60
65
70 | 165
185
180 | | | 3 | 575
600
550 | 1750
1650
1650 | 400
400
450 | 2200
2100
2025 | 70
50
70 | 20
30
30 | 80
85
75 | 165
170
180 | | | 4 | 600
575
575 | 1775
1725
1675 | 325
350
350 | 2075
2025
2050 | 70
70
70 | 30
30
30 | 55
60
70 | 175
160
170 | | | 5 | 525
650
625 | 1700
1700
1625 | 325
375
350 | 2250
2250
2250 | 70
60
60 | 30
30
35 | 80
80
95 | 180
170
190 | | | 6 | 600
600
575 | 1800
1750
1800 | 350
350
300 | 2225
2225
2200 | 75
70
70 | 30
30
30 | 95
100
85 | 195
200
185 | | | mean | 614 | 1697 | 372 | 2187 | 68 | 29 | 79 | 177 | ^{1.}t₁= duration of first steady state, t_2 = duration of transition between the steady states, t_3 = duration of second steady state. Table 4 (cont.) | Diphtong Speake | r F ₁ | $^{\mathrm{F}}_{2}$ | F ₁ | F ₂ | t ₁ | t ₂ | t ₃ | tot. | |-----------------|------------------|---------------------|----------------|----------------|----------------|----------------|----------------|------| | au 1 | 575 | 1375 | 325 | 750 | 70 | 30 | 65 | 190 | | | 625 | 1400 | 400 | 775 | 65 | 45 | 55 | 180 | | | 625 | 1450 | 400 | 800 | 70 | 40 | 55 | 180 | | 2 | 550 | 1425 | 400 | 1075 | 70 | 25 | 40 | 140 | | | 575 | 1450 | 425 | 1100 | 70 | 25 | 40 | 135 | | | 600 | 1375 | 425 | 1100 | 70 | 30 | 35 | 140 | | 3 | 550 | 1500 | 425 | 1025 | 70 | 40 | 35 | 160 | | | 550 | 1500 | 425 | 1000 | 80 | 35 | 40 | 150 | | | 550 | 1500 | 425 | 1075 | 65 | 40 | 55 | 180 | | 4 | 525 | 1425 | 375 | 1050 | 50 | 25 | 40 | 125 | | | 500 | 1400 | 400 | 1100 | 50 | 25 | 30 | 120 | | | 550 | 1400 | 400 | 950 | 60 | 20 | 30 | 125 | | 5 | 700 | 1500 | 450 | 825 | 60 | 30 | 40 | 145 | | | 650 | 1525 | 375 | 850 | 60 | 40 | 30 | 150 | | | 600 | 1575 | 350 | 700 | 60 | 35 | 35 | 145 | | 6 | 600 | 1625 | 425 | 850 | 50 | 40 | 50 | 180 | | | 575 | 1575 | 400 | 850 | 50 | 40 | 60 | 180 | | | 600 | 1575 | 425 | 825 | 55 | 40 | 55 | 190 | | mean | 583 | 1476 | 403 | 928 | 63 | 34 | 44 | 156 | Figure 2. Short plain vowels. Figure 3. Short plain vowels. Figure 4. Long pharyngalized vowels. Figure 5. Short pharyngalized vowels. Figure 6. Long and short plain vowels. - --- long vowels - --- short vowels Figure 7. Long plain and pharyngalized vowels. - --- plain vowels - --- pharyngalized vowels Figure 8. Short plain and pharyngalized vowels. - --- plain vowels - --- pharyngalized vowels